Biotechnology Advances in Bioremediation of Arsenic: A Review
Abstract
:1. Introduction
2. Arsenic Chemistry
3. Environment Arsenic Exposure and Toxicological Effects in Humans
4. Molecular Mechanisms Involved in As Microbial Remediation
4.1. Oxidation and Reduction of As
4.2. Methylation of As
4.3. Operon Expression in As Resistance
4.4. Biosorption and Bioaccumulation of As
5. Molecular Mechanisms Involved in As Uptake by Plants—Phytoremediation
6. Biotechnological Strategies for Improvement of Microbial Bioremediation of As
7. Biotechnological Strategies for Improvement of Phytoremediation of As
8. Interaction of the Rhizosphere Microbial Community on the Phytoremediation of As
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Arsenic in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO/SDE/WSH/03.04/75/Rev/1 Arsenic. In WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011; p. 24. [Google Scholar]
- Shalvi; Gautam, V.; Verma, K.L.; Suman; Jain, V.; Kumar, A. An overview of advanced approaches for detecting arsenic at trace levels. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100730. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, S.; Biswas, B.; Pramanik, S.; Nriagu, J.; Bhowmick, S. Epigenetic modifications from arsenic exposure: A comprehensive review. Sci. Total. Environ. 2021, 810, 151218. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). And Dusts. Iarc Monogr. No. Arsenic, Metals, Fibres, and Dusts. 2012, Volume 100, pp. 407–443. Available online: https://www.iarc.fr/ (accessed on 7 August 2022).
- Kumar, S.; Dubey, R.S.; Tripathi, R.D.; Chakrabarty, D.; Trivedi, P.K. Omics and biotechnology of arsenic stress and detoxification in plants: Current updates and prospective. Environ. Int. 2015, 74, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Fatoki, J.O.; Badmus, J.A. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Rahaman, S.; Mise, N.; Ichihara, S. Arsenic contamination in food chain in Bangladesh: A review on health hazards, socioeconomic impacts and implications. Hyg. Environ. Health Adv. 2022, 2, 100004. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Yu, S.-D.; Hong, Y.-S. Environmental Source of Arsenic Exposure. J. Prev. Med. Public Health 2014, 47, 253–257. [Google Scholar] [CrossRef]
- Masuda, H. Arsenic cycling in the Earth’s crust and hydrosphere: Interaction between naturally occurring arsenic and human activities. Prog. Earth Planet. Sci. 2018, 5, 68. [Google Scholar] [CrossRef]
- Qiu, Y.; Yu, S.; Li, L. Research Progress in Fluorescent Probes for Arsenic Species. Molecules 2022, 27, 8497. [Google Scholar] [CrossRef]
- Chunguo, C.; Zihui, L. Chemical speciation and distribution of arsenic in water, suspended solids and sediment of Xiangjiang River, China. Sci. Total. Environ. 1988, 77, 69–82. [Google Scholar] [CrossRef]
- Shrivastava, A.; Ghosh, D.; Dash, A.; Bose, S. Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Curr. Pollut. Rep. 2015, 1, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Handali, S.; Rezaei, M. Arsenic and weight loss: At a crossroad between lipogenesis and lipolysis. J. Trace Elements Med. Biol. 2021, 68, 126836. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, A.-J.; Wang, N.-X.; Li, C.; Sha, J.; Jia, J.; Alessi, D.S.; Yan, B.; Ok, Y.S. Arsenic bioaccumulation and biotransformation in aquatic organisms. Environ. Int. 2022, 163, 107221. [Google Scholar] [CrossRef]
- Alotaibi, B.; Khan, M.; Shamim, S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021, 9, 1628. [Google Scholar] [CrossRef]
