Electronic Structure Calculations on Endohedral Complexes of Fullerenes: Reminiscences and Prospects
Abstract
:1. Introduction
2. The Doubters and the Believers
3. Software Testing and Benchmarking
4. Experimental Breakthrough and More Calculations
5. He@C: Notation, Isolation, He NMR, and the Question of Bonding
6. Further Experimental Developments
7. Standing the Test of Time
8. Future Prospects
9. Some Last Words
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gmelin, L. Ueber einige merkwürdige, bei der Darstellung des Kaliums nach der Brunner’schen Methode, erhaltene Substanzen. Ann. Phys. Chem. 1825, 4, 31–62. [Google Scholar] [CrossRef]
- Liebig, J. Ueber das Verhalten des Kohlenoxyds zu Kalium. Ann. Chem. Pharm. 1834, 11, 182–189. [Google Scholar] [CrossRef]
- Nietzki, R.; Benckiser, T. Ueber Hexaoxybenzolderivate und ihre Beziehungen zur Krokonsäure und Rhodizonsäure. Berichte Dtsch. Chem. Ges. 1885, 18, 499–515. [Google Scholar] [CrossRef]
- Wöhler, F. Ueber künstliche Bildung des Harnstoffs. Ann. Phys. Chem. 1828, 88, 253–256. [Google Scholar] [CrossRef]
- Faraday, M. On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat. Philos. Trans. R. Soc. 1825, 115, 440–466. [Google Scholar] [CrossRef]
- Van’t Hoff, J.H. Sur les formules de structure dans l’espace. Arch. Néerl. Sci. Exact. Nat. 1874, 9, 445–454. [Google Scholar]
- Le Bel, J.A. Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bull. Soc. Chim. Fr. 1874, 22, 337–347. [Google Scholar]
- Baeyer, A. Ueber Polyacetylenverbindungen (Zweite Mittheilung). Ber. Dtsch. Chem. Ges. 1885, 18, 2269–2281. [Google Scholar] [CrossRef]
- Willstätter, R.; Waser, E. Über Cyclo-octatetraen. Ber. Dtsch. Chem. Ges. 1911, 44, 3423–3445. [Google Scholar] [CrossRef]
- Diederich, F.; Staab, H.A. Benzenoidversus Annulenoid Aromaticity: Synthesis and Properties of Kekulene. Angew. Chem. Int. Ed. Engl. 1978, 17, 372–374. [Google Scholar] [CrossRef]
- Martin, R. H . The Helicenes. Angew. Chem. Int. Ed. Engl. 1974, 13, 649–660. [Google Scholar] [CrossRef]
- Wiberg, K.B.; Lampman, G.M.; Ciula, R.P.; Connor, D.S.; Schertler, P.; Lavanish, J. Bicyclo[1.1.0]butane. Tetrahedron 1965, 21, 2749–2769. [Google Scholar] [CrossRef]
- Wiberg, K.B.; Walker, F.H. [1.1.1]Propellane. J. Am. Chem. Soc. 1982, 104, 5239–5240. [Google Scholar] [CrossRef]
- Katz, T.J.; Acton, N. Synthesis of Prismane. J. Am. Chem. Soc. 1973, 95, 2738–2739. [Google Scholar] [CrossRef]
- Whitlock, H.W. Tricyclo[4.4.0.03.8]Decane. J. Am. Chem. Soc. 1962, 84, 3412–3413. [Google Scholar] [CrossRef]
- Prelog, V.; Seiwerth, R. Über die Synthese des Adamantans. Berichte 1941, 74, 1644–1648. [Google Scholar] [CrossRef]
- Tobler, H.; Klaus, R.O.; Ganter, C. Wurtzitan (Tetracyclo[5.3.1.12,6.04,9]dodecan). Helv. Chim. Acta 1975, 58, 1455–1464. [Google Scholar] [CrossRef]
- Hamon, D.P.G.; Taylor, G.F. A synthesis of tetracyclo[5,3,1,12,6,04,9]dodecane (iceane). Aust. J. Chem. 1976, 29, 1721–1734. [Google Scholar] [CrossRef]
- Cupas, C.; Schleyer, P.v.R.; Trecker, D.J. Congressane. J. Am. Chem. Soc. 1965, 87, 917–918. [Google Scholar] [CrossRef]
- Eaton, P.E.; Cole, T.W. Cubane. J. Am. Chem. Soc. 1964, 86, 3157–3158. [Google Scholar] [CrossRef]
- Ternansky, R.J.; Balogh, D.W.; Paquette, L.A. Dodecahedrane. J. Am. Chem. Soc. 1982, 104, 4503–4504. [Google Scholar] [CrossRef]
- Wasserman, E. The Preparation of Interlocking Rings: A Catenane. J. Am. Chem. Soc. 1960, 82, 4433–4434. [Google Scholar] [CrossRef]
- Schill, G.; Lüttringhaus, A. The Preparation of Catena Compounds by Directed Synthesis. Angew. Chem. Int. Ed. Engl. 1964, 3, 546–547. [Google Scholar] [CrossRef]
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar] [CrossRef]
