Fabrication of a Novel CNT-COO−/Ag3PO4@AgIO4Composite with Enhanced Photocatalytic Activity under Natural Sunlight
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Synthesis Mechanism of CNT-COO−/Ag3PO4@AgIO4
2.2. Characterization
2.2.1. FT-IR Analysis
2.2.2. XRD Analysis
2.2.3. SEM Analysis
2.2.4. Optical Properties
2.2.5. Electrochemical Impedance Spectroscopy
2.3. Photocatalytic Activity
2.3.1. Photocatalytic Degradation Results and Analysis
2.3.2. Simultaneous Degradation of Different Organic Dyes
2.3.3. Photocatalytic Reaction Kinetics
2.3.4. Catalyst Recycling
2.3.5. Photocatalytic Activity Mechanism
2.3.6. Possible Mechanism
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Carboxylated CNT (CNT-COOH)
3.3. Synthesis of CNT-COO−/Ag3PO4@AgIO4
3.4. Synthesis of CNT/Ag3PO4@AgIO4
3.5. Material Characterization
3.6. Evaluation of the Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Wetchakun, N.; Chaiwichain, S.; Inceesungvorn, B.; Pingmuang, K.; Phanichphant, S.; Minett, A.I.; Chen, J. BiVO4/CeO2nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4, 3718–3723. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009, 38, 1999–2011. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Krissanasaeranee, M.; Pattinson, S.W.; Stefik, M.; Wiesner, U.; Steiner, U.; Eder, D. Enhanced photocatalytic properties in well-ordered mesoporous WO3. Chem. Commun. 2010, 46, 7620–7622. [Google Scholar] [CrossRef]
- Wu, S.; Cao, H.; Yin, S.; Liu, X.; Zhang, X. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. J. Phys. Chem. C 2009, 113, 17893–17898. [Google Scholar] [CrossRef]
- Zhang, L.; Man, Y.; Zhu, Y. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst. Acs Catal. 2011, 1, 841–848. [Google Scholar] [CrossRef]
- Wu, G.; Wen, J.; Nigro, S.; Chen, A. One-step synthesis of N-and F-codoped mesoporous TiO2 photocatalysts with high visible light activity. Nanotechnology 2010, 21, 085701. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, G.F.; Tang, L.J.; Xia, M.G.; Huang, W.Q.; Ma, Z.L. Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater. Lett. 2012, 83, 104–107. [Google Scholar] [CrossRef]
- Hu, Y.; Li, D.; Zheng, Y.; Chen, W.; He, Y.; Shao, Y.; Fu, X.; Xiao, G. BiVO4/TiO2nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B Environ. 2011, 104, 30–36. [Google Scholar] [CrossRef]
- Cao, T.; Li, Y.; Wang, C.; Zhang, Z.; Zhang, M.; Shao, C.; Liu, Y. Bi4Ti3O12nanosheets/TiO2 submicron fibers heterostructures: In situ fabrication and high visible light photocatalytic activity. J. Mater. Chem. 2011, 21, 6922–6927. [Google Scholar] [CrossRef]
- Arunachalam, P.; Nagai, K.; Amer, M.S.; Ghanem, M.A.; Ramalingam, R.J.; Al-Mayouf, A.M. Recent developments in the use of heterogeneous semiconductor photocatalyst based materials for a visible-light-induced water-splitting system—A brief review. Catalysts 2021, 11, 160. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, H.; Zhang, H.; Zhou, P.; You, J.; Yao, G.; Yao, G.; Pan, Z.; Liu, Y.; Lai, B. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies. Chem. Eng. J. 2022, 428, 131166. [Google Scholar] [CrossRef]
- Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.F.; Ma, Z.L.; Huang, W.Q.; Tian, Y.; Jiao, C.; Yang, Z.M.; Wan, Z.; Pan, A. Semiconductor photocatalyst: Possibilities and challenges. J. Nanomater. 2013, 2013, 1. [Google Scholar]
- Ma, X.; Lu, B.; Li, D.; Shi, R.; Pan, C.; Zhu, Y. Origin of photocatalytic activation of silver orthophosphate from first-principles. J. Phys. Chem. C 2011, 115, 4680–4687. [Google Scholar] [CrossRef]
- Wang, H.; Bai, Y.; Yang, J.; Lang, X.; Li, J.; Guo, L. A facile way to rejuvenate Ag3PO4 as a recyclable highly efficient photocatalyst. Chem. A Eur. J. 2012, 18, 5524–5529. [Google Scholar] [CrossRef]
