Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy
Abstract
:1. Introduction
2. Results
2.1. Chemical Volatile Composition
2.2. Chemical Composition of the Hydroalcoholic Solution (EAP) after Derivatization
2.3. MICs and MBCs Determination
2.4. The Kinetics of Inactivation after EAP Solution Exposition
2.5. Influence of EAP Solution on Cellular Motility
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Materials
4.3. SPME Sampling
4.4. GC-MS Analysis
4.5. GC-MS Analysis of the Solution after Derivatization
4.6. Bacterial Strains and Culture Conditions
4.7. Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentrations (MBCs) Assay
4.8. Time Kill Kinetics (TKK) Assay
4.9. Cellular Motility in Presence of EAP Treatment
4.10. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Bocedi, A.; Campo, M.; Marrone, G.; Di Lauro, M.; Cattani, G.; Di Daniele, N.; Romani, A. A Pilot Study of a Natural Food Supplement as New Possible Therapeutic Approach in Chronic Kidney Disease Patients. Pharmaceuticals 2020, 13, 148. [Google Scholar] [CrossRef]
- Rondanelli, M.; Riva, A.; Morazzoni, P.; Allegrini, P.; Faliva, M.A.; Naso, M.; Miccono, A.; Peroni, G.; Degli Agosti, I.; Perna, S. The effect and safety of highly standardized Ginger (Zingiber officinale) and Echinacea (Echinacea angustifolia) extract supplementation on inflammation and chronic pain in NSAIDs poor responders. A pilot study in subjects with knee arthrosis. Nat. Prod. Res. 2017, 31, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; et al. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int. J. Mol. Sci. 2019, 20, 4101. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Ann. Agric. Sci. 2020, 65, 209–217. [Google Scholar] [CrossRef]
- Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J. Biol. Sci. 2022, 29, 1936–1946. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Pfeiffer, P.; Juarez, J.; Hernandez, J.; Taboada, P.; Virués, C.; Valencia, D.; Velazquez, C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J. Drug Deliv. Sci. Technol. 2021, 65, 1773–2247. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality—A review. Trends Food Sci. Technol. 2019, 83, 53–62. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; Del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Cichello, S.A.; Yao, Q.; He, X.Q. Proliferative activity of a blend of Echinacea angustifolia and Echinacea purpurea root extracts in human vein epithelial, HeLa, and QBC-939 cell lines, but not in Beas-2b cell lines. J. Tradit. Complement. Med. 2015, 6, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, S.S.; Christova-Bagdassarian, V.L.; Atanassova, M.S. Comparative evaluation of the polyphenol composition and antioxidant capacity of propolis and Echinacea purpurea. J. Exp. Integr. Med. 2014, 4, 51–56. [Google Scholar] [CrossRef]
- Liu, Y.C.; Zeng, J.G.; Chen, B.; Yao, S.Z. Investigation of phenolic constituents in Echinacea purpurea grown in China. Planta Med. 2007, 73, 1600–1605. [Google Scholar] [CrossRef]
- Erenler, R.; Telci, I.; Ulutas, M.; Demirtas, I.; Gul, F.; Elmastas, M.; Kayir, O. Chemical Constituents, Quantitative Analysis and Antioxidant Activities of Echinacea purpurea (L.) Moench and Echinacea pallida (Nutt.) Nutt. J. Food Biochem. 2015, 39, 622–630. [Google Scholar] [CrossRef]
- Binns, S.E.; Arnason, J.T.; Baum, B.R. Phytochemical variation within populations of Echinacea angustifolia (Asteraceae). Biochem. Syst. Ecol. 2002, 30, 837–854. [Google Scholar] [CrossRef]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Complement. Alternat. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Baoudourova-Krasteva, G.; Paopov, S.; Sforcin, J.M.; Cunha Funari, S.R. Seasonal variations of the chemical composition of Brazilian propolis. Apidologie 1998, 29, 361–367. [Google Scholar] [CrossRef]
- Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical composition of propolis from Canada, its antiradical activity and plant origin. Nat. Prod. Res. 2006, 6, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef]
- Salonen, A.; Saarnio, S.; Julkunen-Tiitto, R. Phenolic comPounds of Propolis from the boreal coniferous zone. J. Apic. Sci. 2012, 56, 13–22. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.G. Chemical Composition of European Propolis: Expected and Unexpected Results. Z. Naturforsch. 2002, 57, 530–533. [Google Scholar] [CrossRef]
