A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects
Abstract
:1. Introduction
2. DNA Topoisomerase Inhibitors
Quinolones
3. Protein Synthesis Inhibitors Acting on Ribosomal Subunits
3.1. Tetracyclines
3.2. Aminoglycosides
3.3. Oxazolidinones
3.4. Pleuromutilins
3.5. Macrolides
4. Antibiotics That Interfere with Bacterial Cell Wall Synthesis
4.1. Cephalosporins
4.2. Carbapenems
4.3. Cyclic Lipopeptides
5. Antifungal Drugs That Inhibit Cell Membrane Synthesis
5.1. Echinocandins
5.2. Triterpenoids
5.3. Triazoles
6. Antituberculosis Drugs
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zong, Z.; Lei, S.; Srinivas, S.; Sun, J.; Feng, Y.; Huang, M.; Feng, Y. A Genomic, Evolutionary, and Mechanistic Study of MCR-5 Action Suggests Functional Unification across the MCR Family of Colistin Resistance. Adv. Sci. 2019, 6, 1900034. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, X.; Li, L.; Zhang, T.; Zhang, Q.; Wu, F.; Wang, D.; Hu, H.; Tian, C.; Liao, D.; et al. Coagulation factors VII, IX and X are effective antibacterial proteins against drug-resistant Gram-negative bacteria. Cell Res. 2019, 29, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.P.; Lin, Q.; Chen, C.; Montelaro, R.C.; Doi, Y.; Deslouches, B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci. Adv. 2020, 6, 6817. [Google Scholar] [CrossRef]
- Shi, T.; Hou, X.; Guo, S.; Zhang, L.; Wei, C.; Peng, T.; Hu, X. Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano-bio interactions. Nat. Commun. 2021, 12, 493. [Google Scholar] [CrossRef]
- Manna, M.S.; Tamer, Y.T.; Gaszek, I.; Poulides, N.; Ahmed, A.; Wang, X.; Toprak, F.C.R.; Woodard, D.R.; Koh, A.Y.; Williams, N.S.; et al. A trimethoprim derivative impedes antibiotic resistance evolution. Nat. Commun. 2021, 12, 2949. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef]
- Cools, F.; Delputte, P.; Cos, P. The search for novel treatment strategies for Streptococcus pneumoniae infections. FEMS Microbiol. Rev. 2021, 45, fuaa072. [Google Scholar] [CrossRef]
- Grygorenko, O.O.; Radchenko, D.S.; Volochnyuk, D.M.; Tolmachev, A.A.; Komarov, I.V. Bicyclic conformationally restricted diamines. Chem. Rev. 2011, 111, 5506–5568. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mitsubayashi, K.; Marty, J.L. Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends Biotechnol. 2019, 37, 898–915. [Google Scholar] [CrossRef]
- Ahadi, H.; Shokrzadeh, M.; Hosseini-Khah, Z.; Ghassemi Barghi, N.; Ghasemian, M.; Emadi, E.; Zargari, M.; Razzaghi-Asl, N.; Emami, S. Synthesis and biological assessment of ciprofloxacin-derived 1,3,4-thiadiazoles as anticancer agents. Bioorg. Chem. 2020, 105, 104383. [Google Scholar] [CrossRef]
- Cui, S.F.; Peng, L.P.; Zhang, H.Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C.H. Novel hybrids of metronidazole and quinolones: Synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem. 2014, 86, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.S.; Liu, M.L.; Wang, B.; Chai, Y.; Hao, X.Q.; Meng, S.; Guo, H.Y. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur. J. Med. Chem. 2010, 45, 3407–3412. [Google Scholar] [CrossRef] [PubMed]
- Hiltensperger, G.; Jones, N.G.; Niedermeier, S.; Stich, A.; Kaiser, M.; Jung, J.; Puhl, S.; Damme, A.; Braunschweig, H.; Meinel, L.; et al. Synthesis and structure-activity relationships of new quinolone-type molecules against Trypanosoma brucei. J. Med. Chem. 2012, 55, 2538–2548. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, M.; Matsuda, M.; Tomii, Y.; Kimura, K.; Segawa, J.; Kitano, M.; Kise, M.; Shibata, K.; Otsuki, M.; Nishino, T. In vivo evaluation of NM441, a new thiazeto-quinoline derivative. Antimicrob. Agents Chemother. 1991, 35, 2496–2499. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Lu, G.; Wu, X.; Huang, W.; Wu, Y.; Lv, X.; Wu, G.; Zhang, G.; Li, Q.; et al. Prulifloxacin versus levofloxacin in the treatment of respiratory and urinary tract infections: A multicentre, double-blind, randomized controlled clinical trial. Chemotherapy 2012, 58, 249–256. [Google Scholar] [CrossRef]
- Cazzola, M.; Salvatori, E.; Dionisio, P.; Allegra, L. Prulifloxacin: A new fluoroquinolone for the treatment of acute exacerbation of chronic bronchitis. Pulm. Pharmacol. Ther. 2006, 19, 30–37. [Google Scholar] [CrossRef]
- Rafailidis, P.I.; Polyzos, K.A.; Sgouros, K.; Falagas, M.E. Prulifloxacin: A review focusing on its use beyond respiratory and urinary tract infections. Int. J. Antimicrob. Agents 2011, 37, 283–290. [Google Scholar] [CrossRef]
- Keam, S.J.; Perry, C.M. Prulifloxacin. Drugs 2004, 64, 2221–2234, discussion 2235–2236. [Google Scholar] [CrossRef]
- Araki, T.; Kawai, Y.; Ohta, I.; Kitaoka, H. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic, in an aqueous solution. Chem. Pharm. Bull. 2002, 50, 229–234. [Google Scholar] [CrossRef]
- Ward, K.W.; Lepage, J.F.; Driot, J.Y. Nonclinical pharmacodynamics, pharmacokinetics, and safety of BOL-303224-A, a novel fluoroquinolone antimicrobial agent for topical ophthalmic use. J. Ocul. Pharmacol. Ther. 2007, 23, 243–256. [Google Scholar] [CrossRef]
- Carter, N.J.; Scott, L.J. Besifloxacin ophthalmic suspension 0.6%. Drugs 2010, 70, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Khimdas, S.; Visscher, K.L.; Hutnik, C.M. Besifloxacin ophthalmic suspension: Emerging evidence of its therapeutic value in bacterial conjunctivitis. Ophthalmol. Eye Dis. 2011, 3, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Adam, H.J.; Laing, N.M.; King, C.R.; Lulashnyk, B.; Hoban, D.J.; Zhanel, G.G. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob. Agents Chemother. 2009, 53, 4915–4920. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.K.; Lai, C.C.; Liao, C.H.; Chou, C.H.; Hsu, H.L.; Huang, Y.T.; Hsueh, P.R. Comparative in vitro activities of the new quinolone nemonoxacin (TG-873870), gemifloxacin and other quinolones against clinical isolates of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2009, 64, 428–429. [Google Scholar] [CrossRef] [PubMed]
- Furuhata, K.; Todo, Y.; Takakura, T.; Watanabe, Y.; Narita, H. Pharmacological properties of T-3762, a novel fluoroquinolone antimicrobial agent in parenteral use. III. Chemical structures and dermovascular permeability-increasing activities. Biol. Pharm. 1998, 21, 919–923. [Google Scholar] [CrossRef]
- Hong, C.Y.; Kim, Y.K.; Chang, J.H.; Kim, S.H.; Choi, H.; Nam, D.H.; Kim, Y.Z.; Kwak, J.H. Novel fluoroquinolone antibacterial agents containing oxime-substituted (aminomethyl)pyrrolidines: Synthesis and antibacterial activity of 7-(4-(aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid (LB20304). J. Med. Chem. 1997, 40, 3584–3593. [Google Scholar]
- Lowe, M.N.; Lamb, H.M. Gemifloxacin. Drugs 2000, 59, 1137–1148. [Google Scholar] [CrossRef]
- Al-Hadiya, B.M.; Mahmoud, A.M. Gemifloxacin. In Profiles of Drug Substances, Excipients and Related Methodology; Academic Press: Cambridge, MA, USA, 2011; Volume 36, pp. 151–168. [Google Scholar]
