Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enantioselective GC–FID Analysis of Citrus spp. Leaf EOs
2.2. eGC×GC–FID Analysis of Citrus spp. Leaf EOs
2.3. Enantiomeric Distribution of Selected Chiral Monoterpenes in Citrus spp. Leaf EOs
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Citrus Leaf EO Samples
3.3. eGC–FID System
3.4. eGC×GC–FID System
3.5. Data Handling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Swingle, W.T.; Reece, P.C. The Botany of Citrus and Its Wild Relatives. In The Citrus Industry; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California Press: Berkeley, CA, USA, 1967; pp. 190–430. [Google Scholar]
- Tanaka, T. Fundamental Discussion of Citrus Classification. Stud. Citrol. 1977, 14, 1–6. [Google Scholar]
- Talon, M.; Wu, G.A.; Gmitter, F.G., Jr.; Rokhsar, D.S. The Origin of Citrus. In The Genus Citrus; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Duxford, UK, 2020; pp. 9–32. ISBN 012812217X. [Google Scholar]
- United States Department of Agriculture. Citrus: World Markets and Trade; United States Department of Agriculture: Washinton, DC, USA, 2022. [Google Scholar]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Amparo Blázquez, M.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Palazzolo, E.; Laudicina, V.A.; Germanà, M.A. Current and Potential Use of Citrus Essential Oils. Curr. Org. Chem. 2013, 17, 3042–3049. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Biological Activities and Safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [PubMed]
- Bora, H.; Kamle, M.; Mahato, D.K.; Tiwari, P.; Kumar, P. Citrus Essential Oils (CEOs) and Their Applications in Food: An Overview. Plants 2020, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J. Antifungal Activity of Lemon (Citrus Lemon L.), Mandarin (Citrus Reticulata L.), Grapefruit (Citrus Paradisi L.) and Orange (Citrus Sinensis L.) Essential Oils. Food Control 2008, 19, 1130–1138. [Google Scholar] [CrossRef]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus Medica L. Var. Sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef]
- Hosni, K.; Zahed, N.; Chrif, R.; Abid, I.; Medfei, W.; Kallel, M.; Brahim, N.B.; Sebei, H. Composition of Peel Essential Oils from Four Selected Tunisian Citrus Species: Evidence for the Genotypic Influence. Food Chem. 2010, 123, 1098–1104. [Google Scholar] [CrossRef]
- Vekiari, S.A.; Protopapadakis, E.E.; Papadopoulou, P.; Papanicolaou, D.; Panou, C.; Vamvakias, M. Composition and Seasonal Variation of the Essential Oil from Leaves and Peel of a Cretan Lemon Variety. J. Agric. Food Chem. 2002, 50, 147–153. [Google Scholar] [CrossRef]
- Frizzo, C.D.; Lorenzo, D.; Dellacassa, E. Composition and Seasonal Variation of the Essential Oils from Two Mandarin Cultivars of Southern Brazil. J. Agric. Food Chem. 2004, 52, 3036–3041. [Google Scholar] [CrossRef]
- Paoli, M.; de Rocca Serra, D.; Tomi, F.; Luro, F.; Bighelli, A. Chemical Composition of the Leaf Essential Oil of Grapefruits (Citrus Paradisi Macf.) in Relation with the Genetic Origin. J. Essent. Oil Res. 2016, 28, 265–271. [Google Scholar] [CrossRef]
