Recent Progress in Metal Oxide-Based Photocatalysts for CO2 Reduction to Solar Fuels: A Review
Abstract
:1. Introduction
2. Theoretical Foundation and Strategies of Photocatalytic CO2 Reduction
2.1. Morphology Control
2.1.1. Exposed Facet Adjustment
2.1.2. Quantum Dots (QDs)
2.1.3. One-Dimensional and Two-Dimensional Structures
2.1.4. Macroporous and Three-Dimensional Ordered Macroporous (3DOM) Structures
2.1.5. Preparation of 3DOM Materials
2.2. Heterojunction
2.3. Defects
2.4. Ion Doping
2.5. Sensitization
3. Photocatalysts with Different Basis Matrices
3.1. TiO2-Based Photocatalysts
3.1.1. Morphology Control
Exposed Facet Adjustment
3DOM Structure Ti-Based Materials
3.1.2. Heterojunction
3.1.3. Ion Doping
3.1.4. Sensitization
3.1.5. Summary
3.2. WO3-Based Photocatalysts
3.2.1. Morphology Control
Preferentially Exposed Facets
DOM Structure W-Based Materials
3.2.2. Heterojunction
3.2.3. Ion Doping
3.2.4. Summary
3.3. ZnO-Based Photocatalysts
3.3.1. Morphology Control
3.3.2. 3DOM Structure Zn-Based Materials
3.3.3. Heterojunction
3.3.4. Ion Doping
3.3.5. Summary
3.4. Cu2O-Based Photocatalysts
3.4.1. Morphology Control
Preferentially Exposed Facets
3DOM Structure Cu-Based Materials
3.4.2. Heterojunction
3.4.3. Summary
3.5. CeO2-Based Photocatalysts
3.5.1. Morphology Control
Preferentially Exposed Facets
Macroporous
3DOM Structure Ce-Based Materials
3.5.2. Heterojunction
3.5.3. Summary
4. Other 3DOM Materials
5. Conclusions
- Absorb more photons to produce excitons.
- Improve the migration efficiency of charge carriers.
- Reduce the recombination rate of electron–hole pairs.
- Uplift the absorption capacity of CO2.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.L.; Wang, Q.W.; Tan, T. Prediction of Carbon Dioxide Emissions in China Using Shallow Learning with Cross Validation. Energies 2022, 15, 8642. [Google Scholar] [CrossRef]
- Xu, X.; Liao, M. Prediction of Carbon Emissions in China’s Power Industry Based on the Mixed-Data Sampling (MIDAS) Regression Model. Atmosphere 2022, 13, 423. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, B.; Hu, H.; Zhang, Y.; Bi, Y. ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting. Catal. Sci. Technol. 2018, 8, 2789–2793. [Google Scholar] [CrossRef]
- Xu, Y.; Han, J.; Luo, Y.; Liu, Y.; Ding, J.; Zhou, Z.; Liu, C.; Zou, M.; Lan, J.; Nan, C.-w.; et al. Enhanced CO2 Reduction Performance of BiCuSeO-Based Hybrid Catalysts by Synergetic Photo-Thermoelectric Effect. Adv. Funct. Mater. 2021, 31, 2105001. [Google Scholar] [CrossRef]
- Tang, R.F.; Wang, H.; Dong, X.A.; Zhang, S.H.; Zhang, L.L.; Dong, F. A ball milling method for highly dispersed Ni atoms on g-C3N4 to boost CO2 photoreduction. J. Colloid Interface Sci. 2023, 630, 290–300. [Google Scholar] [CrossRef]
- Shen, H.; Peppel, T.; Stunk, J.; Sun, Z. Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective. Solar Rrl 2020, 4, 1900546. [Google Scholar] [CrossRef]
- Irfan, S.; Khan, S.B.; Lam, S.S.; Ong, H.C.; Din, M.A.U.; Dong, F.; Chen, D.L. Removal of persistent acetophenone from industrial waste-water via bismuth ferrite nanostructures. Chemosphere 2022, 302, 134750. [Google Scholar] [CrossRef]
- Padervand, M.; Ghasemi, S.; Hajiahmadi, S.; Rhimi, B.; Nejad, Z.G.; Karima, S.; Shahsavari, Z.; Wang, C. Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation. Appl. Catal. A 2022, 643, 118794. [Google Scholar] [CrossRef]
- Padervand, M.; Rhimi, B.; Wang, C. One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction. J. Alloys Compd. 2021, 852, 156955. [Google Scholar] [CrossRef]
- Padervand, M.; Ghasemi, S.; Hajiahmadi, S.; Wang, C. K4Nb6O17/Fe3N/α-Fe2O3/C3N4 as an enhanced visible light-driven quaternary photocatalyst for acetamiprid photodegradation, CO2 reduction, and cancer cells treatment. Appl. Surf. Sci. 2021, 544, 148939. [Google Scholar] [CrossRef]
- Tran, D.P.H.; Pham, M.T.; Bui, X.T.; Wang, Y.F.; You, S.J. CeO2 as a photocatalytic material for CO2 conversion: A review. Sol. Energy 2022, 240, 443–466. [Google Scholar] [CrossRef]
- Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I. Sustained, photocatalytic CO2 reduction to CH4 in a continuous flow reactor by earth-abundant materials: Reduced titania-Cu2O Z-scheme heterostructures. Appl. Catal. B 2020, 279, 119344. [Google Scholar] [CrossRef]
- Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4. Appl. Catal. B. 2021, 286, 119832. [Google Scholar] [CrossRef]
- Jiao, W.Y.; Xie, Y.; He, F.; Wang, K.Y.; Ling, Y.; Hu, Y.Y.; Wang, J.L.; Ye, H.; Wu, J.; Hou, Y. A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH. Chem. Eng. J. 2021, 418, 129286. [Google Scholar] [CrossRef]
- Luévano, H.E.; Torres, M.L.M.; Fernández, T.A. Ternary ZnO/CuO/Zeolite composite obtained from volcanic ash for photocatalytic CO2 reduction and H2O decomposition. J. Phys. Chem. Solids 2021, 151, 109917. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Huang, H.; Zhang, Y.; Ma, T. Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction. Nano Energy 2020, 75, 126799. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Mao, B.D.; Li, D.; Liu, Y.H.; Li, F.H.; Dong, W.X.; Jiang, T.Y.; Shi, W.D. 0D/2D Z-scheme heterojunctions of Zn-AgIn5S8 QDs/alpha-Fe2O3 nanosheets for efficient visible-light-driven hydrogen production. Chem. Eng. J. 2021, 417, 128275. [Google Scholar] [CrossRef]