- Caumette, G.; Koch, I.; Reimer, K.J. Arsenobetaine formation in plankton: A review of studies at the base of the aquatic food chain. J. Environ. Monit. 2012, 14, 2841–2853. [Google Scholar] [CrossRef]
- Pochapsky, T.C. Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013; Volume 150. [Google Scholar] [CrossRef]
- Rokonuzzaman; Li, W.C.; Man, Y.B.; Tsang, Y.F.; Ye, Z. Arsenic Accumulation in Rice: Sources, Human Health Impact and Probable Mitigation Approaches. Rice Sci. 2022, 29, 309–327. [Google Scholar] [CrossRef]
- Rahaman, S.; Rahman, M.; Mise, N.; Sikder, T.; Ichihara, G.; Uddin, K.; Kurasaki, M.; Ichihara, S. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ. Pollut. 2021, 289, 117940. [Google Scholar] [CrossRef]
- Yang, H.-C.; Fu, H.-L.; Lin, Y.-F.; Rosen, B.P. Chapter Twelve—Pathways of Arsenic Uptake and Efflux. In Metal Transporters; Argüello, J.M., Lutsenko, S.B.T.-C.T., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 69, pp. 325–358. ISBN 1063-5823. [Google Scholar]
- ATSDR. Arsenic Arsenic. Div. Toxicol. Environ. Med. 2007, 38, 1–10. [Google Scholar]
- Faita, F.; Cori, L.; Bianchi, F.; Andreassi, M.G. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies. Int. J. Environ. Res. Public Health 2013, 10, 1527. [Google Scholar] [CrossRef]
- Santra, S.C.; Samal, A.C.; Bhattacharya, P.; Banerjee, S.; Biswas, A.; Majumdar, J. Arsenic in Foodchain and Community Health Risk: A Study in Gangetic West Bengal. Procedia Environ. Sci. 2013, 18, 2–13. [Google Scholar] [CrossRef]
- Sanyal, T.; Bhattacharjee, P.; Paul, S. Recent Advances in Arsenic Research: Significance of Differential Susceptibility and Sustainable Strategies for Mitigation. Front. Public Health 2020, 8, 464. [Google Scholar] [CrossRef]
- Roy, P.; Saha, A. Metabolism and toxicity of arsenic: A human carcinogen. Curr. Sci. 2002, 82, 38–45. [Google Scholar]
- Vahter, M. Mechanisms of arsenic biotransformation. Toxicology 2002, 181–182, 211–217. [Google Scholar] [CrossRef]
- Mass, M.J.; Wang, L. Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: A model for a mechanism of carcinogenesis. Mutat. Res. Mol. Mech. Mutagen. 1997, 386, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Singh, A.; Goel, R. Mechanisms pertaining to arsenic toxicity. Toxicol. Int. 2011, 18, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, oxidative stress and human disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef]
- Jaiswal, S.; Shukla, P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front. Microbiol. 2020, 11, 808. [Google Scholar] [CrossRef]
- Plewniak, F.; Crognale, S.; Rossetti, S.; Bertin, P.N. A Genomic Outlook on Bioremediation: The Case of Arsenic Removal. Front. Microbiol. 2018, 9, 820. [Google Scholar] [CrossRef]
- Biswas, A.; Das, S.; Seth, S.; Maulik, S.K.; Bhargava, B.; Rao, V.R. Dual Process of Bio-Phytoremediation of Arsenic from Contaminated Industrial Samples: An Alternative to Traditional Methods. J. Bioremediation Biodegrad. 2016, 7, 1–5. [Google Scholar] [CrossRef]
- Paul, S.; Chakraborty, S.; Ali, N.; Ray, D. Arsenic distribution in environment and its bioremediation: A review. Int. J. Agric. Environ. Biotechnol. 2014, 8, 189. [Google Scholar] [CrossRef]
- Plewniak, F.; Koechler, S.; Navet, B.; Dugat-Bony, E.; Bouchez, O.; Peyret, P.; Séby, F.; Battaglia-Brunet, F.; Bertin, P.N. Metagenomic insights into microbial metabolism affecting arsenic dispersion in Mediterranean marine sediments. Mol. Ecol. 2013, 22, 4870–4883. [Google Scholar] [CrossRef]