- da Camara, C.A.G.; Akhtar, Y.; Isman, M.B.; Seffrin, R.C.; Born, F.S. Repellent Activity of Essential Oils from Two Species of Citrus against Tetranychus Urticae in the Laboratory and Greenhouse. Crop Prot. 2015, 74, 110–115. [Google Scholar] [CrossRef]
- Efendi, D.; Budiarto, R.; Poerwanto, R.; Santosa, E.; Agusta, A. Relationship among Agroclimatic Variables, Soil and Leaves Nutrient Status with the Yield and Main Composition of Kaffir Lime (Citrus Hystrix Dc) Leaves Essential Oil. Metabolites 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhao, J.; Ali, Z.; Avonto, C.; Khan, I.A. A Novel Approach for Lavender Essential Oil Authentication and Quality Assessment. J. Pharm. Biomed. Anal. 2021, 199, 114050. [Google Scholar] [CrossRef] [PubMed]
- Ojha, P.K.; Poudel, D.K.; Rokaya, A.; Satyal, R.; Setzer, W.N.; Satyal, P. Comparison of Volatile Constituents Present in Commercial and Lab-Distilled Frankincense (Boswellia Carteri) Essential Oils for Authentication. Plants 2022, 11, 2134. [Google Scholar] [CrossRef]
- Cuchet, A.; Jame, P.; Anchisi, A.; Schiets, F.; Oberlin, C.; Lefèvre, J.C.; Carénini, E.; Casabianca, H. Authentication of the Naturalness of Wintergreen (Gaultheria Genus) Essential Oils by Gas Chromatography, Isotope Ratio Mass Spectrometry and Radiocarbon Assessment. Ind. Crops Prod. 2019, 142, 111873. [Google Scholar] [CrossRef]
- Juliani, H.R.; Kapteyn, J.; Jones, D.; Koroch, A.R.; Wang, M.; Charles, D.; Simon, J.E. Application of Near-Infrared Spectroscopy in Quality Control and Determination of Adulteration of African Essential Oils. Phytochem. Anal. 2006, 17, 121–128. [Google Scholar] [CrossRef]
- Schipilliti, L.; Dugo, G.; Santi, L.; Dugo, P.; Mondello, L. Authentication of Bergamot Essential Oil by Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometer (Gc-c-Irms). J. Essent. Oil Res. 2011, 23, 60–71. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Satyal, P.; Setzer, W.N. Authentication of Citrus Spp. Cold-Pressed Essential Oils by Their Oxygenated Heterocyclic Components. Molecules 2022, 27, 6277. [Google Scholar] [CrossRef]
- Masson, J.; Liberto, E.; Beolor, J.C.; Brevard, H.; Bicchi, C.; Rubiolo, P. Oxygenated Heterocyclic Compounds to Differentiate Citrus Spp. Essential Oils through Metabolomic Strategies. Food Chem. 2016, 206, 223–233. [Google Scholar] [CrossRef]
- Bounaas, K.; Bouzidi, N.; Daghbouche, Y.; Garrigues, S.; de la Guardia, M.; El Hattab, M. Essential Oil Counterfeit Identification through Middle Infrared Spectroscopy. Microchem. J. 2018, 139, 347–356. [Google Scholar] [CrossRef]
- Jahangeer, M.; Fatima, R.; Ashiq, M.; Basharat, A.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Therapeutic and Biomedical Potentialities of Terpenoids-A Review. J. Pure Appl. Microbiol. 2021, 15, 471–483. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. Int. J. Mol. Sci. 2021, 22, 5710. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128020999. [Google Scholar]
- Luxová, A.; Urbanová, K.; Valterová, I.; Terzo, M.; Borg-Karlson, A.K. Absolute Configuration of Chiral Terpenes in Marking Pheromones of Bumblebees and Cuckoo Bumblebees. Chirality 2004, 16, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Kamaitytė-Bukelskienė, L.; Ložienė, K.; Labokas, J. Dynamics of Isomeric and Enantiomeric Fractions of Pinene in Essential Oil of Picea Abies Annual Needles during Growing Season. Molecules 2021, 26, 2138. [Google Scholar] [CrossRef]