- Dietrich, B.; Lehn, J.M.; Sauvage, J.P. Les Cryptates. Tetrahedron Lett. 1969, 10, 2889–2892. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Krätschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–358. [Google Scholar] [CrossRef]
- Hirsch, A.; Brettreich, M. Fullerenes: Chemistry and Reactions; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Hebard, A.F.; Rosseinsky, M.J.; Haddon, R.C.; Murphy, D.W.; Glarum, S.H.; Palstra, T.T.M.; Ramirez, A.P.; Kartan, A.R. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601. [Google Scholar] [CrossRef]
- Davy, H., VIII. On a combination of oxymuriatic gas and oxygene gas. Philos. Trans. R. Soc. 1811, 101, 155–162. [Google Scholar]
- Faraday, M. On Hydrate of Chlorine. Quart. J. Sci. Lit. Arts 1823, 15, 71–74. [Google Scholar]
- The search in Google Scholar for “inclusion compounds” alone returns over 30,000 entries.
- Jasat, A.; Sherman, J.C. Carceplexes and Hemicarceplexes. Chem. Rev. 1999, 99, 931–967. [Google Scholar] [CrossRef]
- Derjaguin, B. Polywater reviewed. Nature 1983, 301, 9–10. [Google Scholar] [CrossRef]
- Rousseau, D.L. “Polywater” and Sweat: Similarities between the Infrared Spectra. Science 1971, 171, 170–172. [Google Scholar] [CrossRef]
- Cioslowski, J. Electronic Structure Calculations on Fullerenes and Their Derivatives; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Fleischmann, M.; Pons, S. Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. 1989, 261, 301–308. [Google Scholar] [CrossRef]
- Chechin, V.A.; Tsarev, V.A.; Rabinowitz, M.; Kim, Y.E. Critical Review of Theoretical Models for Anomalous Effects in Deuterated Metals. Int. J. Theor. Phys. 1994, 33, 617–670. [Google Scholar] [CrossRef]
- Ahlrichs, R.; Bär, M.; Häser, M.; Hom, H.; Kölmel, C. Electronic Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Having this code handy was a mixed blessing. On one hand, it allowed tinkering with the program necessary for extraction of some data not available from standard output. On the other, it caused some troubles when I instructed a FORTRAN-proficient undergraduate student to fix the sluggish convergence of geometry optimization in her calculations. To her chagrin (and my surprise), it turned out that the controlling variable (i.e., the shift in the Hessian eigenvalues) was named with an English word that upon changing just one vowel becomes its German (equally vulgar) equivalent.
- Cioslowski, J.; Fleischmann, E.D. Endohedral Complexes: Atoms and Ions Inside the C60 Cage. J. Chem. Phys. 1991, 94, 3730–3734. [Google Scholar] [CrossRef]
- Weiske, T.; Bohme, D.K.; Hrušák, J.; Krutschmer, W.; Schwarz, H. Endohedral Cluster Compounds: Inclusion of Helium within C60•⊕ and C70•⊕ through Collision Experiments. Angew. Chem. Int. Ed. Engl. 1991, 30, 884–886. [Google Scholar] [CrossRef]
- Cioslowski, J. Endohedral Chemistry: Electronic Structures of Molecules Trapped Inside the C60 Cage. J. Am. Chem. Soc. 1991, 113, 4139–4141. [Google Scholar] [CrossRef]
- These data were included in a manuscript submitted to one of the leading chemical journals. The expected paper was later cited (as “in press”) in a survey of electronic structure calculations on endohedral complexes intended for a book chapter, in which all the data obtained thus far were compiled. Under normal circumstances, the book would appear much later than the journal article. However, the editor of the journal dragged his feet with such efficacy that the book was published about the time the manuscript was going to be finally accepted. Noticing this, he happily pronounced the manuscript being “prior publication” and summarily rejected it. The dummy citation has remained in the book chapter.