- Nasir, M.S.; Yang, G.R.; Ayub, I.; Wang, S.L.; Yan, W. In situ decoration of g-C3N4 quantum dots on 1D branched TiO2 loaded with plasmonic Au nanoparticles and improved the photocatalytic hydrogen evolution activity. Appl. Surf. Sci. 2020, 519, 146208. [Google Scholar] [CrossRef]
- Li, M.; Ma, L.N.; Luo, L.; Liu, Y.G.; Xu, M.; Zhou, H.; Wang, Y.; Li, Z.H.; Kong, X.G.; Duan, H.H. Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO(2)on carbon nitride as a heterostructured catalyst. Appl. Catal. B. 2022, 309, 121268. [Google Scholar] [CrossRef]
- Xiong, H.; Dong, Y.; Liu, D.; Long, R.; Kong, T.; Xiong, Y. Recent Advances in Porous Materials for Photocatalytic CO2 Reduction. J. Phys. Chem. Lett. 2022, 13, 1272–1282. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, H.; Wu, M.; Van der Schueren, B.; Li, Y.; Deparis, O.; Ye, J.; Ozin, G.A.; Hasan, T.; Su, B.L. Slow Photons for Photocatalysis and Photovoltaics. Adv. Mater. 2017, 29, 1605349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B.-L. Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy 2018, 47, 266–274. [Google Scholar] [CrossRef]
- Chen, J.I.L.; von Freymann, G.; Choi, S.Y.; Kitaev, V.; Ozin, G.A. Amplified Photochemistry with Slow Photons. Adv. Mater. 2006, 18, 1915–1919. [Google Scholar] [CrossRef]
- Wu, M.; Jin, J.; Liu, J.; Deng, Z.; Li, Y.; Deparis, O.; Su, B.-L. High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. J. Mater. Chem. 2013, 1, 15491–15500. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.; Deng, Z.; Su, B.L. Three-dimensionally ordered macroporous titania with structural and photonic effects for enhanced photocatalytic efficiency. ChemSusChem 2011, 4, 1481–1488. [Google Scholar] [CrossRef]
- Li, J.F.; Zhong, C.Y.; Huang, J.R.; Chen, Y.; Wang, Z.; Liu, Z.Q. Carbon dots decorated three-dimensionally ordered macroporous bismuth-doped titanium dioxide with efficient charge separation for high performance photocatalysis. J. Colloid Interface Sci. 2019, 553, 758–767. [Google Scholar] [CrossRef] [PubMed]
- He, H.K.; Zhong, M.J.; Konkolewicz, D.; Yacatto, K.; Rappold, T.; Sugar, G.; David, N.E.; Gelb, J.; Kotwal, N.; Merkle, A.; et al. Three-Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture. Adv. Funct. Mater. 2013, 23, 4720–4728. [Google Scholar] [CrossRef]
- Wang, P.F.; Zhan, S.H. Shedding light on the role of interfacial chemical bond in heterojunction photocatalysis. Nano Res. 2022, 15, 10158–10170. [Google Scholar]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef]
- Yan, X.W.; Wang, B.; Zhao, J.Z.; Liu, G.P.; Ji, M.X.; Zhang, X.L.; Chu, P.K.; Li, H.M.; Xia, J.X. Hierarchical columnar ZnIn2S4/BiVO4 Z-scheme heterojunctions with carrier highway boost photocatalytic mineralization of antibiotics. Chem. Eng. J. 2023, 452, 139271. [Google Scholar] [CrossRef]
- Ji, M.X.; Feng, J.; Zhao, J.Z.; Zhang, Y.; Wang, B.; Di, J.; Xu, X.Y.; Chen, Z.R.; Xia, J.X.; Li, H.M. Defect-Engineered Bi24O31Cl10 Nanosheets for Photocatalytic CO2 Reduction to CO br. ACS Appl. Nano Mater. 2022, 5, 17226–17233. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y.J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Shown, I.; Samireddi, S.; Chang, Y.C.; Putikam, R.; Chang, P.H.; Sabbah, A.; Fu, F.Y.; Chen, W.F.; Wu, C.I.; Yu, T.Y.; et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.P.; Ou, M.; Wang, X.M.; Wang, Y.A.; Zeng, Y.Q.; Ding, J.; Zhang, S.L.; Zhong, Q. Facile fabrication of oxygen and carbon co-doped carbon nitride nanosheets for efficient visible light photocatalytic H2 evolution and CO2 reduction. Dalton Trans. 2019, 48, 12070–12079. [Google Scholar] [CrossRef]
- Zhang, D.P.; Li, Y.X.; Li, Y.; Zhan, S.H. Towards single-atom photocatalysts for future carbon-neutral application. Smartmat 2022, 3, 417–446. [Google Scholar] [CrossRef]
- Kim, A.; Debecker, D.P.; Devred, F.; Dubois, V.; Sanchez, C.; Sassoye, C. CO2 methanation on Ru/TiO2 catalysts: On the effect of mixing anatase and rutile TiO2 supports. Appl. Catal. B. 2018, 220, 615–625. [Google Scholar] [CrossRef]
- Yang, X.; Tan, F.; Wang, D.; Feng, Q.; Qiu, D.; Dang, D.; Wang, X. Entrapping Ru nanoparticles into TiO2 nanotube: Insight into the confinement synergy on boosting pho-thermal CO2 methanation activity. Ceram. Int. 2021, 47, 27316–27323. [Google Scholar] [CrossRef]
- Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493. [Google Scholar] [CrossRef]
- Dong, C.Y.; Xing, M.Y.; Zhang, J.L. Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: Spatial location matters. Mater. Horiz. 2016, 3, 608–612. [Google Scholar] [CrossRef]
- Ma, Y.J.; Tang, Q.; Sun, W.Y.; Yao, Z.Y.; Zhu, W.H.; Li, T.; Wang, J.Y. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Appl. Catal. B. 2020, 270, 118856. [Google Scholar] [CrossRef]
- Hu, X.L.; Song, J.Y.; Luo, J.L.; Zhang, H.; Sun, Z.M.; Li, C.Q.; Zheng, S.L.; Liu, Q.X. Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. J. Energy Chem. 2021, 62, 1–10. [Google Scholar] [CrossRef]
- Yang, G.; Qiu, P.; Xiong, J.Y.; Zhu, X.T.; Cheng, G. Facilely anchoring Cu2O nanoparticles on mesoporous TiO2 nanorods for enhanced photocatalytic CO2 reduction through efficient charge transfer. Chin. Chem. Lett. 2022, 33, 3709–3712. [Google Scholar] [CrossRef]