- Irshad, S.; Xie, Z.; Mehmood, S.; Nawaz, A.; Ditta, A.; Mahmood, Q. Insights into conventional and recent technologies for arsenic bioremediation: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 18870–18892. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Li, Q.; Sun, Z.; Zhang, W.; Chen, J.; Chen, Z.; NA, S.; Sun, H. Chemical oxidation of arsenic in the environment and applications: A mini review. Pedosphere, 2022; in press. [Google Scholar] [CrossRef]
- Irunde, R.; Ijumulana, J.; Ligate, F.; Maity, J.P.; Ahmad, A.; Mtamba, J.; Mtalo, F.; Bhattacharya, P. Arsenic in Africa: Potential sources, spatial variability, and the state of the art for arsenic removal using locally available materials. Groundw. Sustain. Dev. 2022, 18, 100746. [Google Scholar] [CrossRef]
- Anderson, G.; Williams, J.; Hille, R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 1992, 267, 23674–23682. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M.; Natasha. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Wang, Q.; Wang, G. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation. Front. Microbiol. 2020, 11, 2235. [Google Scholar] [CrossRef]
- Bun-Ya, M.; Shikata, K.; Nakade, S.; Yompakdee, C.; Harashima, S.; Oshima, Y. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr. Genet. 1996, 29, 344–351. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Zheng, F.; Yu, M.; Shabala, S.; Song, W.-Y. Comparative Analysis of Arsenic Transport and Tolerance Mechanisms: Evolution from Prokaryote to Higher Plants. Cells 2022, 11, 2741. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Rosen, B.P.; Phung, L.T.; Silver, S. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 2002, 26, 311–325. [Google Scholar] [CrossRef]
- Rosen, B.P. Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 56–92. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, S.; Gorai, S.; Kabiraj, A.; Bandopadhyay, R. High arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring. Electron. J. Biotechnol. 2021, 53, 1–7. [Google Scholar] [CrossRef]
- Dey, U.; Chatterjee, S.; Mondal, N.K. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol. Rep. 2016, 10, 1–7. [Google Scholar] [CrossRef]
- Taran, M.; Fateh, R.; Rezaei, S.; Gholi, M.K. Isolation of arsenic accumulating bacteria from garbage leachates for possible application in bioremediation. Iran. J. Microbiol. 2019, 11, 60–66. [Google Scholar] [CrossRef]
- Aulitto, M.; Gallo, G.; Puopolo, R.; Mormone, A.; Limauro, D.; Contursi, P.; Piochi, M.; Bartolucci, S.; Fiorentino, G. Genomic Insight of Alicyclobacillus mali FL18 Isolated From an Arsenic-Rich Hot Spring. Front. Microbiol. 2021, 12, 639697. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Riaz, M.; Ramzan, N.; Zahid, M.T.; Shakoori, F.R.; Rafatullah, M. Isolation and characterization of arsenic resistant bacteria from wastewater. Braz. J. Microbiol. 2014, 45, 1309–1315. [Google Scholar] [CrossRef]
- Flora, S.; Kaushik, P.; Mathur, M.; Bhatnagar, P.; Rawat, N.; Raghuvanshi, P.; Swarnkar, H. Arsenic hyper-tolerance in four Microbacterium species isolated from soil contaminated with textile effluent. Toxicol. Int. 2012, 19, 188–194. [Google Scholar] [CrossRef]
- Tashan, H.; Harighi, B.; Rostamzadeh, J.; Azizi, A. Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants. Front. Plant Sci. 2021, 12, 1466. [Google Scholar] [CrossRef]
- Mandal, D.; Sonar, R.; Saha, I.; Ahmed, S.; Basu, A. Isolation and identification of arsenic resistant bacteria: A tool for bioremediation of arsenic toxicity. Int. J. Environ. Sci. Technol. 2021, 19, 9883–9900. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Maizel, D.; Blum, J.S.; Ferrero, M.A.; Utturkar, S.M.; Brown, S.D.; Rosen, B.P.; Oremland, R.S. Characterization of the extremely arsenic-resistant Brevibacterium linens strain AE038-8 isolated from contaminated groundwater in Tucumán, Argentina. Int. Biodeterior. Biodegrad. 2016, 107, 147–153. [Google Scholar] [CrossRef]