- Chanotiya, C.S.; Pragadheesh, V.S.; Yadav, A.; Gupta, P.; Lal, R.K. Cyclodextrin-Based Gas Chromatography and GC/MS Methods for Determination of Chiral Pair Constituents in Mint Essential Oils. J. Essent. Oil Res. 2021, 33, 23–31. [Google Scholar] [CrossRef]
- Chanotiya, C.S.; Yadav, A. Enantioselective Capillary Gas Chromatography-Flame. Nat. Prod. Commun. 2009, 4, 7–10. [Google Scholar]
- Wong, Y.F.; Davies, N.W.; Chin, S.T.; Larkman, T.; Marriott, P.J. Enantiomeric Distribution of Selected Terpenes for Authenticity Assessment of Australian Melaleuca Alternifolia Oil. Ind. Crops Prod. 2015, 67, 475–483. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, X.; Armstrong, D.W. Ionic Cyclodextrins in Ionic Liquid Matrices as Chiral Stationary Phases for Gas Chromatography. J. Chromatogr. A 2010, 1217, 5261–5273. [Google Scholar] [CrossRef]
- Schurig, V. Use of Derivatized Cyclodextrins as Chiral Selectors for the Separation of Enantiomers by Gas Chromatography. Ann. Pharm. Fr. 2010, 68, 82–98. [Google Scholar] [CrossRef]
- Bicchi, C.; Cagliero, C.; Liberto, E.; Sgorbini, B.; Martina, K.; Cravotto, G.; Rubiolo, P. New Asymmetrical Per-Substituted Cyclodextrins (2-O-Methyl-3-O-Ethyl- and 2-O-Ethyl-3-O-Methyl-6-O-t-Butyldimethylsilyl-β-Derivatives) as Chiral Selectors for Enantioselective Gas Chromatography in the Flavour and Fragrance Field. J. Chromatogr. A 2010, 1217, 1106–1113. [Google Scholar] [CrossRef]
- König, W.A.; Lutz, S.; Colberg, C.; Schmidt, N.; Wenz, G.; von der Bey, E.; Mosandl, A.; Günther, C.; Kustermann, A. Cyclodextrins as Chiral Stationary Phases in Capillary Gas Chromatography. Part III: Hexakis(3-O-acetyl-2,6-di-O-pentyl)-α-cyclodextrin. J. High Resolut. Chromatogr. 1988, 11, 621–625. [Google Scholar] [CrossRef]
- Fouad, H.A.; da Camara, C.A.G. Chemical Composition and Bioactivity of Peel Oils from Citrus Aurantiifolia and Citrus Reticulata and Enantiomers of Their Major Constituent against Sitophilus Zeamais (Coleoptera: Curculionidae). J. Stored Prod. Res. 2017, 73, 30–36. [Google Scholar] [CrossRef]
- Schipilliti, L.; Dugo, P.; Bonaccorsi, I.; Mondello, L. Authenticity Control on Lemon Essential Oils Employing Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS). Food Chem. 2012, 131, 1523–1530. [Google Scholar] [CrossRef]
- de Geus, H.-J.; Wester, P.G.; de Boer, J.; Brinkman, U.A.T. Enantiomer Fractions Instead of Enantiomer Ratios. Chemosphere 2000, 41, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Krupcik, J.; Gorovenko, R.; Spanik, I.; Armstrong, D.W.; Sandra, P. Enantioselective Comprehensive Two-dimensional Gas Chromatography of Lavender Essential Oil. J. Sep. Sci. 2016, 39, 4667–4876. [Google Scholar] [CrossRef]
- Shellie, R.; Marriott, P.J. Comprehensive Two-Dimensional Gas Chromatography with Fast Enantioseparation. Anal. Chem. 2002, 74, 5426–5430. [Google Scholar] [CrossRef]