- Cioslowski, J. Spectroscopic and Computational Studies of Supramolecular Systems; Davies, J.E.D., Ed.; Springer Science+Business Media: Dordrecht, The Netherlands, 1992; p. 269. [Google Scholar]
- Cioslowski, J.; Nanayakkara, A. Endohedral Effect in Inclusion Complexes of the C60 Cluster. J. Chem. Phys. 1992, 96, 8354–8362. [Google Scholar] [CrossRef]
- Cioslowski, J.; Raghavachari, K. Electrostatic Potential, Polarization, Shielding, and Charge Transfer in Endohedral Complexes of the C60, C70, C76, C78, C82, and C84 Clusters. J. Chem. Phys. 1993, 98, 8734–8741. [Google Scholar] [CrossRef]
- Cioslowski, J.; Nanayakkara, A. Endohedral Fullerites: A New Class of Ferroelectric Materials. Phys. Rev. Lett. 1992, 69, 2871–2873. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.; Cuo, T.; Jin, C.; Haufler, R.E.; Chibante, L.P.F.; Fure, J.; Wang, L.; Alford, J.M.; Smalley, R.E. Fullerenes with Metals Inside. J. Phys. Chem. 1991, 95, 7564–7568. [Google Scholar] [CrossRef]
- Kikuchi, K.; Suzuki, S.; Nakao, Y.; Nakahara, N.; Wakabayashi, T.; Shiromaru, H.; Saito, K.; Ikemoto, I.; Achiba, Y. Isolation and Characterization of the Metallofullerene LaC82. Chem. Phys. Lett. 1993, 216, 67–71. [Google Scholar] [CrossRef]
- Saunders, M.; Jimenez-Vazquez, H.A.; Cross, R.J.; Mroczkowski, S.; Anet, F.A.L.; Freedberg, D.I. Probing the Interior of Fullerenes by 3He NMR Spectroscopy of Endohedral 3He@C60 and 3He@C70. Nature 1994, 367, 256–258. [Google Scholar] [CrossRef]
- Saunders, M.; Jimenez-Vazquez, H.A.; Cross, R.J.; Poreda, R.J. Stable Compounds of Helium and Neon: He@C60 and Ne@C60. Science 1993, 259, 1428–1430. [Google Scholar] [CrossRef]
- Saunders, M.; Jimenez-Vazquez, H.A.; Cross, R.J.; Mroczkowski, S.; Gross, M.L.; Giblin, D.E.; Poreda, R.J. Incorporation of Helium, Neon, Argon, Krypton, and Xenon into Fullerenes using High Pressure. J. Am. Chem. Soc. 1994, 116, 2193–2194. [Google Scholar] [CrossRef]
- Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Cioslowski, J. Endohedral Magnetic Shielding in the C60 Cluster. J. Am. Chem. Soc. 1994, 116, 3619–3620. [Google Scholar] [CrossRef]
- Elser, V.; Haddon, R.C. Icosahedral C60: An aromatic molecule with a vanishingly small ring current magnetic susceptibility. Nature 1987, 325, 792–794. [Google Scholar] [CrossRef]
- Cioslowski, J. Endohedral magnetic shielding in fullerenes. A GIAO CPHF study. Chem. Phys. Lett. 1994, 227, 361–364. [Google Scholar] [CrossRef]
- Chen, Z.; Cioslowski, J.; Rao, N.; Moncrieff, D.; Buehl, M.; Hirsch, A.; Thiel, W. Endohedral chemical shifts in higher fullerenes with 72–86 carbon atoms. Theor. Chem. Acc. 2001, 106, 364–368. [Google Scholar] [CrossRef]
- Bühl, M.; Wüllen, C.V. Computational evidence for a new C84 isomer. Chem. Phys. Lett. 1995, 247, 63–68. [Google Scholar] [CrossRef]