- Yu, C.; Chen, X.; Li, N.; Zhang, Y.; Li, S.; Chen, J.; Yao, L.; Lin, K.; Lai, Y.; Deng, X. Ag3PO4-based photocatalysts and their application in organic-polluted wastewater treatment. Environ. Sci. Pollut. Res. 2022, 29, 18423–18439. [Google Scholar] [CrossRef]
- Tang, J.; Li, D.; Feng, Z.; Tan, Z.; Ou, B. A novel AgIO4 semiconductor with ultrahigh activity in photodegradation of organic dyes: Insights into the photosensitization mechanism. RSC Adv. 2014, 4, 2151–2154. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Zhang, Y.; Wu, Y.; Zhao, X.; Qian, Y.; Chang, G.; Tang, Q.; Hu, A.; Chen, X. Processable Potassium–Carbon Nanotube Film with a Three-Dimensional Structure for Ultrastable Metallic Potassium Anodes. ACS Appl. Mater. Interfaces 2022, 14, 55577–55586. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Liu, D.X.; Wen, Z.; Yao, J.X.; Shi, M.M.; Zhu, Y.F.; Yan, J.M.; Jiang, Q. High spin polarization ultrafine Rh nanoparticles on CNT for efficient electrochemical N2 fixation to ammonia. Appl. Catal. B Environ. 2021, 298, 120592. [Google Scholar] [CrossRef]
- Kalita, G.; Adhikari, S.; Aryal, H.R.; Afre, R.; Soga, T.; Sharon, M.; Umeno, M. Functionalization of multi-walled carbon nanotubes (MWCNTs) with nitrogen plasma for photovoltaic device application. Curr. Appl. Phys. 2009, 9, 346–351. [Google Scholar] [CrossRef]
- Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; del Valle, M.; Alegret, S. New materials for electrochemical sensing VI: Carbon nanotubes. TrAC Trends Anal. Chem. 2005, 24, 826–838. [Google Scholar] [CrossRef]
- Fu, L.; Yu, A. Carbon nanotubes based thin films: Fabrication, characterization and applications. Rev. Adv. Mater. Sci 2014, 36, 40–61. [Google Scholar]
- Peng, X.; Chen, J.; Misewich, J.A.; Wong, S.S. Carbon nanotube–nanocrystal heterostructures. Chem. Soc. Rev. 2009, 38, 1076–1098. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.B.; Lin, G.D.; Chen, P.; Yuan, Y.Z.; Tsai, K. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh–phosphine catalyst. Appl. Catal. A Gen. 1999, 187, 213–224. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, H.; Wang, L.; Yan, J.; Li, H.; Song, Y.; Huang, L.; Cai, G. The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. Dalton Trans. 2013, 42, 7604–7613. [Google Scholar] [CrossRef]
- Wang, X.; Yao, S.; Li, X. Sol-gel Preparation of CNT/ZnO Nanocomposite and Its Photocatalytic Property. Chin. J. Chem. 2009, 27, 1317–1320. [Google Scholar] [CrossRef]
- Wang, W.; Serp, P.; Kalck, P.; Faria, J.L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A Chem. 2005, 235, 194–199. [Google Scholar] [CrossRef]
- Chen, M.l.; Zhang, F.J.; Oh, W.C. Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titanium sources. New Carbon Mater. 2009, 24, 159–166. [Google Scholar] [CrossRef]
- Akhavan, O.; Azimirad, R.; Safa, S.; Larijani, M. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J. Mater. Chem. 2010, 20, 7386–7392. [Google Scholar] [CrossRef]
- Elias, M.; Akter, S.; Hossain, M.A.; Suhag, M.H. Fabrication of Zn3(PO4)2/carbon nanotubes nanocomposite thin film via sol-gel drop coating method with enhanced photocatalytic activity. Thin Solid Film. 2021, 717, 138472. [Google Scholar] [CrossRef]
- Hilding, J.; Grulke, E.A.; George Zhang, Z.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, T.; Kim, Y.S.; Choi, H.S.; Lim, H.J.; Yang, S.J.; Park, C.R. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 2012, 50, 3–33. [Google Scholar] [CrossRef]
- Garg, R.; Mondal, S.; Sahoo, L.; Vinod, C.P.; Gautam, U.K. Nanocrystalline Ag3PO4 for sunlight-and ambient air-driven oxidation of amines: High photocatalytic efficiency and a facile catalyst regeneration strategy. ACS Appl. Mater. Interfaces 2020, 12, 29324–29334. [Google Scholar] [CrossRef]
- Ji, Z.; Feng, L.; Kong, L.; Shen, X.; Wang, J.; Xu, K.; Yue, X. Synthesis of GO–AgIO4 nanocomposites with enhanced photocatalytic efficiency in the degradation of organic pollutants. J. Mater. Sci. 2017, 52, 6100–6110. [Google Scholar] [CrossRef]