- Diba, F.; Khan, Z.H.; Uddin, S.Z.; Istiaq, A.; Shuvo, S.R.; Alam, A.S.M.R.U.; Hossain, M.A.; Sultana, M. Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency. Sci. Rep. 2021, 11, 21312. [Google Scholar] [CrossRef]
- De Francisco, P.; Martín-González, A.; Rodriguez-Martín, D.; Díaz, S. Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms. Int. J. Environ. Res. Public Health 2021, 18, 12226. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Rosen, B.P. The Arsenic Methylation Cycle: How Microbial Communities Adapted Methylarsenicals for Use as Weapons in the Continuing War for Dominance. Front. Environ. Sci. 2020, 8, 43. [Google Scholar] [CrossRef]
- Bentley, R.; Chasteen, T.G. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, T.; Tang, Z.; Shen, Q.; Rosen, B.P.; Zhao, F.-J. Arsenic Methylation and Volatilization by Arsenite S -Adenosylmethionine Methyltransferase in Pseudomonas alcaligenes NBRC14159. Appl. Environ. Microbiol. 2015, 81, 2852–2860. [Google Scholar] [CrossRef]
- Yan, G.; Chen, X.; Du, S.; Deng, Z.; Wang, L.; Chen, S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 2018, 65, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, Y.; Chan, Z.; Chen, S.; Yang, S. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front. Microbiol. 2015, 6, 986. [Google Scholar] [CrossRef]
- Suzuki, K.; Wakao, N.; Kimura, T.; Sakka, K.; Ohmiya, K. Expression and Regulation of the Arsenic Resistance Operon of Acidiphilium multivorum AIU 301 Plasmid pKW301 in Escherichia coli. Appl. Environ. Microbiol. 1998, 64, 411–418. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Yin, H. Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol. Res. 2022, 258, 126990. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Clode, P.L.; Kilburn, M.R.; Guagliardo, P.; Romic, D. Zinc and cadmium mapping by NanoSIMS within the root apex after short-term exposure to metal contamination. Ecotoxicol. Environ. Saf. 2019, 171, 571–578. [Google Scholar] [CrossRef]
- Ondrasek, G.; Clode, P.L.; Kilburn, M.R.; Guagliardo, P.; Romić, D.; Rengel, Z. Zinc and Cadmium Mapping in the Apical Shoot and Hypocotyl Tissues of Radish by High-Resolution Secondary Ion Mass Spectrometry (NanoSIMS) after Short-Term Exposure to Metal Contamination. Int. J. Environ. Res. Public Health 2019, 16, 373. [Google Scholar] [CrossRef] [Green Version]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Doty, S.L. Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol. 2008, 179, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, J.; Song, W.-Y. Arsenic Uptake and Translocation in Plants. Plant Cell Physiol. 2015, 57, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sharma, P.; Mitra, S.; Mallick, I.; Ghosh, A. Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100430. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2009, 181, 777–794. [Google Scholar] [CrossRef]
- Martínez-Castillo, J.I.; Saldaña-Robles, A.; Ozuna, C. Arsenic stress in plants: A metabolomic perspective. Plant Stress 2022, 3, 100055. [Google Scholar] [CrossRef]