- Zalfani, M.; Hu, Z.Y.; Yu, W.B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djaoued, Y.; Su, B.L. BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl. Catal. B. 2017, 205, 121–132. [Google Scholar] [CrossRef]
- Jiao, J.Q.; Wei, Y.C.; Zhao, Z.; Liu, J.; Li, J.M.; Duan, A.J.; Jiang, G.Y. Photocatalysts of 3D Ordered Macroporous TiO2-Supported CeO2 Nano layers: Design, Preparation, and Their Catalytic Performances for the Reduction of CO2 with H2O under Simulated Solar Irradiation. Ind. Eng. Chem. Res. 2014, 53, 17345–17354. [Google Scholar] [CrossRef]
- Wang, C.J.; Liu, X.; He, W.J.; Zhao, Y.L.; Wei, Y.C.; Xiong, J.; Liu, J.; Li, J.M.; Song, W.Y.; Zhang, X.; et al. All-solid-state Z-scheme photocatalysts of g-C3N4/Pt/macroporous-(TiO2@carbon) for selective boosting visible-light-driven conversion of CO2 to CH4. J. Catal. 2020, 389, 440–449. [Google Scholar] [CrossRef]
- Wu, X.X.; Wang, C.J.; Wei, Y.C.; Xiong, J.; Zhao, Y.L.; Zhao, Z.; Liu, J.; Li, J.M. Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4. J. Catal. 2019, 377, 309–321. [Google Scholar] [CrossRef]
- Li, Y.F.; Tang, J.J.; Wei, Y.C.; He, W.J.; Tang, Z.L.; Zhang, X.; Xiong, J.; Zhao, Z. The heterojunction between 3D ordered macroporous TiO2 and MoS2 nanosheets for enhancing visible-light driven CO2 reduction. J. CO2 Util. 2021, 51, 101648. [Google Scholar] [CrossRef]
- Chen, C.; Wang, T.; Yan, K.; Liu, S.J.; Zhao, Y.; Li, B.X. Photocatalytic CO2 reduction on Cu single atoms incorporated in ordered macroporous TiO2 toward tunable products. Inorg. Chem. Front. 2022, 9, 4753–4767. [Google Scholar] [CrossRef]
- Jiao, J.; Wei, Y.; Zhao, Y.; Zhao, Z.; Duan, A.; Liu, J.; Pang, Y.; Li, J.; Jiang, G.; Wang, Y. AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: High efficient separation of photogenerated charge carriers. Appl. Catal. B. 2017, 209, 228–239. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Li, C.F.; Zhang, X.; Li, Y.; Hu, Z.Y.; Li, B.; Chen, Z.X.; Hu, J.G.; Su, B.L. Meso-Microporous Nanosheet-Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production. Adv. Funct. Mater. 2022, 32, 2112831. [Google Scholar] [CrossRef]
- Tahir, M.S.; Manzoor, N.; Sagir, M.; Tahir, M.B.; Nawaz, T. Fabrication of ZnFe2O4 modified TiO2 hybrid composites for photocatalytic reduction of CO2 into methanol. Fuel 2021, 285, 119206. [Google Scholar] [CrossRef]
- Qiu, B.C.; Xing, M.Y.; Zhang, J.L. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216. [Google Scholar] [CrossRef] [PubMed]
- Seeharaj, P.; Kongmun, P.; Paiplod, P.; Prakobmit, S.; Sriwong, C.; Kim-Lohsoontorn, P.; Vittayakorn, N. Ultrasonically-assisted surface modified TiO2/rGO/CeO2 heterojunction photocatalysts for conversion of CO2 to methanol and ethanol. Ultrason. Sonochem. 2019, 58, 104657. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Thakur, P.R.; Sharma, G.; Vo, D.N.; Naushad, M.; Tatarchuk, T.; Garcia-Penas, A.; Du, B.; Stadler, F.J. Accelerated charge transfer in well-designed S-scheme Fe@TiO2/Boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO2 greenhouse gas into CH4 fuel. Chemosphere 2022, 287, 132301. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.X.; Teng, F.; Ye, X.Y.; Zheng, H.J.; Fang, X.S. Photo/Electrochemical Applications of Metal Sulfide/TiO2 Heterostructures. Adv. Energy Mater. 2020, 10, 1902355. [Google Scholar] [CrossRef]
- Hasanvandian, F.; Zehtab Salmasi, M.; Moradi, M.; Farshineh Saei, S.; Kakavandi, B.; Rahman Setayesh, S. Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction. Chem. Eng. J. 2022, 444, 136493. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.Y.; Li, N.; Xia, J.H.; Meng, Q.M.; Ding, J.C.; Lu, J. Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv. 2018, 8, 34241–34251. [Google Scholar] [CrossRef]
- Mgolombane, M.; Bankole, O.M.; Ferg, E.E.; Ogunlaja, A.S. Construction of Co-doped TiO2/rGO nanocomposites for high-performance photoreduction of CO2 with H2O: Comparison of theoretical binding energies and exploration of surface chemistry. Mater. Chem. Phys. 2021, 268, 124733. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.-I.; Park, S.-M.; Kang, M. A p-n heterojunction NiS-sensitized TiO2 photocatalytic system for efficient photoreduction of carbon dioxide to methane. Ceram. Int. 2017, 43, 1768–1774. [Google Scholar] [CrossRef]
- Tahir, M.; Tahir, B.; Amin, N.A.S.; Zakaria, Z.Y. Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/TiO 2 NWs core/shell hetero-junction under UV and visible light. J. CO2 Util. 2017, 18, 250–260. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Chen, H.; Wang, K.; Wang, X. Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures. J. Alloys Compd. 2022, 896, 163030. [Google Scholar] [CrossRef]
- Wei, Y.C.; Jiao, J.Q.; Zhao, Z.; Zhong, W.J.; Li, J.M.; Liu, J.; Jiang, G.Y.; Duan, A.J. 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: Design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J. Mater. Chem. A 2015, 3, 11074–11085. [Google Scholar] [CrossRef]
- He, W.J.; Wu, X.X.; Li, Y.F.; Xiong, J.; Tang, Z.L.; Wei, Y.C.; Zhao, Z.; Zhang, X.; Liu, J. Z-scheme heterojunction of SnS2-decorated 3DOM-SrTiO3 for selectively photocatalytic CO2 reduction into CH4. Chin. Chem. Lett. 2020, 31, 2774–2778. [Google Scholar] [CrossRef]
