Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Samples
2.2. Adsorption Experiments
2.3. Isotherm Modelling
2.4. Contact Time Study and Kinetic Modelling
2.5. Effect of Temperature and Thermodynamic Calculations
3. Materials and Methods
3.1. Activation
3.2. Characterization
3.2.1. pH
3.2.2. Zeta Potential
3.2.3. BET
3.2.4. SEM-EDS
3.2.5. XPS
3.2.6. XRD
3.2.7. Tesla Meter
3.3. Adsorption Experiments
3.4. Adsorption Isotherms and Kinetics
3.5. Thermodynamic Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Activated carbon | AC |
American Society for Testing and Materials | ASTM |
Brunauer–Emmett–Teller | BET |
Biosolid | BS |
Diffusion-chemisorption | DF |
Gas-to-liquid | GTL |
Langmuir–Freundlich | LF |
Methylene blue | MB |
Potassium-carbonate-activated biosolid | KBS |
Pseudo-first order | PFO |
Pseudo-second order | PSO |
Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) | SEM-EDS |
Sum of squared error | SSE |
X-ray powder diffraction | XRD |
X-ray photoelectron spectroscopy | XPS |
References
- Qadir, M.; Drechsel, P.; Jiménez Cisneros, B.; Kim, Y.; Pramanik, A.; Mehta, P.; Olaniyan, O. Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum 2020, 44, 40–51. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of Synthetic Dyes from Wastewaters: A Review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, L.; Cheng, Z. Removal of Organic Pollutants from Aqueous Solution Using Agricultural Wastes: A Review. J. Mol. Liq. 2015, 212, 739–762. [Google Scholar] [CrossRef]
- Yusaf, A.; Usman, M.; Siddiq, M.; Bakhtiar, M.; Mansha, A.; Shaukat, S.; Rehman, H.F. Mixed Micellar Solubilization of Naphthol Green B Followed by Its Removal from Synthetic Effluent by Micellar-Enhanced Ultrafiltration under Optimized Conditions. Molecules 2022, 27, 6436. [Google Scholar] [CrossRef]
- Amjad, S.; Shaukat, S.; Rahman, H.M.A.; Usman, M.; Farooqi, Z.H.; Nazar, M.F. Application of Anionic-Nonionic Mixed Micellar System for Solubilization of Methylene Blue Dye. J. Mol. Liq. 2023, 369, 120958. [Google Scholar] [CrossRef]
- Da̧browski, A. Adsorption—From Theory to Practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Kyzas, G.Z. Agricultural Peels for Dye Adsorption: A Review of Recent Literature. J. Mol. Liq. 2014, 200, 381–389. [Google Scholar] [CrossRef]
- Mariyam, S.; Cochrane, L.; Zuhara, S.; McKay, G. Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening. Sustainability 2022, 14, 8991. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Rebello, S.; Binod, P.; Varjani, S.; Thakur, I.S.; Nair, R.B.; Pandey, A. Conversion of Food and Kitchen Waste to Value-Added Products. J. Environ. Manag. 2019, 241, 619–630. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar Derived from Non-Customized Matamba Fruit Shell as an Adsorbent for Wastewater Treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Pyrolysis of Biosolids to Produce Biochars: A Review. Sustainability 2022, 14, 9626. [Google Scholar] [CrossRef]
- Zuhara, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G. A Review of Prospects and Current Scenarios of Biomass Co-Pyrolysis for Water Treatment. Biomass Convers. Biorefinery 2022. 1, 30. [CrossRef]