- Yoo, B.K.; Triller, D.M.; Yong, C.S.; Lodise, T.P. Gemifloxacin: A new fluoroquinolone approved for treatment of respiratory infections. Ann. Pharmacother. 2004, 38, 1226–1235. [Google Scholar] [CrossRef]
- Takahata, M.; Mitsuyama, J.; Yamashiro, Y.; Yonezawa, M.; Araki, H.; Todo, Y.; Minami, S.; Watanabe, Y.; Narita, H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother. 1999, 43, 1077–1084. [Google Scholar] [CrossRef]
- Ito, M.; Maruyama, Y.; Murono, S.; Wakisaka, N.; Kondo, S.; Hatano, M.; Nakanishi, S.; Miwa, T.; Yoshizaki, T. Efficacy and safety of garenoxacin in the treatment of upper respiratory tract infections. Auris Nasus Larynx 2012, 39, 512–518. [Google Scholar] [CrossRef]
- Hayashi, K.; Takahata, M.; Kawamura, Y.; Todo, Y. Synthesis, antibacterial activity, and toxicity of 7-(isoindolin-5-yl)-4-oxoquinoline-3-carboxylic acids. Discovery of the novel des-F(6)-quinolone antibacterial agent garenoxacin (T-3811 or BMS-284756). Arzneimittelforschung 2002, 52, 903–913. [Google Scholar] [PubMed]
- Goldstein, E.J.; Citron, D.M.; Tyrrell, K.L.; Merriam, C.V. Activity of garenoxacin against 536 unusual anaerobes including 128 recovered from acute pelvic infections. Diagn. Microbiol. Infect. Dis. 2011, 70, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kwon, A.R.; Min, Y.H.; Ryu, J.M.; Choi, D.R.; Shim, M.J.; Choi, E.C. In vitro and in vivo activities of DW-224a, a novel fluoroquinolone antibiotic agent. J. Antimicrob. Chemother. 2006, 58, 684–688. [Google Scholar] [CrossRef]
- Park, H.S.; Jung, S.J.; Kwak, J.H.; Choi, D.R.; Choi, E.C. DNA gyrase and topoisomerase IV are dual targets of zabofloxacin in Streptococcus pneumoniae. Int. J. Antimicrob. Agents 2010, 36, 97–98. [Google Scholar] [CrossRef]
- Jin, H.E.; Kang, I.H.; Shim, C.K. Fluorescence detection of Zabofloxacin, a novel fluoroquinolone antibiotic, in plasma, bile, and urine by HPLC: The first oral and intravenous applications in a pharmacokinetic study in rats. J. Pharm. Pharm. Sci. 2011, 14, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, H.J.; Seol, M.J.; Choi, D.R.; Choi, E.C.; Kwak, J.H. In vitro and in vivo antibacterial activities of DW-224a, a new fluoronaphthyridone. Antimicrob. Agents Chemother. 2006, 50, 2261–2264. [Google Scholar] [CrossRef]
- Aminimanizani, A.; Beringer, P.; Jelliffe, R. Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin. Pharmacokinet. 2001, 40, 169–187. [Google Scholar] [CrossRef]
- Kim, T.; Park, S.J.; Chong, Y.P.; Park, K.H.; Lee, Y.M.; Hong, H.L.; Kim, H.S.; Kim, E.S.; Lee, S.; Choi, D.R.; et al. Fluoroquinolone resistance of Streptococcus pneumoniae isolates causing invasive disease: Special focus on zabofloxacin. Diagn. Microbiol. Infect. Dis. 2016, 86, 181–183. [Google Scholar] [CrossRef]
- Garvey, M.I.; Piddock, L.J. The efflux pump inhibitor reserpine selects multidrug-resistant Streptococcus pneumoniae strains that overexpress the ABC transporters PatA and PatB. Antimicrob. Agents Chemother. 2008, 52, 1677–1685. [Google Scholar] [CrossRef]
- Yamakawa, T.; Mitsuyama, J.; Hayashi, K. In vitro and in vivo antibacterial activity of T-3912, a novel non-fluorinated topical quinolone. J. Antimicrob. Chemother. 2002, 49, 455–465. [Google Scholar] [CrossRef]
- Torrelo, A.; Grimalt, R.; Masramon, X.; Albareda López, N.; Zsolt, I. Ozenoxacin, a New Effective and Safe Topical Treatment for Impetigo in Children and Adolescents. Dermatology 2020, 236, 199–207. [Google Scholar] [CrossRef]
- Vila, J.; Hebert, A.A.; Torrelo, A.; López, Y.; Tato, M.; García-Castillo, M.; Cantón, R. Ozenoxacin: A review of preclinical and clinical efficacy. Expert Rev. Anti-Infect. Ther. 2019, 17, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.; Albareda, N.; Chelius, K.; Kruger, D.; Mitha, I.; Vahed, Y.; Gani, M.; García-Alonso, F. Ozenoxacin 1% cream in the treatment of impetigo: A multicenter, randomized, placebo- and retapamulin-controlled clinical trial. Future Microbiol. 2014, 9, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Tomioka, H.; Sato, K.; Kajitani, H.; Akaki, T.; Shishido, S. Comparative antimicrobial activities of the newly synthesized quinolone WQ-3034, levofloxacin, sparfloxacin, and ciprofloxacin against Mycobacterium tuberculosis and Mycobacterium avium complex. Antimicrob. Agents Chemother. 2000, 44, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Delafloxacin: First Global Approval. Drugs 2017, 77, 1481–1486. [Google Scholar] [CrossRef]
- Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Bakthavatchalam, Y.D.; Shankar, A.; Muniyasamy, R.; Peter, J.V.; Marcus, Z.; Triplicane Dwarakanathan, H.; Gunasekaran, K.; Iyadurai, R.; Veeraraghavan, B. Levonadifloxacin, a recently approved benzoquinolizine fluoroquinolone, exhibits potent in vitro activity against contemporary Staphylococcus aureus isolates and Bengal Bay clone isolates collected from a large Indian tertiary care hospital. J. Antimicrob. Chemother. 2020, 75, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- Bhawsar, S.; Kale, R.; Deshpande, P.; Yeole, R.; Bhagwat, S.; Patel, M. Design and synthesis of an oral prodrug alalevonadifloxacin for the treatment of MRSA infection. Bioorg. Med. Chem. Lett. 2021, 54, 128432. [Google Scholar] [CrossRef] [PubMed]
- Thakare, R.; Singh, S.; Dasgupta, A.; Chopra, S. Lascufloxacin hydrochloride to treat bacterial infection. Drugs Today 2020, 56, 365–376. [Google Scholar]
- Stubbings, W.; Leow, P.; Yong, G.C.; Goh, F.; Körber-Irrgang, B.; Kresken, M.; Endermann, R.; Labischinski, H. In vitro spectrum of activity of finafloxacin, a novel, pH-activated fluoroquinolone, under standard and acidic conditions. Antimicrob. Agents Chemother. 2011, 55, 4394–4397. [Google Scholar] [CrossRef]
- Barnes, K.B.; Hamblin, K.A.; Richards, M.I.; Laws, T.R.; Vente, A.; Atkins, H.S.; Harding, S.V. Demonstrating the Protective Efficacy of the Novel Fluoroquinolone Finafloxacin against an Inhalational Exposure to Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2017, 61, 82–117. [Google Scholar] [CrossRef] [PubMed]
- Randall, L.B.; Georgi, E.; Genzel, G.H.; Schweizer, H.P. Finafloxacin overcomes Burkholderia pseudomallei efflux-mediated fluoroquinolone resistance. J. Antimicrob. Chemother. 2017, 72, 1258–1260. [Google Scholar] [PubMed] [Green Version]
- Podnecky, N.L.; Rhodes, K.A.; Schweizer, H.P. Efflux pump-mediated drug resistance in Burkholderia. Front. Microbiol. 2015, 6, 305. [Google Scholar] [CrossRef]
- Xiao, X.M.; Xiao, Y.H. Pharmacokinetics/pharmacodynamics of antofloxacin hydrochloride in a neutropenic murine thigh model of Staphylococcus aureus infection. Acta Pharmacol. Sin. 2008, 29, 1253–1260. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.Y.; Liu, L.; Xie, L.; Liu, X.D. The influence of a newly developed quinolone: Antofloxacin, on CYP activity in rats. Eur. J. Drug Metab. Pharmacokinet. 2008, 33, 1–7. [Google Scholar]