- Awasthi, S.; Chauhan, R.; Srivastava, S.; Tripathi, R.D. The Journey of Arsenic from Soil to Grain in Rice. Front. Plant Sci. 2017, 8, 1007. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.; Dittert, K.; Lambers, H. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agric. Ecosyst. Environ. 2018, 253, 23–37. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Arsenic Uptake and Accumulation Mechanisms in Rice Species. Plants 2020, 9, 129. [Google Scholar] [CrossRef]
- Wei, X.; Zhou, Y.; Tsang, D.C.; Song, L.; Zhang, C.; Yin, M.; Liu, J.; Xiao, T.; Zhang, G.; Wang, J. Hyperaccumulation and transport mechanism of thallium and arsenic in brake ferns (Pteris vittata L.): A case study from mining area. J. Hazard. Mater. 2019, 388, 121756. [Google Scholar] [CrossRef]
- Srivastava, S.; Shukla, A.; Rajput, V.D.; Kumar, K.; Minkina, T.; Mandzhieva, S.; Shmaraeva, A.; Suprasanna, P. Arsenic Remediation through Sustainable Phytoremediation Approaches. Minerals 2021, 11, 936. [Google Scholar] [CrossRef]
- Canatto, R.A.; de Oliveira, J.A.; Da-Silva, C.J.; Albino, B.S. Tolerance of Landoltia punctata to arsenate: An evaluation of the potential use in phytoremediation programs. Int. J. Phytoremediation 2020, 23, 102–110. [Google Scholar] [CrossRef]
- de Souza, T.D.; Borges, A.C.; de Matos, A.T.; Veloso, R.W.; Braga, A.F. Optimization of arsenic phytoremediation using Eichhornia crassipes. Int. J. Phytoremediation 2018, 20, 1129–1135. [Google Scholar] [CrossRef]
- Leão, G.A.; Oliveira, J.; Felipe, R.T.A.; Farnese, F.S. Phytoremediation of arsenic-contaminated water: The role of antioxidant metabolism of Azolla caroliniana Willd. (Salviniales). Acta Bot. Bras. 2017, 31, 161–168. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhen, Z.; Wang, Z.; Zeng, L.; Yan, C. Influence of environmental factors on arsenic accumulation and biotransformation using the aquatic plant species Hydrilla verticillata. J. Environ. Sci. 2019, 90, 244–252. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Ueda, K.; Maki, T.; Okumura, C. Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere 2007, 69, 493–499. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, F.; Chen, J.; Sun, G. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J. Environ. Sci. 2011, 23, 1544–1550. [Google Scholar] [CrossRef]
- Huang, K.; Chen, C.; Shen, Q.; Rosen, B.P.; Zhao, F.-J. Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste. Appl. Environ. Microbiol. 2015, 81, 6718–6724. [Google Scholar] [CrossRef]
- Achour, A.R.; Bauda, P.; Billard, P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 2007, 158, 128–137. [Google Scholar] [CrossRef]
- Villadangos, A.F.; Ordóñez, E.; Pedre, B.; Messens, J.; Gil, J.A.; Mateos, L.M. Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl. Microbiol. Biotechnol. 2014, 98, 10143–10152. [Google Scholar] [CrossRef]
- Kostal, J.; Yang, R.; Wu, C.H.; Mulchandani, A.; Chen, W. Enhanced Arsenic Accumulation in Engineered Bacterial Cells Expressing ArsR. Appl. Environ. Microbiol. 2004, 70, 4582–4587. [Google Scholar] [CrossRef] [PubMed]
- Durante-Rodríguez, G.; Páez-Espino, D.; de Lorenzo, V. A Bifan Motif Shaped by ArsR1, ArsR2, and Their Cognate Promoters Frames Arsenic Tolerance of Pseudomonas putida. Front. Microbiol. 2021, 12, 427. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, W.; Shen, H.; Yan, H.; Xu, W.; He, Z.; Ma, M. Engineering Arsenic Tolerance and Hyperaccumulation in Plants for Phytoremediation by a PvACR3 Transgenic Approach. Environ. Sci. Technol. 2013, 47, 9355–9362. [Google Scholar] [CrossRef] [PubMed]
- Nahar, N.; Rahman, A.; Nawani, N.N.; Ghosh, S.; Mandal, A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. J. Plant Physiol. 2017, 218, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Bandumula, N.; Rathod, S.; Ondrasek, G.; Pillai, M.P.; Sundaram, R.M. An Economic Evaluation of Improved Rice Production Technology in Telangana State, India. Agriculture 2022, 12, 1387. [Google Scholar] [CrossRef]