- Bühl, M.; Thiel, W.; Jiao, H.; Schleyer, P.v.R.; Saunders, M.; Anet, F.A.L. Helium and Lithium NMR Chemical Shifts of Endohedral Fullerene Compounds: An ab Initio Study. J. Am. Chem. Soc. 1994, 116, 6005–6006. [Google Scholar] [CrossRef]
- Bühl, M.; Patchkovskii, S.; Thiel, W. Interaction energies and NMR chemical shifts of noble gases in C60. Chem. Phys. Lett. 1997, 275, 14–18. [Google Scholar] [CrossRef]
- Cioslowski, J.; Mixon, S.T.; Edwards, W.D. Weak Bonds in the Topological Theory of Atoms in Molecules. J. Am. Chem. Soc. 1991, 113, 1083–1085. [Google Scholar] [CrossRef]
- Haaland, A.; Shorokhov, D.J.; Tverdova, N.V. Topological Analysis of Electron Densities: Is the Presence of an Atomic Interaction Line in an Equilibrium Geometry a Sufficient Condition for the Existence of a Chemical Bond? Chem. Eur. J. 2004, 10, 4416–4421. [Google Scholar] [CrossRef]
- Cerpa, E.; Krapp, A.; Vela, A.; Merino, G. The Implications of Symmetry of the External Potential on Bond Paths. Chem. Eur. J. 2008, 14, 10232–10234. [Google Scholar] [CrossRef]
- DiCamillo, B.A.; Hettich, R.L.; Guiochon, G.; Compton, R.N.; Saunders, M.; Jimenez-Vazquez, H.A.; Khong, A.; Cross, R.J. Enrichment and characterization of a noble gas fullerene: Ar@C60. J. Phys. Chem. 1996, 100, 9197–9201. [Google Scholar] [CrossRef]
- Ito, S.; Takeda, A.; Miyazaki, T.; Yokoyama, Y.; Saunders, M.; Cross, R.J.; Takagi, H.; Berthet, P.; Dragoe, N. Kr extended X-ray absorption fine structure study of endohedral Kr@C60. J. Phys. Chem. B 2004, 108, 3191–3195. [Google Scholar] [CrossRef]
- Syamala, M.S.; Cross, R.J.; Saunders, M. 129Xe NMR spectrum of xenon inside C60. J. Am. Chem. Soc. 2002, 124, 6216–6219. [Google Scholar] [CrossRef] [PubMed]
- Bloodworth, S.; Whitby, R.J. Synthesis of endohedral fullerenes by molecular surgery. Commun. Chem. 2022, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Murata, M.; Murata, Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 2005, 307, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Morinaka, Y.; Tanabe, F.; Murata, M.; Murata, Y.; Komatsu, K. Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem. Commun. 2010, 46, 4532–4534. [Google Scholar] [CrossRef]
- Kurotobi, K.; Murata, Y. A single molecule of water encapsulated in fullerene C60. Science 2011, 333, 613–616. [Google Scholar] [CrossRef]
- Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistrè, M.; Meier, B.; Kouřil, K.; Light, M.E.; Johnson, M.R.; Rols, S.; et al. The dipolar endofullerene HF@C60. Nat. Chem. 2016, 8, 953–957. [Google Scholar] [CrossRef]
- Bloodworth, S.; Sitinova, G.; Alom, S.; Vidal, S.; Bacanu, G.R.; Elliott, S.J.; Light, M.E.; Herniman, J.M.; Langley, G.J.; Levitt, M.H.; et al. First synthesis and characterization of CH4@C60. Angew. Chem. Int. Ed. 2019, 58, 5038–5043. [Google Scholar] [CrossRef]
- Bloodworth, S.; Hoffman, G.; Walkey, M.C.; Bacanu, G.R.; Herniman, J.M.; Levitt, M.H.; Whitby, R.J. Synthesis of Ar@C60 using molecular surgery. Chem. Commun. 2020, 56, 10521–10524. [Google Scholar] [CrossRef]