- Zhu, S.; Fang, S.; Huo, M.; Yu, Y.; Chen, Y.; Yang, X.; Geng, Z.; Wang, Y.; Bian, D.; Huo, H. A Novel Conversion of the Groundwater Treatment Sludge to Magnetic Particles for the Adsorption of Methylene Blue. J. Hazard. Mater. 2015, 292, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, J.; Liu, X.; Bai, S.; Lin, H.; Wang, D. Reduction and Removal of As(Ⅴ) in Aqueous Solution by Biochar Derived from Nano Zero-Valent-Iron (NZVI) and Sewage Sludge. Chemosphere 2021, 277, 130273. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Wang, D.; Lin, H.; Huang, L. Removal and Reduction of Cr(Ⅵ) in Simulated Wastewater Using Magnetic Biochar Prepared by Co-Pyrolysis of Nano-Zero-Valent Iron and Sewage Sludge. J. Clean. Prod. 2020, 257, 120562. [Google Scholar] [CrossRef]
- Fadillah, G.; Yudha, S.P.; Sagadevan, S.; Fatimah, I.; Muraza, O. Magnetic Iron Oxide/Clay Nanocomposites for Adsorption and Catalytic Oxidation in Water Treatment Applications. Open Chem. 2020, 18, 1148–1166. [Google Scholar] [CrossRef]
- Kogbara, R.B.; Yiming, W.; Iyengar, S.R.; Onwusogh, U.C.; Youssef, K.; Al-Ansary, M.; Sunifar, P.A.; Arora, D.; Al-Sharshani, A.; Abdalla, O.A.E.; et al. Recycling Industrial Biosludge for Buffel Grass Production in Qatar: Impact on Soil, Leachate and Plant Characteristics. Chemosphere 2020, 247, 125886. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, R.; Ye, L.; Du, X.; Lu, X. Multi-Step Preparation of Fe and Si Modified Biochar Derived from Waterworks Sludge towards Methylene Blue Adsorption. J. Environ. Manag. 2022, 304, 114297. [Google Scholar] [CrossRef]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Produced in One-Stage and Two-Stage Processes. C 2018, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Nicomel, N.R.; Li, L.Y.; Du, G. Biosolids - Based Activated Carbon for Enhanced Copper Removal from Citric - Acid—Rich Aqueous Media. Environ. Sci. Pollut. Res. 2022, 74742–74755. [Google Scholar] [CrossRef]
- Nzihou, A.; Stanmore, B.; Sharrock, P.; Nzihou, A.; Stanmore, B.; Sharrock, P. A Review of Catalysts for the Gasification of Biomass Char, with Some Reference to Coal. Energy 2019, 58, 305–317. [Google Scholar]
- Almanassra, I.W.; Chatla, A.; Zakaria, Y.; Kochkodan, V.; Shanableh, A.; Laoui, T.; Atieh, M.A. Palm Leaves Based Biochar: Advanced Material Characterization and Heavy Metal Adsorption Study. Biomass Convers. Biorefinery 2022. [CrossRef]
- Al-Gaashani, R.; Zakaria, Y.; Lee, O.S.; Ponraj, J.; Kochkodan, V.; Atieh, M.A. Effects of Preparation Temperature on Production of Graphene Oxide by Novel Chemical Processing. Ceram. Int. 2021, 47, 10113–10122. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Y.; Cao, N.; Sun, D.; Zhang, Z.; Wang, Y.; Wen, Y.; Yang, Y.; Lyu, T. Sustainable Chromium (VI) Removal from Contaminated Groundwater Using Nano-Magnetite-Modified Biochar via Rapid Microwave Synthesis. Molecules 2021, 26, 103. [Google Scholar] [CrossRef]
- Abbas, A.F.; Ahmed, M.J. Mesoporous Activated Carbon from Date Stones (Phoenix Dactylifera L.) by One-Step Microwave Assisted K2CO3 Pyrolysis. J. Water Process Eng. 2016, 9, 201–207. [Google Scholar] [CrossRef]
- Hoslett, J.; Ghazal, H.; Mohamad, N.; Jouhara, H. Removal of Methylene Blue from Aqueous Solutions by Biochar Prepared from the Pyrolysis of Mixed Municipal Discarded Material. Sci. Total Environ. 2020, 714, 136832. [Google Scholar] [CrossRef] [PubMed]
- Ramutshatsha-Makhwedzha, D.; Mavhungu, A.; Moropeng, M.L.; Mbaya, R. Activated Carbon Derived from Waste Orange and Lemon Peels for the Adsorption of Methyl Orange and Methylene Blue Dyes from Wastewater. Heliyon 2022, 8, e09930. [Google Scholar] [CrossRef]