- Kawahara, S.; Tada, A.; Nagare, H. [In vitro antimycobacterial activities of a new quinolone, balofloxacin]. Kekkaku 2001, 76, 29–31. [Google Scholar]
- Marutani, K.; Matsumoto, M.; Otabe, Y.; Nagamuta, M.; Tanaka, K.; Miyoshi, A.; Hasegawa, T.; Nagano, H.; Matsubara, S.; Kamide, R.; et al. Reduced phototoxicity of a fluoroquinolone antibacterial agent with a methoxy group at the 8 position in mice irradiated with long-wavelength UV light. Antimicrob. Agents Chemother. 1993, 37, 2217–2223. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Wencewicz, T.A. Tetracycline-Inactivating Enzymes. Front. Microbiol. 2018, 9, 1058. [Google Scholar] [CrossRef]
- Brodersen, D.E.; Clemons, W.M., Jr.; Carter, A.P.; Morgan-Warren, R.J.; Wimberly, B.T.; Ramakrishnan, V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 2000, 103, 1143–1154. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; et al. Omadacycline: A Novel Oral and Intravenous Aminomethylcycline Antibiotic Agent. Drugs 2020, 80, 285–313. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.Y.; Hunt, D.K.; Zhou, J.; Clark, R.B.; Dunwoody, N.; Fyfe, C.; Grossman, T.H.; O’Brien, W.J.; Plamondon, L.; Rönn, M.; et al. Fluorocyclines. 1. 7-fluoro-9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: A potent, broad spectrum antibacterial agent. J. Med. Chem. 2012, 55, 597–605. [Google Scholar] [CrossRef]
- Lan, S.H.; Chang, S.P.; Lai, C.C.; Lu, L.C.; Chao, C.M. The Efficacy and Safety of Eravacycline in the Treatment of Complicated Intra-Abdominal Infections: A Systemic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2019, 8, 866. [Google Scholar] [CrossRef]
- Petersen, P.J.; Jacobus, N.V.; Weiss, W.J.; Sum, P.E.; Testa, R.T. In vitro and in vivo antibacterial activities of a novel glycylcycline, the 9-t-butylglycylamido derivative of minocycline (GAR-936). Antimicrob. Agents Chemother. 1999, 43, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Gales, A.C.; Jones, R.N. Antimicrobial activity and spectrum of the new glycylcycline, GAR-936 tested against 1,203 recent clinical bacterial isolates. Diagn. Microbiol. Infect. Dis. 2000, 36, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Deeks, E.D. Sarecycline: First Global Approval. Drugs 2019, 79, 325–329. [Google Scholar] [CrossRef]
- Batool, Z.; Lomakin, I.B.; Polikanov, Y.S.; Bunick, C.G. Sarecycline interferes with tRNA accommodation and tethers mRNA to the 70S ribosome. Proc. Natl. Acad. Sci. USA 2020, 117, 20530–20537. [Google Scholar] [CrossRef]
- Honeyman, L.; Ismail, M.; Nelson, M.L.; Bhatia, B.; Bowser, T.E.; Chen, J.; Mechiche, R.; Ohemeng, K.; Verma, A.K.; Cannon, E.P.; et al. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob. Agents Chemother. 2015, 59, 7044–7053. [Google Scholar] [CrossRef]
- Lepak, A.J.; Zhao, M.; Marchillo, K.; VanHecker, J.; Andes, D.R. In Vivo Pharmacodynamic Evaluation of Omadacycline (PTK 0796) against Streptococcus pneumoniae in the Murine Pneumonia Model. Antimicrob. Agents Chemother. 2017, 61, 2368. [Google Scholar] [CrossRef]
- Durães, F.; Sousa, E. Omadacycline: A Newly Approved Antibacterial from the Class of Tetracyclines. Pharmaceuticals 2019, 12, 63. [Google Scholar] [CrossRef]
- Xiao, M.; Huang, J.J.; Zhang, G.; Yang, W.H.; Kong, F.; Kudinha, T.; Xu, Y.C. Antimicrobial activity of omadacycline in vitro against bacteria isolated from 2014 to 2017 in China, a multi-center study. BMC Microbiol. 2020, 20, 350. [Google Scholar] [CrossRef] [PubMed]
- Abrahamian, F.M.; Sakoulas, G.; Tzanis, E.; Manley, A.; Steenbergen, J.; Das, A.F.; Eckburg, P.B.; McGovern, P.C. Omadacycline for Acute Bacterial Skin and Skin Structure Infections. Clin. Infect. Dis. 2019, 69, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Stets, R.; Popescu, M.; Gonong, J.R.; Mitha, I.; Nseir, W.; Madej, A.; Kirsch, C.; Das, A.F.; Garrity-Ryan, L.; Steenbergen, J.N.; et al. Omadacycline for Community-Acquired Bacterial Pneumonia. N. Engl. J. Med. 2019, 380, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Walkty, A.; Gin, A.S.; et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, M.W. Clinical Pharmacokinetics and Pharmacodynamics of Eravacycline. Clin. Pharmacokinet. 2019, 58, 1149–1153. [Google Scholar] [CrossRef]
- O’Sullivan, M.E.; Cheng, A.G. Mind Your Ears: A New Antidote to Aminoglycoside Toxicity? J. Med. Chem. 2018, 61, 81–83. [Google Scholar] [CrossRef]
- Fu, X.; Wan, P.; Li, P.; Wang, J.; Guo, S.; Zhang, Y.; An, Y.; Ye, C.; Liu, Z.; Gao, J.; et al. Mechanism and Prevention of Ototoxicity Induced by Aminoglycosides. Front. Cell. Neurosci. 2021, 15, 692762. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, J.W.; Chen, B.; Cai, M.M.; Feng, D.; Wang, Q.Z.; Wang, X.Y.; Sun, J.G.; Zheng, Y.W.; Wang, G.J.; et al. Mechanisms and pharmacokinetic/pharmacodynamic profiles underlying the low nephrotoxicity and ototoxicity of etimicin. Acta Pharmacol. Sin. 2020, 41, 866–878. [Google Scholar] [CrossRef]
- Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R. U.S. FDA Approved Drugs from 2015-June 2020: A Perspective. J. Med. Chem. 2021, 64, 2339–2381. [Google Scholar] [CrossRef]
- Aggen, J.B.; Armstrong, E.S.; Goldblum, A.A.; Dozzo, P.; Linsell, M.S.; Gliedt, M.J.; Hildebrandt, D.J.; Feeney, L.A.; Kubo, A.; Matias, R.D.; et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob. Agents Chemother. 2010, 54, 4636–4642. [Google Scholar] [CrossRef]
- Shi, K.; Caldwell, S.J.; Fong, D.H.; Berghuis, A.M. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Front. Cell. Infect. Microbiol. 2013, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Cox, G.; Ejim, L.; Stogios, P.J.; Koteva, K.; Bordeleau, E.; Evdokimova, E.; Sieron, A.O.; Savchenko, A.; Serio, A.W.; Krause, K.M.; et al. Plazomicin Retains Antibiotic Activity against Most Aminoglycoside Modifying Enzymes. ACS Infect. Dis. 2018, 4, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: Activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents 2004, 23, 113–119. [Google Scholar] [CrossRef]
- Foti, C.; Piperno, A.; Scala, A.; Giuffrè, O. Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules 2021, 26, 4280. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Xin, L.; Liu, Y.; Liang, C.; Li, J.; Jian, Y.; Li, H.; Shi, Z.; Liu, H.; Cao, W. Current Landscape and Future Perspective of Oxazolidinone Scaffolds Containing Antibacterial Drugs. J. Med. Chem. 2021, 64, 10557–10580. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Deane-Alder, K.; Marschall, E.; Bamert, R.; Venugopal, H.; Lithgow, T.; Lupton, D.W.; Belousoff, M.J. Characterization of the Core Ribosomal Binding Region for the Oxazolidone Family of Antibiotics Using Cryo-EM. ACS Pharmacol. Transl. Sci. 2020, 3, 425–432. [Google Scholar] [CrossRef]