- Hoffman, G.; Walkey, M.C.; Gräsvik, J.; Bacanu, G.R.; Alom, S.; Bloodworth, S.; Light, M.E.; Levitt, M.H.; Whitby, R.J. A solid-state intramolecular Wittig reaction enables efficient synthesis of endofullerenes including Ne@C60, 3He@C60, and HD@C60. Angew. Chem. Int. Ed. 2021, 60, 8960–8966. [Google Scholar] [CrossRef]
- Hoffman, G.; Bacanu, G.R.; Marsden, E.S.; Walkey, M.C.; Sabba, M.; Bloodworth, S.; Tizzard, G.J.; Levitt, M.H.; Whitby, R.J. Synthesis and 83Kr NMR spectroscopy of Kr@C60. Chem. Commun. 2022, 58, 11284–11287. [Google Scholar] [CrossRef]
- Dolgonos, G.A.; Peslherbe, G.H. Encapsulation of diatomic molecules in fullerene C60: Implications for their main properties. Phys. Chem. Chem. Phys. 2014, 16, 26294–26305. [Google Scholar] [CrossRef]
- Meier, B.; Mamone, S.; Concistre, M.; Alonso-Valdesueiro, J.; Krachmalnicoff, A.; Whitby, R.J.; Levitt, M.H. Electrical detection of ortho–para conversion in fullerene-encapsulated water. Nat. Commun. 2015, 6, 8112. [Google Scholar] [CrossRef]
- Shugai, A.; Nagel, U.; Murata, Y.; Li, Y.; Mamone, S.; Krachmalnicoff, A.; Alom, S.; Whitby, R.J.; Levitt, M.H.; Rõõm, T. Infrared spectroscopy of an endohedral water in fullerene. J. Chem. Phys. 2021, 154, 124311. [Google Scholar] [CrossRef]
- Ensing, B.; Costanzo, F.; Silvestrelli, P.L. On the polarity of buckminsterfullerene with a water molecule inside. J. Phys. Chem. A 2012, 116, 12184–12188. [Google Scholar] [CrossRef]
- Aoyagi, S.; Hoshino, N.; Akutagawa, T.; Sado, Y.; Kitaura, R.; Shinohara, H.; Sugimoto, K.; Zhang, R.; Murata, Y. A cubic dipole lattice of water molecules trapped inside carbon cages. Chem. Commun. 2014, 50, 524–526. [Google Scholar] [CrossRef]
- Suzuki, H.; Nakano, M.; Hashikawa, Y.; Murata, Y. Rotational Motion and Nuclear Spin Interconversion of H2O Encapsulated in C60 Appearing in the Low-Temperature Heat Capacity. J. Phys. Chem. Lett. 2019, 10, 1306–1311. [Google Scholar] [CrossRef]
- Beduz, C.; Carravetta, M.; Chen, J.Y.-C.; Concistrè, M.; Denning, M.; Frunzi, M.; Horsewill, A.J.; Johannessen, O.G.; Lawler, R.; Lei, X.; et al. Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc. Natl. Acad. Sci. USA 2012, 109, 12894–12898. [Google Scholar] [CrossRef]
- Felker, P.M.; Vlček, V.; Hietanen, I.; FitzGerald, S.; Neuhauser, D.; Bačić, Z. Explaining the symmetry breaking observed in the endofullerenes H2@C60, HF@C60, and H2O@C60. Phys. Chem. Chem. Phys. 2017, 19, 31274–31283. [Google Scholar] [CrossRef]
- Ge, M.; Nagel, U.; Hüvonen, D.; Rõõm, T.; Mamone, S.; Levitt, M.H.; Carravetta, M.; Murata, Y.; Komatsu, K.; Chen, J.Y.-C.; et al. Interaction potential and infrared absorption of endohedral H2 in C60. J. Chem. Phys. 2011, 134, 054507. [Google Scholar] [CrossRef]
