An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms
Abstract
:1. Introduction
2. The Heat Shock Response
3. A Common, Regulatory Mechanism between Polyamines and Heat Shock Proteins Might Be Exploited in Crop Production
4. A Heat Shock Affects the Regulation of Polyamines on the Transcriptional and Translational Level in Plants
5. Heat Shock Proteins in Malaria Parasites: Biological Function and Pharmacological Relevance
6. Heat Shock Proteins in Cancer Cells
7. The Interplay between PAs and Hsps in Cancer Cells can Cause Different Responses Depending on the Microenvironment: From Protection to Aggressiveness
8. Hsp Inhibitors of Anticancer Chemotherapy might Be Useful for Pharmacological Intervention to Disrupt the Interplay with PAs
9. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef] [PubMed]
- Ritossa, F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 1962, 18, 571–573. [Google Scholar] [CrossRef]
- Matz, J.M.; Blake, M.J.; Tatelman, H.M.; Lavoi, K.P.; Holbrook, N.J. Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am. J. Physiol. 1995, 269, 38. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ohwatari, N.; Matsumoto, T.; Kosaka, M.; Ohtsuru, A.; Yamashita, S. TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflügers Archiv. 1999, 438, 239–244. [Google Scholar] [CrossRef]
- Laplante, A.F.; Moulin, V.; Auger, F.A.; Landry, J.; Li, H.; Morrow, G.; Tanguay, R.M.; Germain, L. Expression of heat shock proteins in mouse skin during wound healing. J. Histochem. Cytochem. 1998, 46, 1291–1297. [Google Scholar] [CrossRef]
- Vitenberga, Z.; Pilmane, M. Age-related lung tissue remodeling due to the local distribution of MMP-2, TIMP-2, TGF-β and Hsp70. Biotech. Histochem. 2018, 93, 239–248. [Google Scholar] [CrossRef]
- Pincus, D. Regulation of Hsf1 and the Heat Shock Response. Adv. Exp. Med. Biol. 2020, 1243, 41–50. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.; Chunduri, V.; Kaur, A.; Kaur, S.; Malhotra, N.; Kumar, A.; Kapoor, P.; Kumari, A.; Kaur, J.; et al. Genome-wide Identification and Characterization of Heat Shock Protein Family Reveals Role in Development and Stress Conditions in Triticum aestivum L. Sci. Rep. 2020, 12, 7858. [Google Scholar] [CrossRef]
- Chen, D.; Shao, L.Y.; Younis, A.; Zheng, B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef]
- Saha, J.; Brauer, E.K.; Sengupta, A.; Popescu, S.C.; Gupta, K.; Gupta, B. Polyamines as redox homeostasis regulators during salt stress in plants. Front. Environ. Sci. 2015, 3, 21. [Google Scholar] [CrossRef]
- Sánchezrodríguez, E.; Romero, L.; Ruiz, J.M. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. J. Plant Physiol. 2015, 190, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Ghosh, D.; Mohapatra, S. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiol. Biochem. 2018, 129, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Sequeramutiozabal, M.I.; Erban, A.; Kopka, J.; Al, E. Global metabolic profiling of Arabidopsis polyamine oxidase 4 (AtPAO4) loss-of-function mutants exhibiting delayed dark-induced senescence. Front. Plant Sci. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Königshofer, H.; Lechner, S. Are polyamines involved in the synthesis of heat-shock proteins in cell suspension cultures of tobacco and alfalfa in response to hightemperature stress? Plant Physiol. Biochem. 2002, 40, 51–59. [Google Scholar] [CrossRef]
- Tkachenko, A.G.; Yu, L.; Nesterova. Polyamines as Modulators of Gene Expression under Oxidative Stress in Escherichia coli. Biochemistry 2003, 68, 850–856. [Google Scholar]
- Seo, Y.S.; Kim, J.Y.; Park, K.J. Increasing Polyamine Contents Enhances the Stress Tolerance via Reinforcement of Antioxidative Properties. Front. Plant Sci. 2019, 10, 1331. [Google Scholar] [CrossRef] [PubMed]
- Waller, R.F.; McFadden, G.I. The apicoplast: A review of the derived plastid of apicomplexan parasite. Curr. Issues Mol. Biol. 2005, 7, 57–79. [Google Scholar]
- World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-004050-2.