- Brickner, S.J.; Hutchinson, D.K.; Barbachyn, M.R.; Manninen, P.R.; Ulanowicz, D.A.; Garmon, S.A.; Grega, K.C.; Hendges, S.K.; Toops, D.S.; Ford, C.W.; et al. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J. Med. Chem. 1996, 39, 673–679. [Google Scholar] [CrossRef]
- Rubinstein, E.; Cammarata, S.; Oliphant, T.; Wunderink, R. Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: A randomized, double-blind, multicenter study. Clin. Infect. Dis. 2001, 32, 402–412. [Google Scholar] [CrossRef]
- Bloem, A.; Bax, H.I.; Yusuf, E.; Verkaik, N.J. New-Generation Antibiotics for Treatment of Gram-Positive Infections: A Review with Focus on Endocarditis and Osteomyelitis. J. Clin. Med. 2021, 10, 1743. [Google Scholar] [CrossRef]
- Poce, G.; Cocozza, M.; Consalvi, S.; Biava, M. SAR analysis of new anti-TB drugs currently in pre-clinical and clinical development. Eur. J. Med. Chem. 2014, 86, 335–351. [Google Scholar] [CrossRef]
- Selvakumar, N.; Srinivas, D.; Khera, M.K.; Kumar, M.S.; Mamidi, R.N.; Sarnaik, H.; Charavaryamath, C.; Rao, B.S.; Raheem, M.A.; Das, J.; et al. Synthesis of conformationally constrained analogues of linezolid: Structure-activity relationship (SAR) studies on selected novel tricyclic oxazolidinones. J. Med. Chem. 2002, 45, 3953–3962. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, M.; Zanfardino, A.; Notomista, E.; Wichelhaus, T.A.; Saturnino, C.; Varcamonti, M.; Soriente, A. Novel promising linezolid analogues: Rational design, synthesis and biological evaluation. Eur. J. Med. Chem. 2013, 69, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Almirante, B.; Giamarellos-Bourboulis, E.J.; Gournellis, R.; Grande, I.; Marini, M.G.; Balestrieri, M. The interplay between acute bacterial skin and skin structure infections and depression: A vicious circle of major clinical importance. Curr. Opin. Infect. Dis. 2020, 33, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G.; Gordon, S.; Tierney, E.; Banks, J. Linezolid-Associated Serotonin Syndrome. A Report of Two Cases. J. Am. Podiatr. Med. Assoc. 2015, 105, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.K.; Yang, S.H.; Shin, K.N.; Rhee, J.K.; Yoo, M.; Lee, M.G. Pharmacokinetics of DA-7218, a new oxazolidinone, and its active metabolite, DA-7157, after intravenous and oral administration of DA-7218 and DA-7157 to rats. J. Pharm. Pharmacol. 2007, 59, 955–963. [Google Scholar] [CrossRef]
- Burdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. [Google Scholar]
- Hall, R.G., 2nd; Smith, W.J.; Putnam, W.C.; Pass, S.E. An evaluation of tedizolid for the treatment of MRSA infections. Expert Opin. Pharmacother. 2018, 19, 1489–1494. [Google Scholar] [CrossRef]
- Xiao, J.; Gill, C.; Liang, L.; Liu, J.; Wu, J.; Feng, H.P.; Flanagan, S.; Tan, C.; Flattery, A. Use of Translational Pharmacokinetic/Pharmacodynamic Infection Models To Understand the Impact of Neutropenia on the Efficacy of Tedizolid Phosphate. Antimicrob. Agents Chemother. 2019, 63, 822. [Google Scholar] [CrossRef]
- Lee, E.Y.; Caffrey, A.R. Thrombocytopenia with Tedizolid and Linezolid. Antimicrob. Agents Chemother. 2018, 62, 1453. [Google Scholar] [CrossRef]
- Brown, S.D.; Traczewski, M.M. Comparative in vitro antimicrobial activities of torezolid (TR-700), the active moiety of a new oxazolidinone, torezolid phosphate (TR-701), determination of tentative disk diffusion interpretive criteria, and quality control ranges. Antimicrob. Agents Chemother. 2010, 54, 2063–2069. [Google Scholar] [CrossRef]
- Rybak, J.M.; Marx, K.; Martin, C.A. Early experience with tedizolid: Clinical efficacy, pharmacodynamics, and resistance. Pharmacotherapy 2014, 34, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Contezolid: First Approval. Drugs 2021, 81, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Gordeev, M.F.; Yuan, Z.Y. New potent antibacterial oxazolidinone (MRX-I) with an improved class safety profile. J. Med. Chem. 2014, 57, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, H.; Chen, Y.; Yuan, H.; Wu, J.; Wu, X.; Zhang, Y.; Cao, G.; Guo, B.; Wu, J.; et al. Population Pharmacokinetics Study of Contezolid (MRX-I), a Novel Oxazolidinone Antibacterial Agent, in Chinese Patients. Clin. Ther. 2020, 42, 818–829. [Google Scholar] [CrossRef]
- Yamane, M.; Minami, A.; Liu, C.; Ozaki, T.; Takeuchi, I.; Tsukagoshi, T.; Tokiwano, T.; Gomi, K.; Oikawa, H. Biosynthetic Machinery of Diterpene Pleuromutilin Isolated from Basidiomycete Fungi. Chembiochem 2017, 18, 2317–2322. [Google Scholar] [CrossRef] [PubMed]
- Egger, H.; Reinshagen, H. New pleuromutilin derivatives with enhanced antimicrobial activity.II.Structure-activity correlations. J. Antibiot. 1976, 29, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.L.; Zeng, J.; Fang, X.; Luo, J.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Design, synthesis and antibacterial evaluation of novel pleuromutilin derivatives possessing piperazine linker. Eur. J. Med. Chem. 2017, 127, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.E.; Sader, H.S.; Ivezic-Schoenfeld, Z.; Paukner, S.; Jones, R.N. Disk diffusion and MIC quality control ranges for BC-3205 and BC-3781, two novel pleuromutilin antibiotics. J. Clin. Microbiol. 2012, 50, 3361–3364. [Google Scholar] [CrossRef]
- Jones, R.N.; Fritsche, T.R.; Sader, H.S.; Ross, J.E. Activity of retapamulin (SB-275833), a novel pleuromutilin, against selected resistant gram-positive cocci. Antimicrob. Agents Chemother. 2006, 50, 2583–2586. [Google Scholar] [CrossRef]
- Yi, Y.; Xu, X.; Liu, Y.; Xu, S.; Huang, X.; Liang, J.; Shang, R. Synthesis and antibacterial activities of novel pleuromutilin derivatives with a substituted pyrimidine moiety. Eur. J. Med. Chem. 2017, 126, 687–695. [Google Scholar] [CrossRef]
- Pankuch, G.A.; Lin, G.; Hoellman, D.B.; Good, C.E.; Jacobs, M.R.; Appelbaum, P.C. Activity of retapamulin against Streptococcus pyogenes and Staphylococcus aureus evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies. Antimicrob. Agents Chemother. 2006, 50, 1727–1730. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Paukner, S.; Ivezic-Schoenfeld, Z.; Biedenbach, D.J.; Schmitz, F.J.; Jones, R.N. Antimicrobial activity of the novel pleuromutilin antibiotic BC-3781 against organisms responsible for community-acquired respiratory tract infections (CARTIs). J. Antimicrob. Chemother. 2012, 67, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, S.M.; Zhang, L.; Hammel, J.P.; Rubino, C.M.; Bader, J.C.; Sader, H.S.; Gelone, S.P.; Wicha, W.W.; Ambrose, P.G. Pharmacokinetic/pharmacodynamic target attainment analyses to support intravenous and oral lefamulin dose selection for the treatment of patients with community-acquired bacterial pneumonia. J. Antimicrob. Chemother. 2019, 74 (Suppl. 3), 35–41. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Deng, C.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Berry, L.; Schweizer, F.; Zhanel, M.A.; Irfan, N.; et al. Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2021, 81, 233–256. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A. Introduction: Lefamulin and pharmacokinetic/pharmacodynamic rationale to support the dose selection of lefamulin. J. Antimicrob. Chemother. 2019, 74 (Suppl. 3), 2–4. [Google Scholar] [CrossRef]