- Saroj, A.; Ramanathan, V.; Mishra, B.K.; Panda, A.N.; Sathyamurthy, N. Improved Estimates of Host-Guest Interaction Energies for Endohedral Fullerenes Containing Rare Gas Atoms, Small Molecules, and Cations. ChemPhysChem 2022, 23, e202200413. [Google Scholar] [CrossRef]
- Morinaka, Y.; Sato, S.; Wakamiya, A.; Nikawa, H.; Mizorogi, N.; Tanabe, F.; Murata, M.; Komatsu, K.; Furukawa, K.; Kato, T.; et al. X-ray observation of a helium atom and placing a nitrogen atom inside He@C60 and He@C70. Nat. Commun. 2013, 4, 1554. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, S.; Nishibori, E.; Sawa, H.; Sugimoto, K.; Takata, M.; Miyata, Y.; Kitaure, R.; Shinohara, H.; Okada, H.; Sakai, T.; et al. A layered ionic crystal of polar Li@C60 superatoms. Nat. Chem. 2010, 2, 678–683. [Google Scholar] [CrossRef]
- Matsuo, Y.; Okada, H.; Ueno, H. Endohedral Lithium-Containing Fullerenes Preparation, Derivatization, and Application; Springer: Singapore, 2017. [Google Scholar]
- Okada, H.; Komuro, T.; Sakai, T.; Matsuo, Y.; Ono, Y.; Omote, K.; Yokoo, K.; Kawachi, K.; Kasama, Y.; Ono, S.; et al. Preparation of Endohedral Fullerene Containing Lithium (Li@C60) and Isolation as Pure Hexafluorophosphate Salt ([Li+@C60][PF6-]). RSC Adv. 2012, 2, 10624–10631. [Google Scholar] [CrossRef]
- Aoyagi, S.; Sado, Y.; Nishibori, E.; Sawa, H.; Okada, H.; Tobita, H.; Kasama, Y.; Kitaura, R.; Shinohara, H. Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angew. Chem. Int. Ed. 2012, 51, 3377–3381. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, S.; Tokumitu, A.; Sugimoto, K.; Okada, H.; Hoshino, N.; Akutagawa, T. Tunneling motion and antiferroelectric ordering of lithium cations trapped inside carbon cages. J. Phys. Soc. Jpn. 2016, 85, 094605. [Google Scholar] [CrossRef]
- Bai, H.; Gao, H.; Feng, W.; Zhao, Y.; Wu, Y. Interaction in Li@Fullerenes and Li+@Fullerenes: First Principle Insights to Li-Based Endohedral Fullerenes. Nanomaterials 2019, 9, 630. [Google Scholar] [CrossRef]
- Noguchi, Y.; Sugino, O.; Okada, H.; Matsuo, Y. First-principles investigation on structural and optical properties of M+@C60 (Where M = H, Li, Na, and K). J. Phys. Chem. C 2013, 117, 15362–15368. [Google Scholar] [CrossRef]
- Koner, A.; Kumar, C.; Sathyamurthy, N. Heat capacity of endohedral fullerenes Rg@C60 (Rg = He, Ne, Ar and Kr). Mol. Phys. 2018, 116, 2728–2735. [Google Scholar] [CrossRef]
- Pyykkö, P.; Wang, C.; Straka, M.; Vaara, J. A London-type formula for the dispersion interactions of endohedral A@B systems. Phys. Chem. Chem. Phys. 2007, 9, 2954–2958. [Google Scholar] [CrossRef]
- Proft, F.D.; Alsenoy, C.V.; Geerlings, P. Ab Initio Study of the Endohedral Complexes of C60, Si60, and Ge60 with Monoatomic Ions: Influence of Electrostatic Effects and Hardness. J. Phys. Chem. 1996, 100, 7440–7448. [Google Scholar] [CrossRef]
- Shameema, O.; Ramachandran, C.N.; Sathyamurthy, N. Blue Shift in X-H Stretching Frequency of Molecules Due to Confinement. J. Phys. Chem. A 2006, 110, 2–4. [Google Scholar] [CrossRef]