- Cuchet, A.; Anchisi, A.; Schiets, F.; Clément, Y.; Lantéri, P.; Bonnefoy, C.; Jame, P.; Carénini, E.; Casabianca, H. Determination of Enantiomeric and Stable Isotope Ratio Fingerprints of Active Secondary Metabolites in Neroli (Citrus Aurantium L.) Essential Oils for Authentication by Multidimensional Gas Chromatography and GC-C/P-IRMS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1185, 123003. [Google Scholar] [CrossRef]
- Salvo, A.; Costa, R.; Albergamo, A.; Arrigo, S.; Rotondo, A.; La Torre, G.L.; Mangano, V.; Dugo, G. An In-Depth Study of the Volatile Variability of Chinotto (Citrus Myrtifolia Raf.) Induced by the Extraction Procedure. Eur. Food Res. Technol. 2019, 245, 873–883. [Google Scholar] [CrossRef]
- Mondello, L.; Casilli, A.; Tranchida, P.Q.; Dugo, P.; Dugo, G. Comprehensive Two-dimensional GC for the Analysis of Citrus Essential Oils. Flavour Fragr. J. 2005, 20, 136–140. [Google Scholar] [CrossRef]
- Al Othman, H.I.; Alkatib, H.H.; Zaid, A.; Sasidharan, S.; Rahiman, S.S.F.; Lee, T.P.; Dimitrovski, G.; Althakafy, J.T.; Wong, Y.F. Phytochemical Composition, Antioxidant, and Antiproliferative Activities of Citrus hystrix, Citrus limon, Citrus pyriformis, and Citrus microcarpa Leaf Essential Oils against Human Cervical Cancer Cell Line. Plants 2022, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Khummueng, W.; Harynuk, J.; Marriott, P.J. Modulation Ratio in Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem. 2006, 78, 4578–4587. [Google Scholar] [CrossRef] [PubMed]
Chiral Monoterpenes | Antipode | Enantiomeric Composition (%) of Citrus spp. Leaf EO | |||
---|---|---|---|---|---|
C. limon | C. hystrix | C. microcarpa | C. pyriformis | ||
α-pinene | (−) | 55.5 1 (55.9) 2 | 8.9 (9.4) | 92.1 (92.2) | 23.5 (24.2) |
(+) | 44.5 (44.1) | 91.1 (90.6) | 7.9 (7.8) | 76.5 (75.8) | |
limonene | (−) | 1.6 (1.3) | 39.7 (31.5) | 38.9 (35.1) | 1.1 (0.4) |
(+) | 98.4 (98.7) | 60.3 (68.5) | 61.1 (64.9) | 98.9 (99.6) | |
citronellal | (−) | 34.6 (36.0) | 100.0 (100.0) | n.d. 3 (n.d.) | 9.0 (8.7) |
(+) | 65.4 (64.0) | 0.0 (0.0) | n.d. 3 (n.d.) | 91.0 (91.3) | |
linalool | (−) | 52.5 (53.0) | 67.2 (67.1) | 4.1 (3.8) | 91.9 (92.1) |
(+) | 47.5 (47.0) | 32.8 (32.9) | 95.9 (96.2) | 8.1 (7.9) | |
terpinen-4-ol | (+) | 53.3 (41.5) | 70.4 (73.1) | 33.6 (30.4) | 38.9 (23.6) |
(−) | 46.7 (58.5) | 29.6 (26.9) | 66.4 (69.6) | 61.1 (n.a. 4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, H.I.A.; Zaid, A.; Cacciola, F.; Zhao, Z.; Guan, X.; Althakafy, J.T.; Wong, Y.F. Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils. Molecules 2023, 28, 1381. https://doi.org/10.3390/molecules28031381
Othman HIA, Zaid A, Cacciola F, Zhao Z, Guan X, Althakafy JT, Wong YF. Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils. Molecules. 2023; 28(3):1381. https://doi.org/10.3390/molecules28031381
Chicago/Turabian StyleOthman, Haneen Ibrahim Al, Atiqah Zaid, Francesco Cacciola, Zhijun Zhao, Xiaosheng Guan, Jalal T. Althakafy, and Yong Foo Wong. 2023. "Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils" Molecules 28, no. 3: 1381. https://doi.org/10.3390/molecules28031381
APA StyleOthman, H. I. A., Zaid, A., Cacciola, F., Zhao, Z., Guan, X., Althakafy, J. T., & Wong, Y. F. (2023). Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils. Molecules, 28(3), 1381. https://doi.org/10.3390/molecules28031381