- Paukner, S.; Gruss, A.; Jensen, J.S. In Vitro Activity of Lefamulin against Sexually Transmitted Bacterial Pathogens. Antimicrob. Agents Chemother. 2018, 62, 2380. [Google Scholar] [CrossRef] [PubMed]
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic. Pharmacotherapy 2018, 38, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Laslop, N.; Mankin, A.S. How Macrolide Antibiotics Work. Trends Biochem. Sci. 2018, 43, 668–684. [Google Scholar] [CrossRef] [PubMed]
- Guay, D. Update on clindamycin in the management of bacterial, fungal and protozoal infections. Expert Opin. Pharmacother. 2007, 8, 2401–2444. [Google Scholar] [CrossRef]
- Muller-Serieys, C.; Soler, P.; Cantalloube, C.; Lemaitre, F.; Gia, H.P.; Brunner, F.; Andremont, A. Bronchopulmonary disposition of the ketolide telithromycin (HMR 3647). Antimicrob. Agents Chemother. 2001, 45, 3104–3108. [Google Scholar] [CrossRef]
- Douthwaite, S. Structure-activity relationships of ketolides vs. macrolides. Clin. Microbiol. Infect. 2001, 7, 11–17. [Google Scholar] [CrossRef]
- Summaries for Patients. Telithromycin: A possible cause of severe liver damage? Ann. Intern. Med. 2006, 144, 42. [Google Scholar]
- Ackermann, G.; Löffler, B.; Adler, D.; Rodloff, A.C. In vitro activity of OPT-80 against Clostridium difficile. Antimicrob. Agents Chemother. 2004, 48, 2280–2282. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Das, K.; Degen, D.; Mazumder, A.; Duchi, D.; Wang, D.; Ebright, Y.W.; Ebright, R.Y.; Sineva, E.; Gigliotti, M.; et al. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol. Cell 2018, 70, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.S.; Figueiredo, C.; Azevedo, N.F.; Braeckmans, K.; De Smedt, S.C. Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Adv. Drug Deliv. Rev. 2018, 136–137, 28–48. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hu, L.; Sankaran, B.; Prasad, B.V.V.; Palzkill, T. Differential active site requirements for NDM-1 β-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat. Commun. 2018, 9, 4524. [Google Scholar] [CrossRef]
- Ishikawa, T.; Matsunaga, N.; Tawada, H.; Kuroda, N.; Nakayama, Y.; Ishibashi, Y.; Tomimoto, M.; Ikeda, Y.; Tagawa, Y.; Iizawa, Y.; et al. TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: Synthesis, physicochemical and pharmacological properties. Bioorg. Med. Chem. 2003, 11, 2427–2437. [Google Scholar] [CrossRef]
- Iizawa, Y.; Nagai, J.; Ishikawa, T.; Hashiguchi, S.; Nakao, M.; Miyake, A.; Okonogi, K. In vitro antimicrobial activity of T-91825, a novel anti-MRSA cephalosporin, and in vivo anti-MRSA activity of its prodrug, TAK-599. J. Infect. Chemother. 2004, 10, 146–156. [Google Scholar] [CrossRef]
- Scott, L.J. Ceftaroline Fosamil: A Review in Complicated Skin and Soft Tissue Infections and Community-Acquired Pneumonia. Drugs 2016, 76, 1659–1674. [Google Scholar] [CrossRef]
- Vaudaux, P.; Gjinovci, A.; Bento, M.; Li, D.; Schrenzel, J.; Lew, D.P. Intensive therapy with ceftobiprole medocaril of experimental foreign-body infection by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2005, 49, 3789–3793. [Google Scholar] [CrossRef]
- Katsube, T.; Echols, R.; Wajima, T. Pharmacokinetic and Pharmacodynamic Profiles of Cefiderocol, a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Shlaes, D.M. New β-lactam-β-lactamase inhibitor combinations in clinical development. N. Y. Acad. Sci. 2013, 1277, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Idowu, T.; Zhanel, G.G.; Schweizer, F. A Dimer, but Not Monomer, of Tobramycin Potentiates Ceftolozane against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa and Delays Resistance Development. Antimicrob. Agents Chemother. 2020, 64, 2055. [Google Scholar] [CrossRef]
- Farrag, H.A.; Abdallah, N.; Shehata, M.M.K.; Awad, E.M. Natural outer membrane permeabilizers boost antibiotic action against irradiated resistant bacteria. J. Biomed. 2019, 26, 69. [Google Scholar] [CrossRef] [PubMed]
- Sid Ahmed, M.A.; Abdel Hadi, H.; Hassan, A.A.I.; Abu Jarir, S.; Al-Maslamani, M.A.; Eltai, N.O.; Dousa, K.M.; Hujer, A.M.; Sultan, A.A.; Soderquist, B.; et al. Evaluation of in vitro activity of ceftazidime/avibactam and ceftolozane/tazobactam against MDR Pseudomonas aeruginosa isolates from Qatar. J. Antimicrob. Chemother. 2019, 74, 3497–3504. [Google Scholar] [CrossRef] [PubMed]
- Liscio, J.L.; Mahoney, M.V.; Hirsch, E.B. Ceftolozane/tazobactam and ceftazidime/avibactam: Two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int. J. Antimicrob. Agents 2015, 46, 266–271. [Google Scholar] [CrossRef]
- Aktaş, Z.; Kayacan, C.; Oncul, O. In vitro activity of avibactam (NXL104) in combination with β-lactams against Gram-negative bacteria, including OXA-48 β-lactamase-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2012, 39, 86–89. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagacé-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/β-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef]
- Pagès, J.M.; Peslier, S.; Keating, T.A.; Lavigne, J.P.; Nichols, W.W. Role of the Outer Membrane and Porins in Susceptibility of β-Lactamase-Producing Enterobacteriaceae to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2015, 60, 1349–1359. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Han, J.; Fan, Y.; Xiong, Z.; Zou, X.; Li, B.; Liu, X.; Li, Z.; Lu, B.; et al. Synergistic Activity of Imipenem in Combination with Ceftazidime/Avibactam or Avibactam against Non-MBL-Producing Extensively Drug-Resistant Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10, 274021. [Google Scholar] [CrossRef] [PubMed]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against a Recent Collection of Clinically Relevant Gram-Negative Bacilli from North America and Europe, Including Carbapenem-Nonsusceptible Isolates (SIDERO-WT-2014 Study). Antimicrob. Agents Chemother. 2017, 61, 93. [Google Scholar] [CrossRef] [PubMed]
- Kohira, N.; West, J.; Ito, A.; Ito-Horiyama, T.; Nakamura, R.; Sato, T.; Rittenhouse, S.; Tsuji, M.; Yamano, Y. In Vitro Antimicrobial Activity of a Siderophore Cephalosporin, S-649266, against Enterobacteriaceae Clinical Isolates, Including Carbapenem-Resistant Strains. Antimicrob. Agents Chemother. 2016, 60, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Schalk, I.J.; Mislin, G.L.A. Bacterial Iron Uptake Pathways: Gates for the Import of Bactericide Compounds. J. Med. Chem. 2017, 60, 4573–4576. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 7396–7401. [Google Scholar] [CrossRef] [Green Version]