- Wang, C.; Straka, M.; Pyykkö, P. Formulations of the closed-shell interactions in endohedral systems. Phys. Chem. Chem. Phys. 2010, 12, 6187–6203. [Google Scholar] [CrossRef]
- Jaworski, A.; Hedin, N. Local energy decomposition analysis and molecular properties of encapsulated methane in fullerene (CH4@C60). Phys. Chem. Chem. Phys. 2021, 23, 21554–21567. [Google Scholar] [CrossRef]
- Darzynkiewicz, R.B.; Scuseria, G.E. Noble Gas Endohedral Complexes of C60 Buckminsterfullerene. J. Phys. Chem. A 1997, 101, 7141–7144. [Google Scholar] [CrossRef]
- Oliveira, O.V.d.; da Silva Gonçalves, A. Quantum Chemical Studies of Endofullerenes (M@C60) Where M = H2O, Li+, Na+, K+, Be2+, Mg2+, and Ca2+. Comput. Chem. 2014, 2, 51–58. [Google Scholar] [CrossRef]
- Hu, Y.H.; Ruckenstein, E. Endohedral Chemistry of C60-Based Fullerene Cages. J. Am. Chem. Soc. 2005, 127, 11277–11282. [Google Scholar] [CrossRef]
- Slanina, Z.; Pulay, P.; Nagase, S. H2, Ne, and N2 Energies of Encapsulation into C60 Evaluated with the MPWB1K Functional. J. Chem. Theory Comput. 2006, 2, 782–785. [Google Scholar] [CrossRef]
- Kalugina, Y.N.; Roy, P.-N. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties. J. Chem. Phys. 2017, 147, 244303. [Google Scholar] [CrossRef]
- Kruse, H.; Grimme, S. Accurate Quantum Chemical Description of Non-Covalent Interactions in Hydrogen Filled Endohedral Fullerene Complexes. J. Phys. Chem. C 2009, 113, 17006–17010. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Zhang, J.; Wang, Q.; Wu, Y.; Bai, H. Understanding endohedral behaviors of ten-electron atomic and cluster system inside C60 from first-principles. Phys. Low-Dimens. Syst. Nanostructures 2021, 127, 114532. [Google Scholar] [CrossRef]
- Remya, P.R.; Mishra, B.K.; Ramachandran, C.N.; Sathyamurthy, N. Effect of confinement on structure, energy and vibrational spectra of (HF)n, n=1–4. Chem. Phys. Lett. 2019, 733, 136670. [Google Scholar] [CrossRef]
- See for example: Delaney, P.; Greer, J.C. C60 as a Faraday cage. Appl. Phys. Lett. 2004, 84, 431–433. [Google Scholar] [CrossRef]
- Burger, S.; Lipparini, F.; Gauss, J.; Stopkowic, S. NMR chemical shift computations at second-order Møller–Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals. J. Chem. Phys. 2021, 155, 074105. [Google Scholar] [CrossRef] [PubMed]
- Cioslowski, J.; Rao, N.; Pernal, K.; Moncrieff, D. Endohedral motions inside capped single-walled carbon nanotubes. J. Chem. Phys. 2003, 118, 4456–4462. [Google Scholar] [CrossRef]
GIAO-CPHF Basis Set | Geometry | The Host | |
---|---|---|---|
C | C | ||
6-31G&DZP [55,57] | MNDO | −6.7 | −17.3 |
HF/DZP | −8.7 | ||
3-21G [58] | B3LYP/6-31G* | −8.0 | −23.1 |
DZ&TZP [59,60] | MNDO | −11.7 | −23.0 |
HF/3-21G | −12.9 | −24.0 | |
BP86/3-21G | −11.0 | −25.2 | |
DZP&TZP [58,59] | BP86/3-21G | −11.1 | −28.4 |
BP86/TZP | −10.3 | −29.2 | |
MP2/TZP | −8.5 | −31.1 | |
6-31G** [61] | MP2/TZP | −7.1 |