- Baserga, A.; Russo, V.; Di Fonzo, F.; Bailini, A.; Cattaneo, D.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization. Thin Solid Films 2007, 515, 6465–6469. [Google Scholar] [CrossRef]
- Cheng, H.F.; Huang, B.B.; Liu, Y.Y.; Wang, Z.Y.; Qin, X.Y.; Zhang, X.Y.; Dai, Y. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem. Commun. 2012, 48, 9729–9731. [Google Scholar] [CrossRef]
- Li, B.; Sun, L.; Bian, J.; Sun, N.; Sun, J.; Chen, L.; Li, Z.; Jing, L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Appl. Catal. B. 2020, 270, 1188849. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Cheng, Y.; Liu, Z.; Guo, Q.; Minh Ngoc, H.; Zhao, Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. J. Mater. Chem. A 2016, 4, 5314–5322. [Google Scholar] [CrossRef]
- Rong, R.C.; Wang, L.M. Synthesis of hierarchical hollow nest-like WO3 micro/nanostructures with enhanced visible light-driven photocatalytic activity. J. Alloys Compd. 2021, 850, 156742. [Google Scholar] [CrossRef]
- Hao, Z.C.; Liu, Z.F.; Li, Y.T.; Ruan, M.N.; Guo, Z.G. Enhanced photoelectrochemical performance of 2D core-shell WO3/CuWO4 uniform heterojunction via in situ synthesis and modification of Co-Pi co-catalyst. Int. J. Hydrog. Energy 2020, 45, 16550–16559. [Google Scholar] [CrossRef]
- Ren, X.Z.; Wu, K.; Qin, Z.G.; Zhao, X.C.; Yang, H. The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J. Alloys Compd. 2019, 788, 102–109. [Google Scholar] [CrossRef]
- Ling, P.Q.; Zhu, J.C.; Wang, Z.Q.; Hu, J.; Zhu, J.F.; Yan, W.S.; Sun, Y.F.; Xie, Y. Ultrathin Ti-doped WO3 nanosheets realizing selective photoreduction of CO2 to CH3OH. Nanoscale 2022, 14, 14023–14028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Tian, W.J.; Li, Y.G.; Sun, H.Q.; Tade, M.O.; Wang, S.B. Heterostructured WO3@CoWO4 bilayer nanosheets for enhanced visible-light photo, electro and photoelectro-chemical oxidation of water. J. Mater. Chem. A 2018, 6, 6265–6272. [Google Scholar] [CrossRef]
- Hu, Y.F.; Ping, X.C.; Zhang, Y.; Hao, L.; Liu, T.Y.; Zhao, Q.; Lu, Y.; Liu, J.Z. A nanotree-like WO3 film with adjustable defect concentration and its photocatalytic activity. Mater. Sci. Semicond. Process. 2021, 127, 105737. [Google Scholar] [CrossRef]
- Liang, L.; Li, X.D.; Sun, Y.F.; Tan, Y.L.; Jiao, X.C.; Ju, H.X.; Qi, Z.M.; Zhu, J.F.; Xie, Y. Infrared Light-Driven CO2 Overall Splitting at Room Temperature. Joule 2018, 2, 1004–1016. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zhou, Y.; Liu, Q.; Li, Z.D.; Liu, J.G.; Zou, Z.G. Ultrathin, Single-Crystal WO3 Nanosheets by Two-Dimensional Oriented Attachment toward Enhanced Photocatalystic Reduction of CO2 into Hydrocarbon Fuels under Visible Light. ACS Appl. Mater. Interfaces 2012, 4, 3372–3377. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Lin, M.; Long, J.; Zhang, Z.; Lin, H.; Wu, J.C.; Wang, X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, Z.P.; Zhao, Z.Y.; Liu, Q.; Kou, J.H.; Chen, X.Y.; Gao, J.; Yan, S.C.; Zou, Z.G. High-Yield Synthesis of Ultrathin and Uniform Bi2WO6 Square Nanoplates Benefitting from Photocatalytic Reduction of CO2 into Renewable Hydrocarbon Fuel under Visible Light. ACS Appl. Mater. Interfaces 2011, 3, 3594–3601. [Google Scholar] [CrossRef]
- Zhang, K.F.; Chen, H.X.; Liu, Y.X.; Deng, J.G.; Jing, L.; Rastegarpanah, A.L.; Pei, W.B.; Han, Z.; Dai, H.X. Two-dimensional Bi2WxMo1_xO6 solid solution nanosheets for enhanced photocatalytic toluene oxidation to benzaldehyde. Appl. Catal. B 2022, 315, 121545. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, K.; Zhang, C.; Li, R.; Zhao, P.; Lou, L.-L.; Liu, S. Three-dimensionally ordered macroporous WO3 supported Ag3PO4 with enhanced photocatalytic activity and durability. Appl. Catal. B. 2015, 176–177, 363–373. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, C.; He, W.; Wei, Y.; Zhao, Z.; Liu, J. The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chin. Chem. Lett. 2022, 33, 939–942. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Y.; Li, D.; Chen, L.; Meng, S.; Jiang, D.; Chen, M. Construction of CuO quantum Dots/WO3 nanosheets 0D/2D Z-scheme heterojunction with enhanced photocatalytic CO2 reduction activity under visible-light. J. Alloys Compd. 2021, 858, 157668. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Yuan, H.; Sun, X.; Li, X.; Duan, L.; Li, Q.; Huang, Z.; Ban, X.; Zhang, D. Construction of melamine foam–supported WO3/CsPbBr3 S–scheme heterojunction with rich oxygen vacancies for efficient and long–period CO2 photoreduction in liquid–phase H2O environment. Chem. Eng. J. 2022, 430, 132820. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wang, K.; Sun, X.; Wang, W. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping. Appl. Catal. B. 2019, 243, 771–779. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, W.R.; Chen, C.Y.; Wu, R.J. Preparation of Pd–Au/TiO2–WO3 to enhance photoreduction of CO2 to CH4 and CO. J. CO2 Util. 2018, 28, 247–254. [Google Scholar] [CrossRef]
- Chen, P.; Du, T.; Jia, H.; Zhou, L.; Yue, Q.; Wang, H.; Wang, Y. A novel Bi2WO6/Si heterostructure photocatalyst with Fermi level shift in valence band realizes efficient reduction of CO2 under visible light. Appl. Surf. Sci. 2022, 585, 152665. [Google Scholar] [CrossRef]