- Koren, A.; Karas, A.; Echols, R. Comment on ‘Cefiderocol, a New Siderophore Cephalosporin for the Treatment of Complicated Urinary Tract Infections Caused by Multidrug-resistant Pathogens: Preclinical and Clinical Pharmacokinetics, Pharmacodynamics, Efficacy and Safety’. Clin. Drug Investig. 2021, 41, 659–660. [Google Scholar] [CrossRef]
- El-Gamal, M.I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent updates of carbapenem antibiotics. Eur. J. Med. Chem. 2017, 131, 185–195. [Google Scholar] [CrossRef]
- Pan, X.; He, Y.; Chen, T.; Chan, K.F.; Zhao, Y. Modified Penicillin Molecule with Carbapenem-Like Stereochemistry Specifically Inhibits Class C β-Lactamases. Antimicrob. Agents Chemother. 2017, 61, 1288. [Google Scholar] [CrossRef]
- Galbadage, T.; Liu, D.; Alemany, L.B.; Pal, R.; Tour, J.M.; Gunasekera, R.S.; Cirillo, J.D. Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant Klebsiella pneumoniae to Meropenem. ACS Nano 2019, 13, 14377–14387. [Google Scholar] [CrossRef]
- Gill, C.J.; Jackson, J.J.; Gerckens, L.S.; Pelak, B.A.; Thompson, R.K.; Sundelof, J.G.; Kropp, H.; Rosen, H. In vivo activity and pharmacokinetic evaluation of a novel long-acting carbapenem antibiotic, MK-826 (L-749,345). Antimicrob. Agents Chemother. 1998, 42, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Wiebe, R.; Dilay, L.; Thomson, K.; Rubinstein, E.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Comparative review of the carbapenems. Drugs 2007, 67, 1027–1052. [Google Scholar] [CrossRef] [PubMed]
- Keating, G.M.; Perry, C.M. Ertapenem: A review of its use in the treatment of bacterial infections. Drugs 2005, 65, 2151–2178. [Google Scholar] [CrossRef]
- Perry, C.M.; Ibbotson, T. Biapenem. Drugs 2002, 62, 2221–2235. [Google Scholar] [CrossRef]
- Jones, R.N.; Huynh, H.K.; Biedenbach, D.J. Activities of doripenem (S-4661) against drug-resistant clinical pathogens. Antimicrob. Agents Chemother. 2004, 48, 3136–3140. [Google Scholar] [CrossRef] [PubMed]
- Mikamo, H.; Izumi, K.; Hua, Y.X.; Hayasaki, Y.; Sato, Y.; Tamaya, T. In vitro and in vivo antibacterial activities of a new injectable carbapenem, S-4661, against gynaecological pathogens. J. Antimicrob. Chemother. 2000, 46, 471–474. [Google Scholar] [CrossRef] [Green Version]
- Chahine, E.B.; Ferrill, M.J.; Poulakos, M.N. Doripenem: A new carbapenem antibiotic. Am. J. Health Syst. Pharm. 2010, 67, 2015–2024. [Google Scholar] [CrossRef]
- Hikida, M.; Itahashi, K.; Igarashi, A.; Shiba, T.; Kitamura, M. In vitro antibacterial activity of LJC 11,036, an active metabolite of L-084, a new oral carbapenem antibiotic with potent antipneumococcal activity. Antimicrob. Agents Chemother. 1999, 43, 2010–2016. [Google Scholar] [CrossRef]
- Tang, C.; Cai, L.; Liu, S.; Zheng, Z.; Li, G.; Chen, J.; Sui, Q. Crystal structure of tebipenem pivoxil. Acta Crystallogr. E Crystallogr. Commun. 2018, 74, 1215–1217. [Google Scholar] [CrossRef]
- Jain, A.; Utley, L.; Parr, T.R.; Zabawa, T.; Pucci, M.J. Tebipenem, the first oral carbapenem antibiotic. Expert Rev. Anti-Infect. Ther. 2018, 16, 513–522. [Google Scholar] [CrossRef]
- Cotroneo, N.; Rubio, A.; Critchley, I.A.; Pillar, C.; Pucci, M.J. In Vitro and In Vivo Characterization of Tebipenem, an Oral Carbapenem. Antimicrob. Agents Chemother. 2020, 64, 2240. [Google Scholar] [CrossRef] [PubMed]
- Hackel, M.A.; Lomovskaya, O.; Dudley, M.N.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Meropenem-Vaborbactam against Clinical Isolates of KPC-Positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, 1904. [Google Scholar] [CrossRef] [PubMed]
- Kayser, F.H.; Morenzoni, G.; Strässle, A.; Hadorn, K. Activity of meropenem, against gram-positive bacteria. J. Antimicrob. Chemother. 1989, 24, 101–112. [Google Scholar] [CrossRef]
- Sanders, C.C.; Sanders, W.E., Jr.; Thomson, K.S.; Iaconis, J.P. Meropenem: Activity against resistant gram-negative bacteria and interactions with beta-lactamases. J. Antimicrob. Chemother. 1989, 24, 187–196. [Google Scholar] [CrossRef]
- Castanheira, M.; Rhomberg, P.R.; Flamm, R.K.; Jones, R.N. Effect of the β-Lactamase Inhibitor Vaborbactam Combined with Meropenem against Serine Carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 60, 5454–5458. [Google Scholar] [CrossRef]
- Dhillon, S. Meropenem/Vaborbactam: A Review in Complicated Urinary Tract Infections. Drugs 2018, 78, 1259–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlowsky, J.A.; Lob, S.H.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Sahm, D.F. In-vitro activity of imipenem/relebactam and key β-lactam agents against Gram-negative bacilli isolated from lower respiratory tract infection samples of intensive care unit patients—SMART Surveillance United States 2015–2017. Int. J. Antimicrob. Agents 2020, 55, 105841. [Google Scholar] [CrossRef] [PubMed]
- Perez, F.; El Chakhtoura, N.G.; Papp-Wallace, K.M.; Wilson, B.M.; Bonomo, R.A. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: Can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin. Pharmacother. 2016, 17, 761–781. [Google Scholar] [CrossRef]
- McHenney, M.A.; Baltz, R.H. Gene transfer and transposition mutagenesis in Streptomyces roseosporus: Mapping of insertions that influence daptomycin or pigment production. Microbiology 1996, 142, 2363–2373. [Google Scholar] [CrossRef]
- Karas, J.A.; Carter, G.P.; Howden, B.P.; Turner, A.M.; Paulin, O.K.A.; Swarbrick, J.D.; Baker, M.A.; Li, J.; Velkov, T. Structure-Activity Relationships of Daptomycin Lipopeptides. J. Med. Chem. 2020, 63, 13266–13290. [Google Scholar] [CrossRef]
- Abouelhassan, Y.; Garrison, A.T.; Yang, H.; Chávez-Riveros, A.; Burch, G.M.; Huigens, R.W., 3rd. Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance. J. Med. Chem. 2019, 62, 7618–7642. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.F.; Chambers, H.F. Daptomycin: Another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin. Infect. Dis. 2004, 38, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Grein, F.; Müller, A.; Scherer, K.M.; Liu, X.; Ludwig, K.C.; Klöckner, A.; Strach, M.; Sahl, H.G.; Kubitscheck, U.; Schneider, T. Ca(2+)-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat. Commun. 2020, 11, 1455. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.Y.; Zhang, Y.; Liu, H.; Xu, J.; Wong, C.T.; Xu, C.; Li, X. Total synthesis of daptomycin by cyclization via a chemoselective serine ligation. J. Am. Chem. Soc. 2013, 135, 6272–6279. [Google Scholar] [CrossRef]
- Boeck, L.D.; Fukuda, D.S.; Abbott, B.J.; Debono, M. Deacylation of echinocandin B by Actinoplanes utahensis. J. Antibiot. 1989, 42, 382–388. [Google Scholar] [CrossRef]
- Loh, B.S.; Ang, W.H. “Illuminating” Echinocandins’ Mechanism of Action. ACS Cent. Sci. 2020, 6, 1651–1653. [Google Scholar] [CrossRef]
- Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally Absorbed Cyclic Peptides. Chem. Rev. 2017, 117, 8094–8128. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Lynch, M.; Boikov, D.; Sobel, J.D. In vitro activity of a new pneumocandin antifungal, L-743,872, against azole-susceptible and -resistant Candida species. Antimicrob. Agents Chemother. 1997, 41, 1612–1614. [Google Scholar] [CrossRef]