- Van Brummelen, A.C.; Olszewski, K.I.; Wilinski, M.L.; Louw, A.; Birkholtz, L.M. Co-inhibition of Plasmodium falciparum S-Adenosylmethionine Decarboxylase/Ornithine Decarboxylase Reveals Perturbation-specific Compensatory Mechanisms by Transcriptome, Proteome, and Metabolome Analyses. J. Biol. Chem. 2009, 284, 4635–4646. [Google Scholar] [CrossRef]
- Müller, I.B.; Hyde, J.E.; Wrenger, C. Vitamin B metabolism in Plasmodium falciparum as a source of drug targets. Trends Parasitol. 2010, 26, 35–43. [Google Scholar] [CrossRef]
- Guggisberg, A.M.; Amthor, R.E.; Odom, A.R. Isoprenoid biosynthesis in Plasmodium falciparum. Eucaryot. Cell 2014, 13, 1348–1359. [Google Scholar] [CrossRef] [PubMed]
- Haeussler, K.; Berneburg, I.; Jortzik, E.; Hahn, J.; Rahbari, M.; Schulz, N.; Preuss, J.; Zapol’skii, V.A.; Bode, L.; Pinkerton, A.B.; et al. Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: Characterization of the Plasmodium vivax enzyme and inhibitor studies. Malaria J. 2019, 25, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, S.; Ullman, B. Parasite Polyamines as Pharmaceutical Targets. Curr. Pharm. Des. 2017, 23, 3325–3341. [Google Scholar] [CrossRef] [PubMed]
- Shonhai, D.; Blatch, G.L. Heat Shock Proteins of Malaria: Highlights and Future Prospects. Adv. Exp. Med. Biol. 2021, 1340, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Arruabarrena-Aristorena, A.; Zabala-Letona, A.; Carracedo, A. Oil for the cancer engine: The cross-talk between oncogenic signaling and polyamine metabolism. Sci. Adv. 2018, 24, eaar2606. [Google Scholar] [CrossRef]
- Heby, O. Ornithine as a target of chemotherapy. Adv. Enzym. Regul. 1985, 24, 103–124. [Google Scholar] [CrossRef]
- Kurop, M.K.; Huyen, C.M.; Kelly, J.H.; Blagg, B.S. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 2021, 15, 113846. [Google Scholar] [CrossRef]
- Desiderio, M.A.; Dansi, P.; Tacchini, L.; Bernelli-Zazzera, A. Influence of polyamines on DNA binding of heat shock and activator protein 1 transcription factors induced by heat shock. FEBS Lett. 1999, 16, 149–153. [Google Scholar] [CrossRef]
- Desiderio, M.A.; Tacchini, L.; Anzon, E.; Pogliaghi, G.; Radice, L.; Bernelli-Zazzera, A. Effects of polyamine imbalance on the induction of stress genes in hepatocarcinoma cells exposed to heat shock. Hepatology 1996, 4, 150–156. [Google Scholar] [CrossRef]
- Pelta, J.; Livolant, F.; Sikorav, J.L. DNA aggregation induced by polyamines and cobalthexamine. J. Biol. Chem. 1996, 271, 5656–5662. [Google Scholar] [CrossRef]
- Michael, M.; Molnar Shelby, C.; Liddell, R.; Wadkins, R.M. Effects of Polyamine Binding on the Stability of DNA i-Motif Structures. ACS Omega 2019, 4, 8967–8973. [Google Scholar] [CrossRef]
- Korovina, A.N.; Tunitskaya, V.L.; Khomutov, M.A.; Simonian, A.R.; Khomutov, A.R.; Ivanov, A.V.; Kochetkov, S.N. Biogenic polyamines spermine and spermidine activate RNA polymerase and inhibit RNA helicase of hepatitis C virus. Biochemistry 2012, 77, 1172–1180. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, W.; Kang, J.; Li, M.; Huang, J.; Ke, Q.; Kim, H.S.; Xu, B.; Kwak, S.S. Overexpression of alfalfa Orange gene in tobacco enhances carotenoid accumulation and tolerance to multiple abiotic stresses. Plant Physiol. Biochem. 2018, 130, 613–622. [Google Scholar] [CrossRef]
- Shi, H.; Chan, Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J. Integr. Plant Biol. 2014, 56, 114–121. [Google Scholar] [CrossRef]
- Toumi, I.; Pagoulatou, M.G.; Margaritopoulou, T.; Milioni, D.; Roubelakis-Angelakis, K.A. Genetically modified heat shock protein90s and polyamine oxidases in Arabidopsis reveal their Interaction under heat stress affecting polyamine acetylation, oxydation and homeostasis of reactive oxygen species. Plants 2019, 3, 323. [Google Scholar] [CrossRef] [PubMed]