- Li, Z.; Gao, B.; Chen, G.Z.; Mokaya, R.; Sotiropoulos, S.; Puma, G.L. Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B Environ. 2011, 110, 50–57. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Bi, Y.; Ouyang, S.; Cao, J.; Ye, J. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4(X= Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys. Chem. Chem. Phys. 2011, 13, 10071–10075. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y.; Guo, J.; Bu, F.; Wang, X. Synthesis of micro-nano Ag3PO4/ZnFe2O4with different organic additives and its enhanced photocatalytic activity under visible light irradiation. Mater. Sci. Semicond. Process. 2016, 41, 335–342. [Google Scholar] [CrossRef]
- Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge. ACS Catal. 2012, 2, 1677–1683. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Teng, B.; Fan, M. New application of Z-scheme Ag3PO4/g-C3N4composite in converting CO2to fuel. Environ. Sci. Technol. 2014, 49, 649–656. [Google Scholar] [CrossRef]
- Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, K. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Huang, B.; Zhang, X.; Qin, X.; Jin, H.; Dai, Y.; Wang, Z.; Wei, J.; Zhan, J.; Wang, S.; et al. Highly Efficient Visible-Light Plasmonic Photocatalyst Ag@AgBr. Chem. A Eur. J. 2009, 15, 1821–1824. [Google Scholar] [CrossRef]
- Guo, J.; Ouyang, S.; Zhou, H.; Kako, T.; Ye, J. Ag3PO4/In(OH)3 composite photocatalysts with adjustable surface-electric property for efficient photodegradation of organic dyes under simulated solar-light irradiation. J. Phys. Chem. C 2013, 117, 17716–17724. [Google Scholar] [CrossRef]
- Eswar, N.K.; Katkar, V.V.; Ramamurthy, C.; Madras, G. Novel AgBr/Ag3PO4 decorated ceria nano flake composites for enhanced photocatalytic activity toward dyes and bacteria under visible light. Ind. Eng. Chem. Res. 2015, 54, 8031–8042. [Google Scholar] [CrossRef]
- Shinger, M.I.; Idris, A.M.; Devaramani, S.; Qin, D.D.; Baballa, H.; Zhang, S.T.; Shan, D.L.; Lu, X. In situ fabrication of graphene-based Ag3PO4@AgBr composite with enhanced photocatalytic activity under simulated sunlight. J. Environ. Chem. Eng. 2017, 5, 1526–1535. [Google Scholar] [CrossRef]
- Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J.R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. [Google Scholar] [CrossRef]
- Zhu, M.; Chen, P.; Liu, M. Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. Acs Nano 2011, 5, 4529–4536. [Google Scholar] [CrossRef]
Composite | Degradation Rate Constant (min−1) |
---|---|
CNT-COO−/Ag3PO4@AgIO4-5% | 0.877 |
CNT/Ag3PO4@AgIO4 | 0.4143 |
Ag3PO4@AgIO4, | 0.3107 |
Ag3PO4 | 0.1611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbashir, A.A.; Shinger, M.I.; Ma, X.; Lu, X.; Ahmed, A.Y.; Alnajjar, A.O. Fabrication of a Novel CNT-COO−/Ag3PO4@AgIO4Composite with Enhanced Photocatalytic Activity under Natural Sunlight. Molecules 2023, 28, 1586. https://doi.org/10.3390/molecules28041586
Elbashir AA, Shinger MI, Ma X, Lu X, Ahmed AY, Alnajjar AO. Fabrication of a Novel CNT-COO−/Ag3PO4@AgIO4Composite with Enhanced Photocatalytic Activity under Natural Sunlight. Molecules. 2023; 28(4):1586. https://doi.org/10.3390/molecules28041586
Chicago/Turabian StyleElbashir, Abdalla A., Mahgoub Ibrahim Shinger, Xoafang Ma, Xiaoquan Lu, Amel Y. Ahmed, and Ahmed O. Alnajjar. 2023. "Fabrication of a Novel CNT-COO−/Ag3PO4@AgIO4Composite with Enhanced Photocatalytic Activity under Natural Sunlight" Molecules 28, no. 4: 1586. https://doi.org/10.3390/molecules28041586
APA StyleElbashir, A. A., Shinger, M. I., Ma, X., Lu, X., Ahmed, A. Y., & Alnajjar, A. O. (2023). Fabrication of a Novel CNT-COO−/Ag3PO4@AgIO4Composite with Enhanced Photocatalytic Activity under Natural Sunlight. Molecules, 28(4), 1586. https://doi.org/10.3390/molecules28041586