- Hashemian, S.M.; Farhadi, T.; Velayati, A.A. Caspofungin: A review of its characteristics, activity, and use in intensive care units. Expert Rev. Anti-Infect. Ther. 2020, 18, 1213–1220. [Google Scholar] [CrossRef]
- McCormack, P.L.; Perry, C.M. Caspofungin: A review of its use in the treatment of fungal infections. Drugs 2005, 65, 2049–2068. [Google Scholar] [CrossRef] [PubMed]
- Tomishima, M.; Ohki, H.; Yamada, A.; Takasugi, H.; Maki, K.; Tawara, S.; Tanaka, H. FK463, a novel water-soluble echinocandin lipopeptide: Synthesis and antifungal activity. J. Antibiot. 1999, 52, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Castanheira, M.; Messer, S.A.; Rhomberg, P.R.; Jones, R.N. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp. Diagn. Microbiol. Infect. Dis. 2014, 79, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Marena, G.D.; Dos Santos Ramos, M.A.; Bauab, T.M.; Chorilli, M. Biological Properties and Analytical Methods for Micafungin: A Critical Review. Crit. Rev. Anal. Chem. 2021, 51, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Messer, S.A.; Diekema, D.J.; Boyken, L.; Tendolkar, S.; Hollis, R.J.; Pfaller, M.A. Activities of micafungin against 315 invasive clinical isolates of fluconazole-resistant Candida spp. J. Clin. Microbiol. 2006, 44, 324–326. [Google Scholar] [CrossRef]
- Bartlett, M.S.; Current, W.L.; Goheen, M.P.; Boylan, C.J.; Lee, C.H.; Shaw, M.M.; Queener, S.F.; Smith, J.W. Semisynthetic echinocandins affect cell wall deposition of Pneumocystis carinii in vitro and in vivo. Antimicrob. Agents Chemother. 1996, 40, 1811–1816. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, J.A.; Sobel, J.D. Anidulafungin: A novel echinocandin. Clin. Infect. Dis. 2006, 43, 215–222. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Motyl, M.R.; Jones, R.N.; Castanheira, M. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob. Agents Chemother. 2013, 57, 1065–1068. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Motyl, M.R.; Jones, R.N.; Castanheira, M. Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J. Antimicrob. Chemother. 2013, 68, 858–863. [Google Scholar] [CrossRef]
- Lee, A. Ibrexafungerp: First Approval. Drugs 2021, 81, 1445–1450. [Google Scholar] [CrossRef]
- Liu, W.; Yuan, L.; Wang, S. Recent Progress in the Discovery of Antifungal Agents Targeting the Cell Wall. J. Med. Chem. 2020, 63, 12429–12459. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chai, X.; Hu, H.; Yan, Y.; Guan, Z.; Zou, Y.; Sun, Q.; Wu, Q. Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14alpha-demethylase. Eur. J. Med. Chem. 2010, 45, 4435–4445. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.L.; Brown, S.D. In vitro studies of two triazole antifungal agents (voriconazole [UK-109,496] and fluconazole) against Candida species. Antimicrob. Agents Chemother. 1996, 40, 1948–1949. [Google Scholar] [CrossRef]
- Yi, W.M.; Schoeppler, K.E.; Jaeger, J.; Mueller, S.W.; MacLaren, R.; Fish, D.N.; Kiser, T.H. Voriconazole and posaconazole therapeutic drug monitoring: A retrospective study. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Tejwani, V.; Deshwal, H.; Ho, B.; Loss, M.J.; Avery, R.K.; Mehta, A.C. Cutaneous Complications in Recipients of Lung Transplants: A Pictorial Review. CHEST 2019, 155, 178–193. [Google Scholar] [CrossRef]
- Nagappan, V.; Deresinski, S. Reviews of anti-infective agents: Posaconazole: A broad-spectrum triazole antifungal agent. Clin. Infect. Dis. 2007, 45, 1610–1617. [Google Scholar] [CrossRef] [Green Version]
- Schiller, D.S.; Fung, H.B. Posaconazole: An extended-spectrum triazole antifungal agent. Clin. Ther. 2007, 29, 1862–1886. [Google Scholar] [CrossRef]
- Galgiani, J.N.; Lewis, M.L. In vitro studies of activities of the antifungal triazoles SCH56592 and itraconazole against Candida albicans, Cryptococcus neoformans, and other pathogenic yeasts. Antimicrob. Agents Chemother. 1997, 41, 180–183. [Google Scholar] [CrossRef] [Green Version]
Generic Name | Brand Name | Company | Approval | CAS Number | Clinical Indications | Molecular Mechanism |
---|---|---|---|---|---|---|
Prulifloxacin (1) | Pruvel | Nippon Shinyaku | 2004 | 123447-62-1 | Bronchitis Respiratory tract infections Gastroenteritis | DNA gyrase inhibitor |
Sitafloxacin hydrate (2) | Gracevit | Daiichi Pharmaceutical | 2008 | 163253-36-9 | Gram-negative bacterial infection Pneumonia | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Besifloxacin hydrochloride (3) | Besivance | Bausch & Lomb | 2009 | 141388-76-3 | Ocular bacterial infection | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Nemonoxacin (4) | Taigexyn | Procter & Gamble | 2016 | 378746-64-6 | Diabetic complications Pneumonia Gram-positive bacterial infection | DNA topoisomerase IV inhibitor |
Pazufloxacin mesylate (5) | Pasil | FUJIFILM Toyama Chemical | 2014 | 127046-45-1 | Conjunctivitis, otitis media Pneumonia | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Gemifloxacin mesylate (6) | Factive | LG Chem | 2003 | 210353-56-3 | Acute rhinosinusitis Gram-negative bacterial infection Pneumonia | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Garenoxacin mesylate (7) | Geninax | Astellas & Taisho Toyama | 2007 | 223652-81-1 | Respiratory tract infections Pneumonia | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Zabofloxacin hydrochloride (8) | Zabolante | Dong Wha Pharmaceutical | 2015 | 219680-11-2 | Bronchitis Gram-positive bacterial infection Pneumonia | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Ozenoxacin (9) | Ozanex | Medimetriks Pharmaceutical | 2017 | 245765-41-7 | Acne Impetigo | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Delafloxacin meglumine (10) | Baxdela | Rib-X Pharmaceutical | 2017 | 352458-37-8 | Gonorrhea Acute bacterial skin and skin structure infections | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Levonadifloxacin arginine salt (11) | Emrok | Wockhardt | 2019 | 371246-52-5 | Acute bacterial skin and skin structure infections | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Alalevonadifloxacin mesylate (12) | Emrok O | Wockhardt | 2019 | 306303-00-4 | Acute bacterial skin and skin structure infections | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Lascufloxacin hydrochloride (13) | Lasvic | Kyorin | 2019 | 848416-07-9 | Pneumonia | DNA gyrase Inhibitor, DNA topoisomerase IV inhibitor |
Finafloxacin (14) | Xtoro | MerLion Pharmaceutical | 2014 | 209342-40-5 | Acute otitis externa | DNA gyrase inhibitor, DNA topoisomerase IV inhibitor |
Antofloxacin (15) | Youpeng | Anhui Global Pharmaceutical | 2009 | 119354-43-7 | BronchitisAcute pyelonephritis | DNA gyrase inhibitor |
Balofloxacin (16) | Qroxin | Roche | 2003 | 127294-70-6 | Urethritis Urinary tract infection | DNA gyrase inhibitor |