- Mellidou, I.; Karamanoli, K.; Beris, D.; Haralampidis, K.; Constantinidou, H.A.; Roubelakis-Angelakis, K.A. Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacum. J. Plant Physiol. 2017, 218, 171–174. [Google Scholar] [CrossRef]
- Pál, M.; Szalai, G.; Gondor, O.K.; Janda, T. Unfinished story of polyamines: Role of conjugation, transport and light-related regulation in the polyamine metabolism in plants. Plant Sci. 2021, 308, e110923. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Fatima, T.; Handa, A.K.; Mattoo, A.K. Polyamines and Their Biosynthesis/Catabolism Genes Are Differentially Modulated in Response to Heat Versus Cold Stress in Tomato Leaves (Solanum lycopersicum L.). Cells 2020, 9, 1749. [Google Scholar] [CrossRef]
- Huang, Y.; Li, M.Y.; Wang, F.; Xu, Z.S.; Huang, W.; Wang, G.L.; Ma, J.; Xiong, A.S. Heat shock factors in carrot: Genome-wide identification, classification, and expression profiles response to abiotic stress. Mol Biol. Rep. 2015, 42, 893–905. [Google Scholar] [CrossRef]
- Iwashita, Y.; Sakiyama, T.; Musch, M.; Ropeleski, M.J.; Tsubouchi, H.; Chang, E.B. Polyamines mediate glutamine-dependent induction of the intestinal epithelial heat shock response. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, Z.; Zhang, Y.; Ma, Y.; Yang, J.; Zhou, F.; Gao, Y.; Li, G.; Hu, X. Over-expression of spermidine synthase 2 (SlSPDS2) in tomato plants improves saline-alkali stress tolerance by increasing endogenous polyamines content to regulate antioxidant enzyme system and ionic homeostasis. Plant Physiol. Biochem. 2020, 192, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, Z.; Tang, M.Y.; Cheng, B.Z.; Zeng, W.H.; Peng, Y.; Nie, G.; Zhang, X.Q. Metabolic regulation of polyamines and γ-aminobutyric acid in relation to spermidine-induced heat tolerance in white clover. Plant Biol. 2020, 22, 794–804. [Google Scholar] [CrossRef]
- Gitau, G.W.; Mandal, P.; Blatch, G.L.; Przyborski, J.; Shonhai, A. Characterisation of the Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop). Cell Stress Chaperones 2012, 17, 191–202. [Google Scholar] [CrossRef]
- Zininga, T.; Ramatsui, L.; Makhado, P.B.; Makumire, S.; Achilinou, I.; Hoppe, H.; Dirr, H.; Shonhai, A. (-)-Epigallocatechin-3-Gallate Inhibits the Chaperone Activity of Plasmodium falciparum Hsp70 Chaperones and Abrogates Their Association with Functional Partners. Molecules 2017, 22, 2139. [Google Scholar] [CrossRef]
- Przyborski, J.M.; Diehl, M.; Blatch, G.L. Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Front. Mol. Biosci. 2015, 26, 34. [Google Scholar] [CrossRef]
- Sayeed, S.K.; Shah, V.; Chaubey, S.; Singh, M.; Alampall, i.S.V.; Tatu, U.S. Identification of heat shock factor binding protein in Plasmodium falciparum. Malaria J. 2014, 13, e118. [Google Scholar] [CrossRef]
- Ramya, T.N.; Surolia, N.; Surolia, A. 15-deoxyspergualin inhibits eukaryotic protein synthesis through eIF2alpha phosphorylation. Biochem. J. 2007, 401, 411–420. [Google Scholar] [CrossRef]
- Ramya, T.N.; Karmodiya, K.; Surolia, A.; Surolia, N. 15-Deoxyspergualin primarily targets the trafficking of Apicoplast proteins in Plasmodium falciparum. J. Biol. Chem. 2007, 282, 6388–6397. [Google Scholar] [CrossRef]