- Sun, Y.; Han, Y.; Song, X.; Huang, B.; Ma, X.; Xing, R. CdS/WO3 S-scheme heterojunction with improved photocatalytic CO2 reduction activity. J. Photochem. Photobiol. B 2022, 233, 112480. [Google Scholar] [CrossRef]
- Raza, A.; Shen, H.; Haidry, A.A.; Sun, L.; Liu, R.; Cui, S. Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. J. CO2 Util. 2020, 37, 260–271. [Google Scholar] [CrossRef]
- Tahir, B.; Tahir, M.; Nawawi, M.G.M. Highly sTable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light. J. CO2 Util. 2020, 41, 101270. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, P.; Hu, J.; Pan, J.; Fan, J.; Shao, G. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation. Appl. Surf. Sci. 2017, 391, 211–217. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Mkhalid, I.A.; Alhaddad, M.; Basaleh, A.; Alzahrani, K.A.; Ismail, A.A. Enhanced CO2 photocatalytic conversion into CH3OH over visible-light-driven Pt nanoparticle-decorated mesoporous ZnO–ZnS S-scheme heterostructures. Ceram. Int. 2021, 47, 26779–26788. [Google Scholar] [CrossRef]
- Cai, C.; Xu, Y.F.; Chen, H.Y.; Wang, X.D.; Kuang, D.B. Porous ZnO@ZnSe nanosheet array for photoelectrochemical reduction of CO2. Electrochim. Acta 2018, 274, 298–305. [Google Scholar] [CrossRef]
- Xia, W.W.; Mei, C.; Zeng, X.H.; Chang, S.; Wu, G.Q.; Shen, X.S. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency. Appl. Phys. Lett. 2016, 108, 113902. [Google Scholar] [CrossRef]
- Wang, P.; Yang, M.; Tang, S.; Li, Y.; Lin, X.; Zhang, H.; Zhu, Z.; Chen, F. Z-scheme heterojunctions composed of 3D graphene aerogel/g-C3N4 nanosheets/porous ZnO nanospheres for the efficient photocatalytic reduction of CO2 with H2O under visible light irradiation. J. Alloys Compd. 2022, 918, 165607. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, Y.; Thirugnanam, N.; Li, G. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Appl. Surf. Sci. 2018, 430, 293–300. [Google Scholar] [CrossRef]
- Taraka, T.P.Y.; Gautam, A.; Jain, S.L.; Bojja, S.; Pal, U. Controlled addition of Cu/Zn in hierarchical CuO/ZnO p-n heterojunction photocatalyst for high photoreduction of CO2 to MeOH. J. CO2 Util. 2019, 31, 207–214. [Google Scholar] [CrossRef]
- Chen, S.Q.; Yu, J.G.; Zhang, J. Enhanced photocatalytic CO2 reduction activity of MOF-derived ZnO/NiO porous hollow spheres. J. CO2 Util. 2018, 24, 548–554. [Google Scholar] [CrossRef]
- Saravanan, R.; Agarwal, S.; Gupta, V.K.; Khan, M.M.; Gracia, F.; Mosquera, E.; Narayanan, V.; Stephen, A. Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J. Photochem. Photobiol. A 2018, 353, 499–506. [Google Scholar] [CrossRef]
- Xu, K.; Liu, Z.; Qi, S.H.; Yin, Z.Z.; Deng, S.K.; Zhang, M.; Sun, Z.Q. The quaternary system of Ag2S/ZnS co-modified ZnO/TiO2 nanotree arrays: Excellent photocatalysis and photoelectrochemistry performance. Appl. Surf. Sci. 2021, 538, 148044. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, G.; Wang, S.; Li, Y.; Guo, Y.; Luan, D.; Gu, X.; Lou, X.W. Implanting CoOx Clusters on Ordered Macroporous ZnO Nanoreactors for Efficient CO2 Photoreduction. Adv. Mater. 2022, 34, 2204865. [Google Scholar] [CrossRef]
- Tang, Z.; Zhu, F.; Zhou, J.; Chen, W.; Wang, K.; Liu, M.; Wang, N.; Li, N. Monolithic NF@ZnO/Au@ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4. Appl. Catal. B. 2022, 309, 121267. [Google Scholar] [CrossRef]
- Xie, F.; Guo, J.-F.; Wang, H.-T.; Chang, N. Enhancing visible light photocatalytic activity by transformation of Co3+/Co2+ and formation of oxygen vacancies over rationally Co doped ZnO microspheres. Colloids Surf. A 2022, 636, 128257. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, L.; Shi, Z.; Ma, J.; Wang, Z. Cellulose template designed porous ZnO based catalysts with different valence copper for solar photocatalytic CO2 conversion. Ind. Crops Prod. 2022, 186, 115223. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Liu, C.; Hsieh, T.-T. Efficient visible and NIR light-driven photocatalytic CO2 reduction over defect-engineered ZnO/carbon dot hybrid and mechanistic insights. J. Catal. 2020, 391, 298–311. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.-H.; Qi, M.-Y.; Tang, Z.-R.; Xu, Y.-J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B. 2020, 268, 118380. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, Q.; Wang, H.; Liu, Z.; Zhao, Z. Core-shell structured ZnO@Cu-Zn–Al layered double hydroxides with enhanced photocatalytic efficiency for CO2 reduction. Catal. Commun. 2016, 77, 118–122. [Google Scholar] [CrossRef]
- Zhang, P.P.; Zhou, Z.J.; Kou, D.X.; Wu, S.X. Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials. Int. J. Photoenergy 2017, 2017, 6109092. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhang, J.; Dai, K.; Fan, K.; Dawson, G. Branch-like CdxZn1-xSe/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction. Mater. Today Phys. 2022, 26, 100729. [Google Scholar] [CrossRef]
- Yao, S.; Sun, B.Q.; Zhang, P.; Tian, Z.Y.; Yin, H.Q.; Zhang, Z.M. Anchoring ultrafine Cu2O nanocluster on PCN for CO2 photoreduction in water vapor with much improved stability. Appl. Catal. B. 2022, 317, 121702. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Shi, J.J.; Tao, S.; Wu, L.; Lu, J. Cu2O/Ti3C2 MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. Appl. Surf. Sci. 2021, 542, 148685. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Q.; Xu, C.; Li, Y.; Zhang, J.Y.; Wu, L.; Liu, Y.F.; Fang, Y.Z.; Liu, Z.F. Optional construction of Cu2O@Fe2O3@CC architecture as a robust multifunctional photoelectronic catalyst for overall water splitting and CO2 reduction. Chem. Eng. J. 2021, 426, 131192. [Google Scholar] [CrossRef]