- Rathod, S.; Yerram, S.; Arya, P.; Katti, G.; Rani, J.; Padmakumari, A.P.; Somasekhar, N.; Padmavathi, C.; Ondrasek, G.; Amudan, S.; et al. Climate-Based Modeling and Prediction of Rice Gall Midge Populations Using Count Time Series and Machine Learning Approaches. Agronomy 2021, 12, 22. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.-H.; Cao, Y.; Zhu, Y.-G.; Rathinasabapathi, B.; Ma, L.Q. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Front. Plant Sci. 2017, 8, 268. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, W.; Mao, C.; Xu, G.; Zhao, F.-J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J. Exp. Bot. 2016, 67, 6051–6059. [Google Scholar] [CrossRef]
- Dhankher, O.P.; Li, Y.; Rosen, B.P.; Shi, J.; Salt, D.; Senecoff, J.F.; Sashti, N.A.; Meagher, R.B. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat. Biotechnol. 2002, 20, 1140–1145. [Google Scholar] [CrossRef]
- Verma, S.; Verma, P.K.; Pande, V.; Tripathi, R.D.; Chakrabarty, D. Transgenic Arabidopsis thaliana expressing fungal arsenic methyltransferase gene (WaarsM) showed enhanced arsenic tolerance via volatilization. Environ. Exp. Bot. 2016, 132, 113–120. [Google Scholar] [CrossRef]
- Tang, Z.; Lv, Y.; Chen, F.; Zhang, W.; Rosen, B.P.; Zhao, F.-J. Arsenic Methylation in Arabidopsis thaliana Expressing an Algal Arsenite Methyltransferase Gene Increases Arsenic Phytotoxicity. J. Agric. Food Chem. 2016, 64, 2674–2681. [Google Scholar] [CrossRef]
- Dhankher, O.P.; Rosen, B.P.; McKinney, E.C.; Meagher, R.B. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc. Natl. Acad. Sci. USA 2006, 103, 5413–5418. Available online: www.pnas.orgcgidoi10.1073pnas.0509770102 (accessed on 17 October 2022). [CrossRef]
- Sharma, P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresour. Technol. 2021, 328, 124835. [Google Scholar] [CrossRef]
- Kong, Z.; Glick, B.R. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 71. [Google Scholar] [CrossRef]
- Caracciolo, A.B.; Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Jia, P.; Li, F.; Zhang, S.; Wu, G.; Wang, Y.; Li, J.-T. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front. Microbiol. 2022, 13, 989272. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, H.; Zhong, M.; Wang, F.-H.; Zhang, L.-M.; Zhu, Y.-G. Microbial Arsenic Methylation in Soil and Rice Rhizosphere. Environ. Sci. Technol. 2013, 47, 3141–3148. [Google Scholar] [CrossRef]
- Mesa, V.; Navazas, A.; González-Gil, R.; González, A.; Weyens, N.; Lauga, B.; Gallego, J.L.R.; Sánchez, J.; Peláez, A.I. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Appl. Environ. Microbiol. 2017, 83, e03411-16. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, N. Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp. Ecol. Eng. 2014, 70, 146–153. [Google Scholar] [CrossRef]
- Yang, Q.; Tu, S.; Wang, G.; Liao, X.; Yan, X. Effectiveness of Applying Arsenate Reducing Bacteria to Enhance Arsenic Removal From Polluted Soils by Pteris Vittata L. Int. J. Phytoremediation 2012, 14, 89–99. [Google Scholar] [CrossRef]
- Mukherjee, G.; Saha, C.; Naskar, N.; Mukherjee, A.; Mukherjee, A.; Lahiri, S.; Majumder, A.L. Erratum to: An Endophytic Bacterial Consortium modulates multiple strategies to improve Arsenic Phytoremediation Efficacy in Solanum nigrum . Sci. Rep. 2018, 8, 16365. [Google Scholar] [CrossRef]