- Ramya, T.N.; Surolia, N.; Surolia, A. 15-Deoxyspergualin modulates Plasmodium falciparum heat shock protein function. Biochem. Biophys. Res. Comm. 2006, 348, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Ohki, Y.; Fukuchi-Shimogori, T.; Sakata, K.; Saiga, K.; Beppu, T.; Shirahata, A.; Kashiwagi, K.; Igarashi, K. Inhibition of cell growth through inactivation of eukaryotic translation initiation factor 5A (eIF5A) by deoxyspergualin. Biochem. J. 2002, 363, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Da’dara, A.; Lüersen, K.; Wrenger, C.; Das Gupta, R.; Madhubala, R.; Walter, R.D. In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase. J. Biol. Chem. 2000, 275, 8097–8102. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.; Dooghra, M.; Louw, A.I.; Birkholtz, L.M. Transcriptional responses of Plasmodium falciparum to alpha-difluoromethylornithine-induced polyamine depletion. Biol. Chem. 2008, 389, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.V.; Mtwisha, L.; Crampton, B.G.; Stoychev, S.; van Brummelen, A.C.; Reeksting, S.; Louw, A.I.; Birkholtz, L.M.; Mancama, D.T. Plasmodium falciparum spermidine synthase inhibition results in unique perturbation-specific effects observed on transcript, protein and metabolite level. BMC Genom. 2010, 11, 235. [Google Scholar] [CrossRef]
- Han, Z.; Sakai, N.; Böttger, L.H.; Klinke, S.; Hauber, J.; Trautwein, A.X.; Hilgenfeld, R. Crystal Structure of the Peroxo-diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination. Structure 2015, 23, 882–892. [Google Scholar] [CrossRef]
- Frommholz, D.; Kusch, P.; Blavid, R.; Scheer, H.; Tu, J.M.; Marcus, K.; Zhao, K.H.; Atemnkeng, V.; Marciniak, J.; Kaiser, A.E. Completing the hypusine pathway in Plasmodium. FEBS J. 2009, 276, 5881–5891. [Google Scholar] [CrossRef]
- Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019, 9, 60. [Google Scholar] [CrossRef]
- Choi, S.K.; Kam, H.; Kim, K.Y.; Park, S.I.; Lee, Y.S. Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers 2019, 11, 1195. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, Z.; Liu, H.; Xiong, Y.; Luo, L.; Jia, X.; Peng, C.; Zhang, Q.; Li, N.; Gu, Y.; et al. HSP27-Mediated Extracellular and Intracellular Signaling Pathways synergistically Ccnfer Chemoresistance in Squamous Cell Carcinoma of Tongue. Clin. Cancer Res. 2018, 24, 1163–1175. [Google Scholar] [CrossRef]
- Shridhar, V.; Bible, K.C.; Staub, J.; Avula, R.; Lee, Y.K.; Kalli, K.; Huang, H.; Hartmann, L.C.; Kaufmann, S.H.; Smith, D.I. Loss of expression of a new member of the DNAJ protein family confers resistance to chemotherapeutic agents used in the treatment of ovarian cancer. Cancer Res. 2001, 61, 4258–4265. [Google Scholar] [PubMed]
- Cao, X.; Zhou, Y.; Sun, H.; Xu, M.; Bi, X.; Zhao, Z.; Shen, B.; Wan, F.; Hong, Z.; Lan, L.; et al. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790M resistant mutation in lung cancer cells. Cancer Lett. 2018, 424, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, M.; Zhang, Z.; Zhang, R. Single-Cell Sequencing to Identify Six Heat Shock Protein (HSP) Genes-Mediated Progression Subtypes of Clear Cell Renal Cell Carcinoma. Int. J. Gen. Med. 2021, 14, 3761–3773. [Google Scholar] [CrossRef] [PubMed]
- Casero, R.A., Jr.; Murray Stewart, T.; Pegg, A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer 2018, 18, 681–695. [Google Scholar] [CrossRef] [PubMed]
- Holbert, C.E.; Cullen, M.T.; Casero, R.A., Jr.; Stewart, T.M. Polyamines in cancer: Integrating organismal metabolism and antitumour immunity. Nat. Rev. Cancer 2022, 22, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Ignatenko, N.A.; Gerner, E.W. Growth arrest- and polyamine-dependent expression of spermidine/spermine N1-acetyltransferase in human tumor cells. Cell Growth Differ. 1996, 7, 481–486. [Google Scholar] [PubMed]
- Taylor, C.A.; Liu, Z.; Tang, T.C.; Zheng, Q.; Francis, S.; Wang, T.W.; Ye, B.; Lust, J.A.; Dondero, R.; Thompson, J.E. Modulation of eIF5A expression using SNS01 nanoparticles inhibits NF-κB activity and tumor growth in murine models of multiple myeloma. Mol. Ther. 2012, 20, 1305–1314. [Google Scholar] [CrossRef]
- Mémin, E.; Hoque, M.; Jain, M.R.; Heller, D.S.; Li, H.; Cracchiolo, B.; Hanauske-Abel, H.M.; Pe’ery, T.; Mathews, M.B. Blocking eIF5A modification in cervical cancer cells alters the expression of cancer-related genes and suppresses cell proliferation. Cancer Res. 2014, 74, 552–562. [Google Scholar] [CrossRef]