- Zhang, D.F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225. [Google Scholar] [CrossRef]
- Tang, Z.; He, W.; Wang, Y.; Wei, Y.; Yu, X.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Appl. Catal. B. 2022, 311, 121371. [Google Scholar] [CrossRef]
- Singh, S.; Punia, R.; Pant, K.K.; Biswas, P. Effect of work-function and morphology of heterostructure components on CO2 reduction photo-catalytic activity of MoS2-Cu2O heterostructure. Chem. Eng. J. 2022, 433, 132709. [Google Scholar] [CrossRef]
- Cui, L.; Hu, L.; Shen, Q.; Liu, X.; Jia, H.; Xue, J. Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light. Appl. Surf. Sci. 2022, 581, 152343. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Y.; Cai, T.; Kou, L.; Yang, G.; Yan, Z. Preparation and nitrogen-doping of three-dimensionally ordered macroporous TiO2 with enhanced photocatalytic activity. Ceram. Int. 2014, 40, 11213–11219. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Han, J.; Fu, Y.; Deng, Y.; Liu, Y.Y.; Yang, Y.; Wang, T.; Zhang, L.W. Highly efficient CO2 reduction on ordered porous Cu electrode derived from Cu2O inverse opals. Nano Energy 2018, 48, 93–100. [Google Scholar] [CrossRef]
- Liu, S.H.; Lu, J.S.; Pu, Y.C.; Fan, H.C. Enhanced photoreduction of CO2 into methanol by facet-dependent Cu2O/reduce graphene oxide. J. CO2 Util. 2019, 33, 171–178. [Google Scholar] [CrossRef]
- Flores, F.M.; Luevano, H.E.; Torres, M.L.M.; Do, T.O. CO2 adsorption and photocatalytic reduction over Mg(OH)(2)/CuO/Cu2O under UV-Visible light to solar fuels. Mater. Chem. Phys. 2019, 227, 90–97. [Google Scholar] [CrossRef]
- Ojha, N.; Bajpai, A.; Kumar, S. Enriched oxygen vacancies of Cu2O/SnS2/SnO2 heterostructure for enhanced photocatalytic reduction of CO2 by water and nitrogen fixation. J. Colloid Interface Sci. 2021, 585, 764–777. [Google Scholar] [CrossRef]
- Dedong, Z.; Maimaiti, H.; Awati, A.; Yisilamu, G.; Fengchang, S.; Ming, W. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites. Chem. Phys. Lett. 2018, 700, 27–35. [Google Scholar] [CrossRef]
- Shi, H.N.; Wang, H.Z.; Zhou, Y.C.; Li, J.H.; Zhai, P.L.; Li, X.Y.; Gurzadyan, G.G.; Hou, J.G.; Yang, H.; Guo, X.W. Atomically Dispersed Indium-Copper Dual-Metal Active Sites Promoting C-C Coupling for CO2 Photoreduction to Ethanol. Angew. Chem. Int. Ed. 2022, 61, e202208904. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, L.; Jin, X.; Xu, M.; Yin, S.; Li, J.; Li, X.; Shen, D.; Yan, Y.; Huo, P. Cu media constructed Z-scheme heterojunction of UiO-66-NH2/Cu2O/Cu for enhanced photocatalytic induction of CO2. Appl. Surf. Sci. 2021, 545, 148967. [Google Scholar] [CrossRef]
- Sun, Z.; Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W.; Tian, P.; Huang, Z. g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction. Environ. Int. 2019, 130, 104898. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Xia, Q.; Li, Y.; Yin, C.; Ge, Z.; Li, X.; Wang, Y. Adsorption-enhanced nitrogen-doped mesoporous CeO2 as an efficient visible-light-driven catalyst for CO2 photoreduction. J. CO2 Util. 2020, 39, 101176. [Google Scholar] [CrossRef]
- Zhao, X.; Guan, J.; Li, J.; Li, X.; Wang, H.; Huo, P.; Yan, Y. CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2021, 537, 147891. [Google Scholar] [CrossRef]
- Feng, Y.; Ma, P.J.; Wang, Z.W.; Shi, Y.J.; Wang, Z.H.; Peng, Y.; Jing, L.; Liu, Y.X.; Yu, X.H.; Wang, X.; et al. Synergistic Effect of Reactive Oxygen Species in Photothermocatalytic Removal of VOCs from Cooking Oil Fumes over Pt/CeO2/TiO2. Environ. Sci. Technol. 2022, 56, 17341–17351. [Google Scholar] [CrossRef]
- Zhao, R.F.; Huan, L.; Gu, P.; Guo, R.; Chen, M.; Diao, G.W. Yb,Er-doped CeO2 nanotubes as an assistant layer for photoconversion-enhanced dye-sensitized solar cells. J. Power Sources 2016, 331, 527–534. [Google Scholar] [CrossRef]
- Yang, Z.J.; Wei, J.J.; Yang, H.; Liu, L.X.; Liang, H.; Yang, Y.Z. Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications. Eur. J. Inorg. Chem. 2010, 2010, 3354–3359. [Google Scholar] [CrossRef]
- Ramani, S.; Sarkar, S.; Vemuri, V.; Peter, S.C. Chemically designed CeO2 nanoboxes boost the catalytic activity of Pt nanoparticles toward electro-oxidation of formic acid. J. Mater. Chem. A 2017, 5, 11572–11576. [Google Scholar] [CrossRef]
- Fang, S.; Xin, Y.; Ge, L.; Han, C.; Qiu, P.; Wu, L. Facile synthesis of CeO2 hollow structures with controllable morphology by template-engaged etching of Cu2O and their visible light photocatalytic performance. Appl. Catal. B. 2015, 179, 458–467. [Google Scholar] [CrossRef]
- Kumari, N.; Haider, M.A.; Agarwal, M.; Sinha, N.; Basu, S. Role of Reduced CeO2(110) Surface for CO2 Reduction to CO and Methanol. J. Phys. Chem. C 2016, 120, 16626–16635. [Google Scholar] [CrossRef]
- Park, H.R.; Pawar, A.U.; Pal, U.; Zhang, T.; Kang, Y.S. Enhanced solar photoreduction of CO2 to liquid fuel over rGO grafted NiO-CeO2 heterostructure nanocomposite. Nano Energy 2021, 79, 105483. [Google Scholar] [CrossRef]