- Ondrasek, G.; Romić, D.; Tanaskovik, V.; Savić, R.; Rathod, S.; Horvatinec, J.; Rengel, Z. Humates mitigate Cd uptake in the absence of NaCl salinity, but combined application of humates and NaCl enhances Cd mobility & phyto-accumulation. Sci. Total. Environ. 2022, 847, 157649. [Google Scholar] [CrossRef] [PubMed]
- Ondrasek, G.; Badovinac, I.J.; Peter, R.; Petravić, M.; Macan, J.; Rengel, Z. Humates and Chlorides Synergistically Increase Cd Phytoaccumulation in Strawberry Fruits, Heightening Health Risk from Cd in Human Diet. Expo. Health 2022, 14, 393–410. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total. Environ. 2021, 784, 147133. [Google Scholar] [CrossRef] [PubMed]
- Khanna, K.; Kohli, S.K.; Kumar, P.; Ohri, P.; Bhardwaj, R.; Alam, P.; Ahmad, P. Arsenic as hazardous pollutant: Perspectives on engineering remediation tools. Sci. Total. Environ. 2022, 838, 155870. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.M.U.; Javed, H.; Hussain, M.M.; Shakoor, M.B.; Bibi, I.; Shahid, M.; Farwa; Xu, N.; Wei, Q.; Qiao, J.; et al. Biochar/nano-zerovalent zinc-based materials for arsenic removal from contaminated water. Int. J. Phytoremediation 2022, 1–10. [Google Scholar] [CrossRef]
No. | Strain Isolate | Tolerance | Reference |
---|---|---|---|
1 | Brevundimonas aurantiaca PFAB1 | Up to 90 mM arsenite Up to 310 mM arsenate | [45] |
2 | Bacillus sp. KM02, Aneurinibacillus aneurinilyticus | Up to 4500 ppm arsenate Up to 550 ppm arsenite | [46] |
3 | Bacillus sp. KL6 | Up to 90 ppm arsenic | [47] |
4 | Alicyclobacillus mali FL 18 | Up to 41mM arsenite | [48] |
5 | Aeromonas | Up to 100 mM arsenate Up to 20 mM arsenite | [49] |
6 | Microbacterium | Up to 69.2 mM arsenite | [50] |
7 | Pseudomonas sp. QNC1 | Up to 350 mM arsenate | [51] |
8 | Lysinibacillus sp., Bacillus safensis | Up to 88.53 mM arsenite Up to 721.13 mM arsenate | [52] |
9 | Klebsiella pneumonia sp. | Up to 28 mM of arsenic | [53] |
10 | Brevibacterium linens strain AE038-8 | Up to 1 M of arsenate Up to 75 mM of arsenite | [54] |
11 | Acromobacter xylosoxidans | Up to 15 mM As(III) | [55] |
Species | As Concentration in Tested Medium | As Accumulation in Test Plant | Reference |
---|---|---|---|
Pteris vittata | 8885 ± 1640 mg/kg soil | 7215 to 11,110 mg/kg | [75] |
Landolita punctata | 0.5–3.0 mg/L nutrient solution | >1000 mg/kg | [76,77] |
Eichhornia crassipes | 0.5 mg/L nutrient solution | 498.4 mg/kg | [78] |
Azolla caroliniana | 0.25–1.5 mg/L nutrient solution | 386.1 µg/g | [79] |
Hydrilla verticillata | 375 µg/L artificial fresh water | 197.2 ± 17.4 µg/g | [80] |
Spirodela polyrhiza L. | 75–300 µg/L nutrient solution | 26.4 ± 0.22 µg/g | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preetha, J.S.Y.; Arun, M.; Vidya, N.; Kowsalya, K.; Halka, J.; Ondrasek, G. Biotechnology Advances in Bioremediation of Arsenic: A Review. Molecules 2023, 28, 1474. https://doi.org/10.3390/molecules28031474
Preetha JSY, Arun M, Vidya N, Kowsalya K, Halka J, Ondrasek G. Biotechnology Advances in Bioremediation of Arsenic: A Review. Molecules. 2023; 28(3):1474. https://doi.org/10.3390/molecules28031474
Chicago/Turabian StylePreetha, Jaganathan Sakthi Yazhini, Muthukrishnan Arun, Nandakumar Vidya, Kumaresan Kowsalya, Jayachandran Halka, and Gabrijel Ondrasek. 2023. "Biotechnology Advances in Bioremediation of Arsenic: A Review" Molecules 28, no. 3: 1474. https://doi.org/10.3390/molecules28031474
APA StylePreetha, J. S. Y., Arun, M., Vidya, N., Kowsalya, K., Halka, J., & Ondrasek, G. (2023). Biotechnology Advances in Bioremediation of Arsenic: A Review. Molecules, 28(3), 1474. https://doi.org/10.3390/molecules28031474