Level of Theory | X | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
He | Ne | Ar | Li | Na | H | HF | LiH | LiF | N | |
HF/4-31G&DZP [41,43,45] | 0.4 | −7.5 | 1.2 | −2.0 | −2.4 | −14.9 | 9.6 | |||
HF/DZP [45] | 0.3 | 0.5 | 5.2 | −11.6 | −4.2 | |||||
HF/6-31G* [95] | 3.2 | 1.7 | 9.3 | |||||||
HF/def2-TZVPP [96] | 0.6 | 1.5 | 9.2 | |||||||
HF/6-31G** [61] | 1.0 | 1.4 | 8.8 | |||||||
HF/3-21G [97] | −9.4 | −8.8 | ||||||||
HF/6-31G [98] | −2.5 | |||||||||
B3LYP/6-31G** [101,102] | 1.4 | 0.9 | 8.4 | −1.0 | −0.9 | |||||
B3LYP/6-311G* [103] | −9.8 | |||||||||
B3LYP/6-311G(2d,2p) [104] | −3.0 | 1.3 | 7.9 | |||||||
wB97XD/6-31G* [95] | −1.7 | −4.1 | −8.6 | |||||||
M06-2X/Def2-TZVP [107] | −5.1 | −16.3 | −12.5 | |||||||
M06-2X/6-31G** [93] | −25.8 | |||||||||
MN15/cc-pVTZ [86] | −4.4 | −9.0 | −16.4 | −28.6 | −19.7 | −10.7 | −16.6 | |||
MN15/aug-cc-pVDZ [108] | −14.9 | |||||||||
MPWB1K/6-311G(2d,2p) [104] | −3.8 | −7.2 | −9.5 | |||||||
PBE-D/aug-def2-TZVPP [106] | −5.6 | |||||||||
B2PLYP-D/QZVP [106] | −6.6 | |||||||||
MP2/6-31G [98] | −7.5 | |||||||||
MP2/6-31G** [61,104] | −0.3 | −1.9 | −2.5 | −2.4 | −8.9 | |||||
MP2/6-31G** [101] | 0.6 | 1.3 | 9.2 | |||||||
MP2/6-311G(2d,2p) [104] | −6.1 | −15.5 | ||||||||
MP2/(d,p)-6-311G** [104] | −6.9 | |||||||||
MP2/TZP&cc-pVTZ [61] | −2.0 | |||||||||
MP2/cc-pVTZ [77] | −6.4 | −8.6 | −24.3 | −22.8 | −16.8 | |||||
MP2/aug-def2-TZVPP [106] | −9.5 | |||||||||
RI-MP2/def2-TZVPP [96,99] | −1.8 | −3.4 | −17.0 | |||||||
RI-MP2/def2-QZVPP [99] | −2.3 | −4.5 | −18.6 | |||||||
RI-MP2/CBS [99] | −2.6 | −5.4 | −19.5 | −11.8 | −50.6 | |||||
SCS-MP2/6-311G(2d,2p) [104] | −4.2 | −8.6 | ||||||||
SCS-MP2/aug-def2-TZVPP [106] | −7.4 | |||||||||
RI-SCS-MP2/def2-TZVPP [99] | −1.2 | −2.2 | −11.0 | |||||||
RI-SCS-MP2/def2-QZVPP [99] | −1.6 | −3.1 | −12.2 | |||||||
RI-SCS-MP2/CBS [99] | −1.9 | −3.8 | −12.9 | −8.4 | −33.6 | |||||
DF-LMP2/cc-pVTZ [105] | −6.9 | |||||||||
DLPNO-CCSD(T)/def2-TZVP [86] | −1.4 | −3.1 | −12.2 | −22.2 | −14.6 | −5.9 | −10.4 | |||
DLPNO-CCSD(T)/cc-pV(T&Q)Z [100] | −5.0 | −6.6 | −12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cioslowski, J. Electronic Structure Calculations on Endohedral Complexes of Fullerenes: Reminiscences and Prospects. Molecules 2023, 28, 1384. https://doi.org/10.3390/molecules28031384
Cioslowski J. Electronic Structure Calculations on Endohedral Complexes of Fullerenes: Reminiscences and Prospects. Molecules. 2023; 28(3):1384. https://doi.org/10.3390/molecules28031384
Chicago/Turabian StyleCioslowski, Jerzy. 2023. "Electronic Structure Calculations on Endohedral Complexes of Fullerenes: Reminiscences and Prospects" Molecules 28, no. 3: 1384. https://doi.org/10.3390/molecules28031384
APA StyleCioslowski, J. (2023). Electronic Structure Calculations on Endohedral Complexes of Fullerenes: Reminiscences and Prospects. Molecules, 28(3), 1384. https://doi.org/10.3390/molecules28031384