- Scuoppo, C.; Miething, C.; Lindqvist, L.; Reyes, J.; Ruse, C.; Appelmann, I.; Yoon, S.; Krasnitz, A.; Teruya-Feldstein, J.; Pappin, D.; et al. A tumour suppressor network relying on the polyamine-hypusine axis. Nature 2012, 487, 244–248. [Google Scholar] [CrossRef]
- Abdelgalil, A.A.; Alkahtani, H.M.; Al-Jenoobi, F.I. Sorafenib. Profiles Drug Subst. Excip. Relat. Methodol. 2019, 44, 239–266. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Liu, Y.; Zhao, K.; Wei, S.; Sugarman, E.T.; Liu, L.; Zhang, G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022, 6, 2778. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dong, X.S.; Gao, H.Y.; Jiang, Y.F.; Jin, Y.L.; Chang, Y.Y.; Chen, L.Y.; Wang, J.H. Suppression of HSP27 increases the antitumor effects of quercetin in human leukemia U937 cells. Mol. Med. Rep. 2016, 13, 689–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiechmann, K.; Muller, H.; Konig, S.; Wielsch, N.; Svatos, A.; Jauch, J.; Werz, O. Mitochondrial Chaperonin HSP60 Is the Apoptosis-Related Target for Myrtucommulone. Cell Chem. Biol. 2017, 24, 614–623.e6. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Kim, Y.; Kwon, B.M.; Han, D.C. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. J. Biol. Chem. 2013, 288, 28713–28726. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.F.; Lin, J.D.; Hsueh, C.; Chou, T.C.; Yeh, C.N.; Chen, M.H.; Wong, R.J. Efficacy of an HSP90 inhibitor, ganetespib, in preclinical thyroid cancer models. Oncotarget 2017, 8, 41294–41304. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Heiss, K.; Mueller, A.K.; Fimmers, R.; Matthes, J.; Njuguna, J.T. Inhibition of EIF-5A prevents apoptosis in human cardiomyocytes after malaria infection. Amino Acids 2020, 52, 693–710. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Fujimura, T.; Yao, T.; Taka, H.; Mineki, R.; Okumura, K.; Murayama, K. Secreted tyrosine sulfated-eIF5A mediates oxidative stress-induced apoptosis. Sci. Rep. 2015, 8, 13737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Compound | Cancer | Mode of Action |
---|---|---|---|
Hsp27 | Quercetin | Leukemia | ⇒ Induction of Apoptosis ⇒ Decrease of Bcl2-to Bax ratio ⇒ Blockade of the cell cycle at the G1 phase [73] |
Hsp60 | Myrtucommulone A | Leukemia | ⇒ Release of cytochrome C from mitochondria ⇒ Induction of apoptosis [74] |
Hsp70 | Cantharidine | Colorectal Cancer | ⇒ Blockage of HSF1 binding to HSP70 promoter ⇒ Induction of apoptosis via the inhibition of heat shock response and HSP70 expression [75] |
Hsp90 | Ganetespib | Thyroid, breast, lung and ovarian cancer | ⇒ Inhibition of cell proliferation metastasis ⇒ Induction of cell cycle arrest ⇒ Enhancement of apoptosis ⇒ decrease of tumor growth [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhoba, X.H.; Ragno, R.; Kaiser, A.; Agostinelli, E. An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms. Molecules 2023, 28, 1686. https://doi.org/10.3390/molecules28041686
Makhoba XH, Ragno R, Kaiser A, Agostinelli E. An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms. Molecules. 2023; 28(4):1686. https://doi.org/10.3390/molecules28041686
Chicago/Turabian StyleMakhoba, Xolani H., Rino Ragno, Annette Kaiser, and Enzo Agostinelli. 2023. "An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms" Molecules 28, no. 4: 1686. https://doi.org/10.3390/molecules28041686
APA StyleMakhoba, X. H., Ragno, R., Kaiser, A., & Agostinelli, E. (2023). An Undefined Interaction between Polyamines and Heat Shock Proteins Leads to Cellular Protection in Plasmodium falciparum and Proliferating Cells in Various Organisms. Molecules, 28(4), 1686. https://doi.org/10.3390/molecules28041686