NO2 Sensing Capability of Pt–Au–SnO2 Composite Nanoceramics at Room Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase and Morphological Investigations
2.2. Room-Temperature NO2-Sensing Measurement
2.3. Mechanism Study on Room-Temperature NO2 Sensing Characteristics
3. Materials and Methods
3.1. Material Preparation
3.2. NO2-Sensing Measurement
3.3. Material Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Anenberg, S.C.; Miller, J.; Minjares, R.; Du, L.; Henze, D.K.; Lacey, F.; Malley, C.S.; Emberson, L.; Franco, V.; Klimont, Z.; et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 2017, 545, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Pinault, L.; Crouse, D.; Jerrett, M.; Brauer, M.; Tjepkema, M. Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities. Environ. Res. 2016, 147, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Yun, Y.; Ku, T.; Li, G.; Sang, N. NO2 inhalation promotes Alzheimer’s disease-like progression: Cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication. Sci. Rep. 2016, 6, 22429. [Google Scholar] [CrossRef] [PubMed]
- Raptis, D.; Livas, C.; Stavroglou, G.; Giappa, R.M.; Tylianakis, E.; Stergiannakos, T.; Froudakis, G.E. Surface Modification Strategy for Enhanced NO2 Capture in Metal–Organic Frameworks. Molecules 2022, 27, 3448. [Google Scholar] [CrossRef] [PubMed]
- Lerdau, M.T.; Munger, J.W.; Jacob, D.J. The NO2 flux conundrum. Science 2000, 289, 2291–2293. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, L.; Yin, X.; Wu, H. Compact and highly sensitive NO2 photoacoustic sensor for environmental monitoring. Molecules 2020, 25, 1201. [Google Scholar] [CrossRef]
- Williams, D.E. Electrochemical sensors for environmental gas analysis. Curr. Opin. Electrochem. 2020, 22, 145–153. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Rao, M.V.; Li, Q. Recent advances in electrochemical sensors for detecting toxic gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. [Google Scholar] [CrossRef]
- Ri, J.; Li, X.; Shao, C.; Liu, Y.; Han, C.; Li, X.; Liu, Y. Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. Sens. Actuators B 2020, 317, 128194. [Google Scholar] [CrossRef]
- Chethana, D.; Thanuja, T.; Mahesh, H.; Kiruba, M.; Jose, A.; Barshilia, H.; Manjanna, J. Synthesis, structural, magnetic and NO2 gas sensing property of CuO nanoparticles. Ceram. Int. 2021, 47, 10381–10387. [Google Scholar] [CrossRef]
- Nasriddinov, A.; Tokarev, S.; Platonov, V.; Botezzatu, A.; Fedorova, O.; Rumyantseva, M.; Fedorov, Y. Heterobimetallic Ru (II)/M (M = Ag+, Cu2+, Pb2+) Complexes as Photosensitizers for Room-Temperature Gas Sensing. Molecules 2022, 27, 5058. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ren, X.; Li, Y.; Tang, Z.; Zhang, Z. Nanowires-assembled WO3 nanomesh for fast detection of ppb-level NO2 at low temperature. J. Adv. Ceram. 2020, 9, 17–26. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Zhao, X.; Hu, H.; Wang, M.; Luo, Y.; Xie, D.; Zhang, Y.; Zhu, H. Highly Sensitive, Selective, Flexible and Scalable Room-Temperature NO2 Gas Sensor Based on Hollow SnO2/ZnO Nanofibers. Molecules 2021, 26, 6475. [Google Scholar] [CrossRef] [PubMed]
- Pandit, N.A.; Ahmad, T. Tin Oxide Based Hybrid Nanostructures for Efficient Gas Sensing. Molecules 2022, 27, 7038. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, M.; Liu, L.; Ruan, X.; Yan, J.; Zhao, W.; Yun, J.; Wang, Y.; Qin, S.; Zhang, T. Novel SnO2@ ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens. Actuators B 2018, 257, 714–727. [Google Scholar] [CrossRef]
- Bang, J.H.; Lee, N.; Mirzaei, A.; Choi, M.S.; Choi, H.S.; Park, H.; Jeon, H.; Kim, S.S.; Kim, H.W. SnS-functionalized SnO2 nanowires for low-temperature detection of NO2 gas. Mater. Charact. 2021, 175, 110986. [Google Scholar] [CrossRef]