- Baytar, O.; Ceyhan, A.A.; Şahin, Ö. Production of Activated Carbon from Elaeagnus Angustifolia Seeds Using H3PO4 Activator and Methylene Blue and Malachite Green Adsorption. Int. J. Phytoremediat. 2021, 23, 693–703. [Google Scholar] [CrossRef]
- Baloo, L.; Isa, M.H.; Sapari, N.B.; Jagaba, A.H.; Wei, L.J.; Yavari, S.; Razali, R.; Vasu, R. Adsorptive Removal of Methylene Blue and Acid Orange 10 Dyes from Aqueous Solutions Using Oil Palm Wastes-Derived Activated Carbons. Alex. Eng. J. 2021, 60, 5611–5629. [Google Scholar] [CrossRef]
- Rashid, R.A.; Jawad, A.H.; Ishak, M.A.B.M.; Kasim, N.N. FeCl3-Activated Carbon Developed from Coconut Leaves: Characterization and Application for Methylene Blue Removal. Sains Malays. 2018, 47, 603–610. [Google Scholar] [CrossRef]
- Bello, M.O.; Abdus-Salam, N.; Adekola, F.A.; Pal, U. Isotherm and Kinetic Studies of Adsorption of Methylene Blue Using Activated Carbon from Ackee Apple Pods. Chem. Data Collect. 2021, 31, 100607. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of Methylene Blue from Aqueous Solution by Sewage Sludge-Derived Biochar: Adsorption Kinetics, Equilibrium, Thermodynamics and Mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Dutta, K.; Yata, V.K.; Arunachalam, K. Valorization of Waste Pine Needle Biomass into Biosorbents for the Removal of Methylene Blue Dye from Water: Kinetics, Equilibrium and Thermodynamics Study. Environ. Technol. Innov. 2022, 25, 102200. [Google Scholar] [CrossRef]
- Chen, F.X.; Zhou, C.R.; Li, G.P.; Peng, F. fei Thermodynamics and Kinetics of Glyphosate Adsorption on Resin D301. Arab. J. Chem. 2016, 9, S1665–S1669. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Shafiq, M. Comparative Study for Adsorption of Methylene Blue Dye on Biochar Derived from Orange Peel and Banana Biomass in Aqueous Solutions. Environ. Monit. Assess. 2019, 191, 735. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Kazak, O. Fabrication of in Situ Magnetic Activated Carbon by Co-Pyrolysis of Sucrose with Waste Red Mud for Removal of Cr(VI) from Waters. Environ. Technol. Innov. 2021, 24, 101856. [Google Scholar] [CrossRef]
- Zhang, H.; Xiao, R.; Li, R.; Ali, A.; Chen, A.; Zhang, Z. Enhanced Aqueous Cr(VI) Removal Using Chitosan-Modified Magnetic Biochars Derived from Bamboo Residues. Chemosphere 2020, 261, 127694. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The Adsorption of Gases on Plane Surface of Glass, Mica and Olatinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar]
- Freundlich, H. Colloid and Capillary Chemistry; Mathuen and Co: London, UK, 1926; pp. 6–8. [Google Scholar]
- Redlich, O.J.D.L.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar]
- Toth, J. Groundwater discharge: A common generator of diverse geologic and morphologic phenomena. Int. Assoc. Sci. Hydrol. Bull. 1971, 16, 7–24. [Google Scholar] [CrossRef]
- Temkin, M.I. Kinetics of Heterogeneous Catalysis. J. Phys. Chem. 1940, 14, 1153–1158. [Google Scholar]
- Dubinin, M.M. Surface and Nanomolecular Catalysis. Zhur Phys. Chem. 1960, 34, 959. [Google Scholar]
- Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. K. Sven. Vetenskapsakademiens 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar]
- Lopes, E.C.; dos Anjos, F.S.; Vieira, E.F.; Cestari, A.R. An Alternative Avrami Equation to Evaluate Kinetic Parameters of the Interaction of Hg (II) with Thin Chitosan Membranes. J. Colloid Interface Sci. 2003, 263, 542–547. [Google Scholar]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar]