- Asu, S.P.; Sompalli, N.K.; Kuppusamy, S.; Mohan, A.M.; Deivasigamani, P. CaO/CeO2 nanocomposite dispersed macro-/meso-porous polymer monoliths as new generation visible light heterogeneous photocatalysts. Mater. Today Sustain. 2022, 19, 2317–2589. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.X.; Deng, J.G.; Yu, X.H.; Han, Z.; Zhang, K.F.; Dai, H.X. Alloying of gold with palladium: An effective strategy to improve catalytic stability and chlorine-tolerance of the 3DOM CeO2 -supported catalysts in trichloroethylene combustion. Appl. Catal. B. 2019, 257, 117879. [Google Scholar] [CrossRef]
- Mei, Y.; Yuan, N.; Liu, Y.; Zhang, X.; Lin, B.; Zhou, Y. Boron Carbon Nitride Semiconductor Modified with CeO2 for Photocatalytic Reduction of CO2 with H2O: Comparative Study. Carbon Capture Sci. Technol. 2021, 1, 100016. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Liu, X.; Li, L.; Du, L.; Tian, G. Sulfur doped In2O3-CeO2 hollow hexagonal prisms with carbon coating for efficient photocatalytic CO2 reduction. Chem. Eng. J. Chem. Eng. J. 2021, 421, 129968. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Zhang, Y.; Yan, Y.; Huo, P.; Wang, H. G-C3N4 quantum dots and Au nano particles co-modified CeO2/Fe3O4 micro-flowers photocatalyst for enhanced CO2 photoreduction. Renew. Energy 2021, 179, 756–765. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, M.; Li, Y.; Yang, Y.; Huang, H.; Jiang, Z.; Hu, Q.; Wu, S.; Zhao, X. Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. Appl. Catal. B. 2018, 239, 555–564. [Google Scholar] [CrossRef]
- Zhang, S.; Xiong, W.; Long, J.; Si, Y.; Xu, Y.; Yang, L.; Zou, J.; Dai, W.; Luo, X.; Luo, S. High-throughput lateral and basal interface in CeO2@Ti3C2TX: Reverse and synergistic migration of carrier for enhanced photocatalytic CO2 reduction. J. Colloid Interface Sci. 2022, 615, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Z.; Li, Y.; Wang, Q. Flower-like CoAl layered double hydroxides modified with CeO2 and RGO as efficient photocatalyst towards CO2 reduction. J. Alloys Compd. 2021, 881, 160650. [Google Scholar] [CrossRef]
- Ibarra-Rodriguez, L.I.; Pantoja-Espinoza, J.C.; Luévano-Hipólito, E.; Garay-Rodríguez, L.F.; López-Ortiz, A.; Torres-Martínez, L.M.; Collins-Martínez, V.H. Formic acid and hydrogen generation from the photocatalytic reduction of CO2 on visible light activated N-TiO2/CeO2/CuO composites. J. Photochem. Photobiol. A 2022, 11, 100125. [Google Scholar] [CrossRef]
- Prajapati, P.K.; Malik, A.; Nandal, N.; Pandita, S.; Singh, R.; Bhandari, S.; Saran, S.; Jain, S.L. Morphology controlled Fe and Ni-doped CeO2 nanorods as an excellent heterojunction photocatalyst for CO2 reduction. Appl. Surf. Sci. 2022, 588, 152912. [Google Scholar] [CrossRef]
- Wang, F.; Hou, T.; Zhao, X.; Yao, W.; Fang, R.; Shen, K.; Li, Y. Ordered Macroporous Carbonous Frameworks Implanted with CdS Quantum Dots for Efficient Photocatalytic CO2 Reduction. Adv. Mater. 2021, 33, e2102690. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yu, K.; Zhang, C.; Yang, Z.; Feng, Y.; Hao, H.; Jiang, Y.; Lou, L.-L.; Zhou, W.; Liu, S. Ternary CdS/Au/3DOM-SrTiO3 composites with synergistic enhancement for hydrogen production from visible-light photocatalytic water splitting. Appl. Catal. B. 2017, 215, 74–84. [Google Scholar] [CrossRef]
- Ji, X.; Xu, H.; Liang, S.; Gan, L.; Zhang, R.; Wang, X. 3D ordered macroporous Pt/ZnS@ZnO core-shell heterostructure for highly effective photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2022, 47, 17640–17649. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, M.; Liu, J.; Deng, Z.; Li, Y.; Su, B.-L. Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst. Appl. Catal. B. 2016, 184, 182–190. [Google Scholar] [CrossRef]
Type of Enhancement | Photocatalyst | Description | Conditions (Lamp, Cutoff Filter) | Product Yield/ μmol·g−1·h−1 | Refs. |
---|---|---|---|---|---|
Heterojunction | Ag-NPs/TiO2 | Core/shell | 200 W Hg | CO 983 CH4 9.73 | [60] |
Z-scheme | CuCo2S4@3B-TiO2 | CCS yolk–shell hollow spheres, Bi-modified TiO2 | 300 W Xe | CO 25.5 CH4 42.2 | [56] |
Ag-Cu2O/TiO2 | P25 | CO 13.19 CH4 1.74 | [61] | ||
S-scheme | Fe@TiO2/BCN | Fe@TiO2/Boron Carbon nitride | 300 W Xe 400 nm | CH4 24.7 | [54] |
p–n heterojunction | ZnFe2O4/TiO2 | Spherical and irregular shapes | 500 W Xe | CH3OH 75.34 | [51] |
Ion doping | Co-doped TiO2/rGO | Equiaxed grain morphologies | 500 W Xe | CH3OH 133.7 | [58] |
3DOM | 3DOM Pt@CdS/TiO2 | 420 nm irradiation light, UV cutoff filter | CH4 36.8 | [62] | |
AuPd/3DOM-TiO2 | 300 W Xe | CH4 18.5 | [28] | ||
Pt2/3DOM-SrTiO3 | 300 W Xe | CH4 26.7 | [46] | ||
g-C3N4/Pt/3DOM TiO2@C | 300 W Xe 420 nm | CH4 65.6 | [45] | ||
SnS2/3DOM SrTiO3 | 300 W Xe 420 nm | CH4 12.5 | [63] | ||
Cu0.01/3DOM TiO2 | Xe (320–780 nm) | CH4 43.5 | [48] | ||
MoS2/3DOM TiO2 | 300 W Xe 420 nm | CH4 11.6 | [47] | ||
3DOM CeO2/TiO2 | 300 W Xe 420 nm | CO 3.73 | [21] |
Type of Enhancement | Photocatalyst | Description | Conditions (Lamp, Cutoff Filter) | Product Yield/ μmol·g−1·h−1 | Refs. |
---|---|---|---|---|---|
Heterojunction | Pd-Au/TiO2–WO3 | 0.5%Pd−0.1 wt%Au | 400W Hg | CO 225.5 CH4 15.1 | [84] |
Bi2WO6/Si | Bi2WO6: Si = 1:1 | 300 W Xe 420 nm | C2H5OH 201 | [85] | |
S-scheme | CdS/WO3 | CdS nanoparticles at the WO3 surface | 300 W Xe 420 nm | CO 35.625 CH4 3.75 | [86] |