- Han, D.; Zhai, L.; Gu, F.; Wang, Z. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B 2018, 262, 655–663. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.; Zhang, Z. Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@ SnS2 nanostructures. Sens. Actuators B 2020, 324, 128754. [Google Scholar] [CrossRef]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef]
- Xu, H.; Liu, X.; Li, M.; Chen, Z.; Cui, D.; Jiang, M.; Meng, X.; Yu, L.; Wang, C. Preparation and characterization of TiO2 bulk porous nanosolids. Mater. Lett. 2005, 59, 1962–1966. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, K.; Luan, C.; Geng, Y.; Lian, G.; Cui, D. A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid. Sens. Actuators B 2011, 159, 271–276. [Google Scholar] [CrossRef]
- Luan, C.; Wang, K.; Yu, Q.; Lian, G.; Zhang, L.; Wang, Q.; Cui, D. Improving the gas-sensing performance of SnO2 porous nanosolid sensors by surface modification. Sens. Actuators B 2013, 176, 475–481. [Google Scholar] [CrossRef]
- Henshaw, G.S.; Ridley, R.; Williams, D.E. Room-temperature response of platinised tin dioxide gas-sensitive resistors. J. Chem. Soc. Faraday Trans. 1996, 92, 3411–3417. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, T.; Lian, G.; Yu, Q.; Luan, C.; Wang, Q.; Cui, D. Room temperature CO sensor fabricated from Pt-loaded SnO2 porous nanosolid. Sens. Actuators B 2013, 184, 33–39. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, W.; Li, Y.; Cui, P.; Guo, S.; Chen, W.; Tang, Z.; Yan, Z.; Zhang, Z. Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Res. 2016, 9, 3528–3535. [Google Scholar] [CrossRef]
- Huang, Y.; Li, P.; Xu, L.; Yu, Y.; Chen, W. Ultrahigh humidity tolerance of room-temperature hydrogen sensitive Pt–WO3 porous composite ceramics with ultra-large WO3 grains. Appl. Phys. A 2021, 127, 952. [Google Scholar] [CrossRef]
- Li, P.; Xiong, Z.; Zhu, S.; Wang, M.; Hu, Y.; Gu, H.; Wng, Y.; Chen, W. Singular room-temperature hydrogen sensing characteristics with ultrafast recovery of Pt-Nb2O5 porous composite ceramics. Int. J. Hydrogen Energy 2017, 42, 30186–30192. [Google Scholar] [CrossRef]
- Wang, M.; Sun, B.; Jiang, Z.; Liu, Y.; Wang, X.; Tang, Z.; Wang, Y.; Chen, W. Preparation and extraordinary room-temperature co sensing capabilities of Pd–SnO2 composite nanoceramics. J. Nanosci. Nanotechnol. 2018, 18, 4176–4181. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, Y.; Wu, G.; Fei, L.; Zhang, S.; Hu, Y.; Yan, Z.; Wang, Y.; Gu, H.; Chen, W. Mechanism study on extraordinary room-temperature CO sensing capabilities of Pd-SnO2 composite nanoceramics. Sens. Actuators B 2019, 285, 49–55. [Google Scholar] [CrossRef]
- Liu, M.; Li, P.; Huang, Y.; Cheng, L.; Hu, Y.; Tang, Z.; Chen, W. Room-temperature hydrogen-sensing capabilities of Pt-SnO2 and Pt-ZnO composite nanoceramics occur via two different mechanisms. Nanomaterials 2021, 11, 504. [Google Scholar] [CrossRef]
- Gui, F.; Huang, Y.; Wu, M.; Lu, X.; Hu, Y.; Chen, W. Aging Behavior and Heat Treatment for Room-Temperature CO-Sensitive Pd-SnO2 Composite Nanoceramics. Materials 2022, 15, 1367. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.; Chung, G.-S. Catalytically activated quantum-size Pt/Pd bimetallic core–shell nanoparticles decorated on ZnO nanorod clusters for accelerated hydrogen gas detection. Sens. Actuators B 2017, 239, 824–833. [Google Scholar] [CrossRef]
- Mousavi, H.; Mortazavi, Y.; Khodadadi, A.A.; Saberi, M.H.; Alirezaei, S. Enormous enhancement of Pt/SnO2 sensors response and selectivity by their reduction, to CO in automotive exhaust gas pollutants including CO, NOx and C3H8. Appl. Surf. Sci. 2021, 546, 149120. [Google Scholar] [CrossRef]
- Xu, D.; Li, W.; Duan, H.; Ge, Q.; Xu, H. Reaction performance and characterization of Co/Al2O3 Fischer–Tropsch catalysts promoted with Pt, Pd and Ru. Catal. Lett. 2005, 102, 229–235. [Google Scholar] [CrossRef]