- Hameed, B.H.; El-Khaiary, M.I. Equilibrium, Kinetics and Mechanism of Malachite Green Adsorption on Activated Carbon Prepared from Bamboo by K2CO3 Activation and Subsequent Gasification with CO2. J. Hazard. Mater. 2008, 157, 344–351. [Google Scholar] [CrossRef]
- Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption Part 2.—Theoretical Models. J. Chem. Soc. Faraday Trans. 1977, 73, 456–464. [Google Scholar]
Sample | pH | Yield (%) | Conductivity (mS/cm) | Surface Charge (mV) | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|---|---|---|---|
BS | 8.13 | - | 0.0230 ± 0.002 | −17.3 ± 0.20 | 0.010 ± 0.002 | 0.021 ± 0.01 | 2.12 ± 0.9 |
KBS | 11.2 (un-adjusted) | 33.2 ± 1.50 | 0.0760 ± 0.001 | −20.3 ± 0.40 | 156.56 ± 25.5 | 0.235 ± 0.01 | 6.01 ± 1.4 |
Biosolid (BS) | Activated Biosolid (KBS) | |||
---|---|---|---|---|
Element | Mass (%) | Atom (%) | Mass (%) | Atom [%] |
C | 40.34 | 53.05 | 4.2 | 9.42 |
N | 5.6 | 6.31 | 0.94 | 1.81 |
O | 33 | 32.58 | 28.35 | 47.74 |
Na | 0.28 | 0.2 | 0.52 | 0.61 |
Mg | 0.14 | 0.09 | 0.54 | 0.6 |
Al | 0.16 | 0.09 | 0.78 | 0.78 |
P | 1.66 | 0.85 | 7.11 | 6.18 |
S | 1.58 | 0.78 | 0.06 | 0.05 |
Cl | 0.12 | 0.05 | 0.2 | 0.15 |
K | 0.23 | 0.09 | 4.76 | 3.28 |
Ca | 10.1 | 3.98 | 20.66 | 13.89 |
Mn | 0.27 | 0.08 | 0.62 | 0.3 |
Fe | 6.53 | 1.85 | 31.06 | 14.98 |
Si | 0 | 0 | 0.2 | 0.19 |
BS | KBS | |
---|---|---|
Name | Atomic % | |
P 2p | 1.21 | 9.36 |
C 1s | 61.15 | 9.87 |
Ca 2p | 1.64 | 13.6 |
O 1s | 26.98 | 58.16 |
Fe 2p | 1.16 | 3.42 |
K 2p | - | 4.58 |
F 1s | - | 1.01 |
N 1s | 6.82 | - |
S 2p | 1.04 | - |
Sample | Adsorption Capacity qe(mg/g) | References |
---|---|---|
Mixed municipal discarded material | 7.2 | [28] |
Waste orange and lemon peels | 38 | [29] |
Elaeagnus angustifolia seeds | 72 | [30] |
Oil palm wastes | 24 | [31] |
Coconut leaves | 66 | [32] |
Ackee apple pod | 49 | [33] |
BS | 59.27 | This study |
Isotherm Best-Fit Models | SSE | Parameters |
---|---|---|
LF | 11.199 | KLF: 2.830; nLF: 0.819; aLF: 0.039 |
Langmuir | 18.461 | KL: 1.615; aL: 0.0249 |
Kinetic Best-Fit Models | SSE | Parameters |
---|---|---|
DF | 0.161 | qe: 59.27; KDC: 0.04; n: 1.547 |
PFO | 0.188 | qe: 59.27; K1: 0.005 |
PSO | 0.311 | qe: 59.27; K2: 9.71E-05 |
Temperature (K) | ∆G ° (KJ/mol) | ∆H° (KJ/mol) | ∆S° (KJ/mol.k) |
---|---|---|---|
293.15 | −2.243 | −0.273 | 0.0067 |
303.15 | −2.310 | ||
313.15 | −2.377 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuhara, S.; Pradhan, S.; Zakaria, Y.; Shetty, A.R.; McKay, G. Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models. Molecules 2023, 28, 1511. https://doi.org/10.3390/molecules28031511
Zuhara S, Pradhan S, Zakaria Y, Shetty AR, McKay G. Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models. Molecules. 2023; 28(3):1511. https://doi.org/10.3390/molecules28031511
Chicago/Turabian StyleZuhara, Shifa, Snigdhendubala Pradhan, Yahya Zakaria, Akshath Raghu Shetty, and Gordon McKay. 2023. "Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models" Molecules 28, no. 3: 1511. https://doi.org/10.3390/molecules28031511
APA StyleZuhara, S., Pradhan, S., Zakaria, Y., Shetty, A. R., & McKay, G. (2023). Removal of Methylene Blue from Water Using Magnetic GTL-Derived Biosolids: Study of Adsorption Isotherms and Kinetic Models. Molecules, 28(3), 1511. https://doi.org/10.3390/molecules28031511