WO3/CsPbBr3 | 3D porous melamine foam-supported | 300 W Xe | CO+CH4 600 | [82] | |
Z-scheme | WO3-TiO2/Cu2ZnSnS4 | Mesoporous ternary heterostructure | 400 W Xe420 nm | CO 15.37 CH4 1.69 | [87] |
WO3/g-C3N4 | 3D/2D hollow microspheres | 35 W HID car lamp and 300 W Xe (H2 reduction) | CO 145 CH4 133 | [88] | |
TiO2/WO3/Pt | 1D continuous fibrous structure | 300W Xe | H2 128.66 | [89] | |
CuO Dots/WO3 | CuO quantum Dots/WO3 nanosheets | 300 W Xe400 nm | CO 1.58 | [81] | |
Ion doping | 3%Mo-WO | Mo-doped WO3·0.33H2O nanorods | 500 W Xe | CH4 5.3 | [83] |
3DOM | g-C3N4/3DOM-WO3 | 300 W Xe 420 nm | visible light (≥420 nm) | CO 48.7 CH4 7.5 | [80] |
Type of Enhancement | Photocatalyst | Description | Conditions (Lamp, Cutoff Filter) | Product Yield/ μmol·g−1·h−1 | Refs. |
---|---|---|---|---|---|
Heterojunction | Cu-ZnO Cel-T | Cellulose template designed porous ZnO | 300 W Xe | CO 30.17 | [102] |
OD-ZnO/C | Carbon dots, spherical morphology | 400 W Xe | CO 118.8(600 °C) | [103] | |
Pt/ZnO–ZnS | Porous ZnS–ZnO | 300 W Xe, 420 nm | CH3OH 81.8 | [90] | |
Z-scheme | Ag-Cu2O/ZnO | 0.6Ag−0.4Cu2O ZnO nanorods | 300 W Xe | CO 3.36 | [104] |
g-C3N4/ZnO/graphene aerogel | Porous ZnO nanosphere | 300 W Xe, 420 nm | CO 33.87 | [93] | |
ZnO/ZnS/g-C3N4 | Spherical ZnS, ZnO nanoflowers | 300 W | H2 301 | [94] | |
p–n heterojunction | ZnO/CuO/Zeolite | ZnO/CuO in NaAlSiO4 channels | two 20 W halogen lamps | H2 62.3 HCOOH 907 | [18] |
Ternary catalyst | R-ZnO@ LDH | Core–shell Structure, belt-like ZnO hierarchical LDH | 300 W Xe | CH4 11.4 | [105] |
3DOM | CoOx/N-C-ZnO | N, C doped | 420 nm | CO 26.4 | [99] |
Type of Enhancement | Photocatalyst | Description | Conditions (Lamp, Cutoff Filter) | Product Yield/ μmol·g−1·h−1 | Refs. |
---|---|---|---|---|---|
Heterojunction S-scheme | Cu2O/CNPs | Coal-based carbon nanoparticles, multilayer graphene lattice structure | 300 W Xe | CH3OH 24.86 | [120] |
g-C3N4 foam/Cu2O QDs | 3D g-C3N4 foam, 0D Cu2O QDs | 300 W high-pressure Hg | CO 8.182 | [123] | |
Cu2O/rGO | Rhombic dodecahedra | 300 W Xe 420 nm | CH3OH 17.77 | [117] | |
Ag/Cu2O@rGO | Octahedral Cu2O | 300 W Xe 380 nm | CH4 82.6 | [112] | |
Z-scheme | UiO-66-NH2/Cu2O/Cu | Octahedron UiO-66-NH2 | 300 W Xe | CO 4.54 | [122] |
p–n heterojunction | Mg(OH)2/CuO/Cu2O | Microwave-hydrothermal method | Liquid phase: two halogen lamps of 20W | CH3OH 6 HCHO 9 | [118] |
Cu2O/SnS2/SnO2 | Hierarchical flower-like SnS2/SnO2 | 300 W Xe | CO 3.18 CH4 2.27 | [119] | |
3DOM | 3D porous Cu2O | 300 W Xe, 420nm | CO 13.4 nmol cm−2h−1 | [114] |
Type of Enhancement | Photocatalyst | Description | Conditions (Lamp, Cutoff Filter) | Product Yield/ μmol·g−1·h−1 | Refs. |
---|---|---|---|---|---|
Heterojunction | modified TiO2/rGO/CeO2 | Sono-assisted, 0.75 wt% rGO and 1 wt% CeO2 | UV light (a 15 W UV-C mercury) | CH3OH 106.83 C2H5OH 45.17 | [53] |
S-C/In2O3-CeO2 | S-doped, hollow hexagonal prisms with carbon coating | 300 W Xe | CH4 60.6 | [136] | |
CeO2/Fe3O4 | G-C3N4 QDs (CN QDs) CeO2/Fe3O4 micro-Flowers (MFs) | UV-Vis light | CO 28.0 CH4 9.5 | [137] | |
Ni/CeO2 | Pure cubic fluorite structure CeO2 | Xe 4.7 kW m-2 >500 °C | H2 6.53 CO 6.27 | [138] | |
CeO2@Ti3C2TX | Layered Ti3C2TX nanosheets, high-density CeO2 | 300 W Xe | CH3OH 76.2 C2H5OH 33.7 | [139] | |
Z-scheme | CoAl-LDH/CeO2 | CeO2 and RGO on the flower-like CoAl-LDHs | ultraviolet (UV) light (200 W) | CO 5.5 | [140] |
p-n heterojunction | NiO/CeO2/rGO | CeO2 nanorods, hexagon-shaped NiO plates | 300 W Xe | HCHO 421.09 | [132] |
Ternary composites | N-TiO2/CeO2/CuO | N-doped TiO2 | 2 Xe lamps (20 W each) | HCOOH 33 | [141] |
Ion doping | Fe-Ni@CeO2 | Spherical Fe and hexagonal Ni-doped CeO2 nanorods | 20 W white LED | CH3OH 293.29 | [142] |
Type of Enhancement | Photocatalyst | Conditions (Lamp, Cutoff Filter) | Product Yield/ μmol·g−1·h−1 | Refs. |
---|---|---|---|---|
Heterojunction | 3DOM Au-CsPbBr3 | 300 W Xe 420 nm | CO 12.6 CH4 2.1 | [82] |
3DOM CdS QDs/N-doped carbon | visible light irradiation, acetonitrile solution | CO 5210 | [143] | |
Water splitting to produce H2 | CdS/Au/3DOM-SrTiO3 | 300 W Xe 420 nm | 5.39 × 103 | [144] |
3DOM Pt/ZnS@ZnO | 300 W Xe | 87.6 | [145] | |
TiO2-Au-CdS | 34 mW/cm2 UV light, 158 mW/cm2 visible light | 1.81 × 103 | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xiong, J.; Tang, Z.; He, W.; Wang, Y.; Wang, X.; Zhao, Z.; Wei, Y. Recent Progress in Metal Oxide-Based Photocatalysts for CO2 Reduction to Solar Fuels: A Review. Molecules 2023, 28, 1653. https://doi.org/10.3390/molecules28041653
Li X, Xiong J, Tang Z, He W, Wang Y, Wang X, Zhao Z, Wei Y. Recent Progress in Metal Oxide-Based Photocatalysts for CO2 Reduction to Solar Fuels: A Review. Molecules. 2023; 28(4):1653. https://doi.org/10.3390/molecules28041653
Chicago/Turabian StyleLi, Xuanzhen, Jing Xiong, Zhiling Tang, Wenjie He, Yingli Wang, Xiong Wang, Zhen Zhao, and Yuechang Wei. 2023. "Recent Progress in Metal Oxide-Based Photocatalysts for CO2 Reduction to Solar Fuels: A Review" Molecules 28, no. 4: 1653. https://doi.org/10.3390/molecules28041653
APA StyleLi, X., Xiong, J., Tang, Z., He, W., Wang, Y., Wang, X., Zhao, Z., & Wei, Y. (2023). Recent Progress in Metal Oxide-Based Photocatalysts for CO2 Reduction to Solar Fuels: A Review. Molecules, 28(4), 1653. https://doi.org/10.3390/molecules28041653