- Dhall, S.; Kumar, M.; Bhatnagar, M.; Mehta, B.R. Dual gas sensing properties of graphene-Pd/SnO2 composites for H2 and ethanol: Role of nanoparticles-graphene interface. Int. J. Hydrogen Energy 2018, 43, 17921–17927. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Li, P.; Cheng, L.; Hu, Y.; Xiong, Y.; Guo, S.; Gu, H.; Chen, W. Transforming Pt-SnO2 Nanoparticles into Pt-SnO2 Composite Nanoceramics for Room-Temperature Hydrogen-Sensing Applications. Materials 2021, 14, 2123. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Gui, F.; Lu, X.; Yan, Z.; Chen, F.; Jiang, Y.; Luo, X.; Chen, W. Achieving a high long-term stability for room temperature CO-sensitive Pt-SnO2 composite nanoceramics through two strategies. Mater. Sci. Eng. B 2022, 286, 116070. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, F.; Meng, L.; Hu, Y.; Chen, W. Aging and activation of room temperature hydrogen sensitive Pt–SnO2 composite nanoceramics. J. Mater. Sci. 2022, 57, 15267–15275. [Google Scholar] [CrossRef]
- Du, W.; Wu, N.; Wang, Z.; Liu, J.; Xu, D.; Liu, W. High response and selectivity of platinum modified tin oxide porous spheres for nitrogen dioxide gas sensing at low temperature. Sens. Actuators B 2018, 257, 427–435. [Google Scholar] [CrossRef]
- Bang, J.H.; Mirzaei, A.; Han, S.; Lee, H.Y.; Shin, K.Y.; Kim, S.S.; Kim, H.W. Realization of low-temperature and selective NO2 sensing of SnO2 nanowires via synergistic effects of Pt decoration and Bi2O3 branching. Ceram. Int. 2021, 47, 5099–5111. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Han, T.; Fei, T.; Liu, S.; Lu, G. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuators B 2018, 266, 812–822. [Google Scholar] [CrossRef]
- Pyeons, J.J.; Baek, I.-H.; Song, Y.G.; Kim, G.S.; Cho, A.-J.; Lee, G.-Y.; Han, J.H.; Chung, T.-M.; Hwang, C.S.; Kang, C.-Y.; et al. Highly sensitive flexible NO2 sensor composed of vertically aligned 2D SnS2 operating at room temperature. J. Mater. Chem. C 2020, 8, 11874–11881. [Google Scholar] [CrossRef]
- Geng, X.; Lu, P.; Zhang, C.; Lahem, D.; Olivier, M.-G.; Debliquy, M. Room-temperature NO2 gas sensors based on rGO@ZnO1-x composites: Experiments and molecular dynamics simulation. Sens. Actuators B 2019, 282, 690–702. [Google Scholar] [CrossRef]
- Howell, J.M.; Sapse, A.M.; Singman, E.; Snyder, G. Ab initio SCF calculations of NO2−(H2O)n and NO3−(H2O)n clusters. J. Phys. Chem. C 1982, 86, 2345–2349. [Google Scholar] [CrossRef]
- Lu, X.; Wu, M.; Huang, Y.; Song, J.; Liu, Y.; Yan, Z.; Chen, F.; Zhao, J.; Chen, W. Influences of Impurity Gases in Air on Room-Temperature Hydrogen-Sensitive Pt–SnO2 Composite Nanoceramics: A Case Study of H2S. Chemosensors 2023, 11, 31. [Google Scholar] [CrossRef]
Sensing Materials | Response/NO2 Concentration | Measuring Temperature | Ref. |
---|---|---|---|
Sn-doped In2O3 nanofibers | 44.6/1 ppm | 90 °C | [9] |
Pt–SnO2 porous spheres | 2/0.5 ppm | 80 °C | [39] |
Pt–Bi2O3–SnO2 nanowires | 27.7/1 ppm | 50 °C | [40] |
SnO2 NP–RGO hybrids | 3.8/1 ppm | 25 °C | [41] |
2D SnS2 | 301/1 ppm | 25 °C | [42] |
Pt–Au–SnO2 nanoceramics | 875/0.5 ppm | 25 °C | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Xu, Z.; Wu, M.; Lu, X.; Yan, Z.; Chen, F.; Chen, W. NO2 Sensing Capability of Pt–Au–SnO2 Composite Nanoceramics at Room Temperature. Molecules 2023, 28, 1759. https://doi.org/10.3390/molecules28041759
Song J, Xu Z, Wu M, Lu X, Yan Z, Chen F, Chen W. NO2 Sensing Capability of Pt–Au–SnO2 Composite Nanoceramics at Room Temperature. Molecules. 2023; 28(4):1759. https://doi.org/10.3390/molecules28041759
Chicago/Turabian StyleSong, Jiannan, Zhongtang Xu, Menghan Wu, Xilai Lu, Zhiqiao Yan, Feng Chen, and Wanping Chen. 2023. "NO2 Sensing Capability of Pt–Au–SnO2 Composite Nanoceramics at Room Temperature" Molecules 28, no. 4: 1759. https://doi.org/10.3390/molecules28041759
APA StyleSong, J., Xu, Z., Wu, M., Lu, X., Yan, Z., Chen, F., & Chen, W. (2023). NO2 Sensing Capability of Pt–Au–SnO2 Composite Nanoceramics at Room Temperature. Molecules, 28(4), 1759. https://doi.org/10.3390/molecules28041759