Generic Name | Brand Name | Company | Approval | CAS Number | Clinical Indications | Molecular Mechanism |
---|---|---|---|---|---|---|
Tigecycline (17) | Tygacil | Pfizer | 2005 | 220620-09-7 | Acute bacterial skin and skin structure infections Gram-negative bacterial infection | Ribosomal protein inhibitor |
Sarecycline hydrochloride (18) | Seysara | Paratek Pharmaceutical | 2019 | 1035979-44-2 | Anthrax, cystitis, rosacea | Ribosomal protein inhibitor |
Omadacycline (19) | Nuzyra | Paratek Pharmaceutical | 2018 | 389139-89-3 | Acute bacterial skin and skin structure infections | Ribosomal protein inhibitor |
Eravacycline (20) | Xerava | Tetraphase Pharmaceutical | 2018 | 1207283-85-9 | Complicated urinary tract infection MDR bacterial infection | Ribosomal protein inhibitor |
Plazomicin (21) | Zemdri | Achaogen | 2018 | 1380078-95-4 | Complicated urinary tract infection Gram-negative bacterial infection Pyelonephritis | Ribosomal protein inhibitor |
Linezolid (22) | Ozanex | Pfizer | 2000 | 245765-41-7 | Skin and soft tissue infections Bacterial pneumonia, tuberculosis | Monoamine oxidase inhibitor Ribosomal protein inhibitor |
Tedizolid (23) | Sivextro | Dong-A Pharmaceutical | 2014 | 856867-55-5 | Acute bacterial skin and skin structure infection | Breast cancer-resistant protein inhibitor Monoamine oxidase inhibitor |
Contezolid (24) | MRX-I | MicuRx | 2021 | 1112968-42-9 | Complex skin and soft tissue infections | Monoamine oxidase inhibitor |
Retapamulin (28) | Altabax | GlaxoSmithKline | 2007 | 224452-66-8 | Phagocytosis caused by Staphylococcus aureus or Streptococcus pyogenes | Ribosomal protein inhibitor |
Lefamulin (29) | Xenleta | Nabriva | 2019 | 1061337-51-6 | Acute bacterial skin and skin structure infections Pneumonia | Ribosomal protein inhibitor |
Telithromycin (33) | Ketek | Sanofi | 2001 | 191114-48-4 | Pneumonia | Ribosomal protein inhibitor |
Fidaxomicin (34) | Dafclir | Optimer | 2014 | 56645-60-4 | Clostridioides difficile-associated diarrhea infection MDR bacterial infection | DNA-directed RNA polymerase inhibitor |
Generic Name | Brand Name | Company | Approval | CAS Number | Clinical Indications | Molecular Mechanism |
---|---|---|---|---|---|---|
Ceftaroline fosamil acetate (35) | Teflaro | Takeda | 2010 | 229016-73-3 | Osteomyelitis, sepsis, bacteremia Acute bacterial skin and skin structure infections, pneumonia | Penicillin-binding protein inhibitor |
Ceftobiprole medocaril (36) | Mabelio | Johnson & Johnson & Roche | 2008 | 376653-43-9 | Bacteremia, neutropenia, pneumonia Acute bacterial skin and skin structure infections | Penicillin-binding protein inhibitor |
Ceftolozane/tazobactam (37, 38) | Zerbaxa | Astellas | 2014 | 1613740-46-7 | Complicated urinary tract infection Complicated intra-abdominal infection | β-lactamase inhibitor |
Ceftazidime/avibactam (39, 40) | Avycaz | Sanofi | 2015 | 1393723-27-7 | Complicated urinary tract infection Complicated intra-abdominal infection | Non-β-lactam β-lactamase inhibitor combination for serious Gram-negative infection |
Cefiderocol (41) | Fetcroja | Shionogi | 2019 | 1225208-94-5 | Complicated urinary tract infection Pyelonephritis | Penicillin-binding protein inhibitor |
Ertapenem (42) | Invanz | AstraZeneca | 2001 | 153773-82-1 | Endometritis Acute bacterial skin and skin structure infections | Penicillin-binding protein inhibitor |
Biapenem (43) | Omegacin | Pfizer | 2002 | 120410-24-4 | Sepsis, pneumonia, lung abscess | β-lactamase inhibitor |
Doripenem (44) | Doribax | Shionogi | 2005 | 148016-81-3 | Bacterial meningitis Fibrosis, pneumonia | Dehydropeptidase I inhibitor Penicillin-binding protein inhibitor |
Tebipenem pivoxil (45) | Orapenem | Pfizer | 2009 | 161715-24-8 | Gram-negative bacterial infection | Penicillin-binding protein inhibitor |
Meropenem/vaborbactam (46, 47) | Vabomere | Novartis | 2017 | 2031124-72-6 | Complicated urinary tract infection | β-lactamase inhibitor |
Imipenem/cilastatin/relebactam (48, 49, 50) | Recarbrio | Merck | 2019 | 1174018-99-5 | Complicated urinary tract infection Complicated intra-abdominal infection | Non-β-lactam β-lactamase inhibitor combination for serious Gram-negative infection |
Daptomycin (51) | Cubicin | Lilly | 2003 | 103060-53-3 | Staphylococcus aureus-caused bloodstream infection accompanied by infective endocarditis | Peptidoglycan synthesis inhibitor |
Generic Name | Brand Name | Company | Approval | CAS Number | Clinical Indications | Molecular Mechanism |
---|---|---|---|---|---|---|
Caspofungin (52) | Cancidas | Merck | 2001 | 162808-62-0 | Invasive aspergillosis | Glucan synthase inhibitor |
Micafungin (53) | Mycamine | Astellas | 2002 | 235114-32-6 | Candidiasis Severe systemic infection | Glucan synthase inhibitor |
Anidulafungin (54) | Eraxis | Lilly | 2006 | 166663-25-8 | Adult candidiasis | Glucan synthase inhibitor |
Ibrexafungerp (55) | Brexafemme | Merck | 2021 | 1965291-08-0 | Vulvovaginal candidiasis | Glucan synthase inhibitor |
Voriconazole (56) | Vfend | Pfizer | 2002 | 137234-62-9 | Invasive aspergillosis Candida infections | Fungal cytochrome P450 enzyme inhibitor |
Posaconazole (57) | Noxafil | Merck | 2014 | 171228-49-2 | Invasive aspergillosis Candida infections | Sterol 14α-demethylase inhibitor |
Isavuconazole (58) | Cresemba | Roche | 2015 | 241479-67-4 | Invasive aspergillosis Amphotericin B is not suitable for the treatment of Mucormycosis in adults | Ergosterol synthesis inhibitor |
Generic Name | Brand Name | Company | Approval | CAS Number | Clinical Indications | Molecular Mechanism |
---|---|---|---|---|---|---|
Bedaquiline (59) | Sirturo | Janssen Therapeutics | 2012 | 843663-66-1 | Multidrug-resistant tuberculosis | Adenosine triphosphate synthase inhibitor |
Delamanid (60) | Deltyba | Otsuka | 2014 | 681492-22-8 | Multidrug-resistant tuberculosis | Cell wall synthesis inhibitor |
Pretomanid (61) | Dovprela | Mylan | 2019 | 187235-37-6 | Multidrug-resistant tuberculosis | Cell wall synthesis inhibitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Zhang, J.; Tian, L.; Xin, L.; Liang, C.; Ren, X.; Li, M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023, 28, 1762. https://doi.org/10.3390/molecules28041762
Shi Z, Zhang J, Tian L, Xin L, Liang C, Ren X, Li M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules. 2023; 28(4):1762. https://doi.org/10.3390/molecules28041762
Chicago/Turabian StyleShi, Zhenfeng, Jie Zhang, Lei Tian, Liang Xin, Chengyuan Liang, Xiaodong Ren, and Min Li. 2023. "A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects" Molecules 28, no. 4: 1762. https://doi.org/10.3390/molecules28041762
APA StyleShi, Z., Zhang, J., Tian, L., Xin, L., Liang, C., Ren, X., & Li, M. (2023). A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules, 28(4), 1762. https://doi.org/10.3390/molecules28041762