- Magnavacca, A.; Sangiovanni, E.; Racagni, G.; Dell’Agli, M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med. Res. Rev. 2022, 42, 897–945. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Burlou-Nagy, C.; Bănică, F.; Jurca, T.; Vicaș, L.G.; Marian, E.; Muresan, M.E.; Bácskay, I.; Kiss, R.; Fehér, P.; Pallag, A. Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review. Plants 2022, 11, 1244. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Han, Y.; Chen, W.; Sun, Z. Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. J. Food Saf. 2021, 41, e12918. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Rao, S.; Sun, J.; Chaoyang, M.; Li, J. P-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 2012, 25, 550–554. [Google Scholar] [CrossRef]
- Park, M.Y.; Kang, D.Y. Antibacterial Activity of Caffeic Acid Combined with Ultraviolet-A Light against Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. Appl. Environ. Microbiol. 2021, 87, e0063121. [Google Scholar] [CrossRef]
- Hol, F.; Hubert, B.; Dekker, C.; Keymer, J.E. Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient. ISME J. 2016, 10, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Grobas, I.; Polin, M.; Asally, M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 2021, 10, e62632. [Google Scholar] [CrossRef] [PubMed]
- CLSI, Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth Informational Supplement (M100-S25); Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Rossi, C.; Chaves-López, C.; Serio, A.; Anniballi, F.; Valbonetti, L.; Paparella, A. Effect of Origanum vulgare essential oil on biofilm formation and motility capacity of Pseudomonas fluorescens strains isolated from discoloured Mozzarella cheese. J. Appl. Microbiol. 2018, 124, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
N° | COMPONENT 1 | LRI 2 | LRI 3 | EAP |
---|---|---|---|---|
1 | α-pinene | 951 | 945 | 9.1 ± 0.05 |
2 | p-cymene | 1012 | 1016 | 19.0 ± 0.15 |
3 | limonene | 1018 | 1023 | 42.4 ± 0.21 |
4 | α-farnesene | 1487 | 1484 | 5.8 |
5 | cis-muurola 3,5-diene | 1451 | 1447 | 5.9 |
6 | δ-cadinene | 1530 | * | 17.8 ± 0.12 |
SUM | 100.0 | |||
Monoterpenes | 70.5 | |||
Sesquiterpenes | 29.5 |
N° | COMPONENT | EAP (%) 1 |
---|---|---|
ORGANIC ACIDS | ||
1 | lactic acid | 0.3 |
PHENOLIC ACIDS | ||
2 | caffeic acid | 4.6 |
3 | vanillic acid | 0.4 |
4 | salicylic acid | 0.3 |
5 | cinnamic acid | 1.0 |
6 | 3-hydroxycinnamic acid | 4.8 |
7 | 3,4-dimethoxycinnamic acid | 1.6 |
8 | p-coumaric acid | 39.8 |
9 | ferulic acid | 1.4 |
10 | isoferulic acid | 15.7 |
FATTY ACIDS | ||
11 | lauric acid | 0.6 |
12 | palmitic acid | 0.8 |
13 | α-linolenic acid | 0.3 |
SUGARS | ||
14 | D-glucose | 1.8 |
15 | D-mannose | 2.1 |
16 | D-arabofuranose | 0.1 |
17 | D-tagatofuranose | 2.0 |
18 | L-sorbofuranose | 1.1 |
19 | D-ribofuranose | 0.4 |
20 | D-fructofuranose | 5.7 |
21 | α-arabinofuranoside | 0.5 |
22 | methyl-α-D-glucofuranoside | 0.8 |
23 | D-arabinopyranose | 2.4 |
OTHERS | ||
24 | vanillin | 4.5 |
25 | benzylcinnamate | 0.7 |
MICs (µL/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 |
24 | <300 | 400 | <300 | <300 | 400 | <300 | 700 | <300 | <300 | 400 | <300 | 400 | 400 |
48 | <300 | 400 | <300 | <300 | 400 | <300 | 700 | <300 | <300 | 400 | <300 | 400 | 400 |
MBCs (µL/mL) | |||||||||||||
Time (h) | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 |
24 | <300 | 400 | <300 | <300 | 400 | <300 | 700 | <300 | <300 | 400 | <300 | 400 | 400 |
48 | <300 | 400 | <300 | <300 | 400 | <300 | 700 | <300 | <300 | 400 | <300 | 400 | 400 |
Swimming | Swarming | |||||
---|---|---|---|---|---|---|
Time (h) | Ctrl | 350 µL/mL | 400 µL/mL | Ctrl | 350 µL/mL | 400 µL/mL |
24 | 0.6 a | 4.3 b | 6.6 b | 0.5 a | 2.9 ab | 3.2 b |
48 | 0.6 a | 7.0 b | 7.9 b | 0.5 a | 7.8 b | 7.0 b |
ID Code | Strain | Origin |
---|---|---|
S1 | C. albicans 551 RM | Clinical |
S2 | E. coli ATCC 35218 | Type |
S3 | Ent. faecalis 02/02/2017 | Clinical |
S4 | Ent. faecium 02/02/2017 | Clinical |
S5 | L. monocytogenes ATCC 7644 | Type |
S6 | L. monocytogenes 641/6II | Cold smoked salmon |
S7 | P. aeruginosa ATCC 27853 | Type |
S8 | P. fluorescens ATCC 13525 | Type |
S9 | P. fluorescens 349.1 | Dairy products |
S10 | St. aureus ATCC 43300 | Type |
S11 | St. epidermidis c. oculistice 3 | Clinical |
S12 | S. Kasenyi | Fresh and minimally processed fruits and vegetables |
S13 | S. Veneziana | Fresh and minimally processed fruits and vegetables |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garzoli, S.; Maggio, F.; Vinciguerra, V.; Rossi, C.; Donadu, M.G.; Serio, A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023, 28, 1380. https://doi.org/10.3390/molecules28031380
Garzoli S, Maggio F, Vinciguerra V, Rossi C, Donadu MG, Serio A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules. 2023; 28(3):1380. https://doi.org/10.3390/molecules28031380
Chicago/Turabian StyleGarzoli, Stefania, Francesca Maggio, Vittorio Vinciguerra, Chiara Rossi, Matthew Gavino Donadu, and Annalisa Serio. 2023. "Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy" Molecules 28, no. 3: 1380. https://doi.org/10.3390/molecules28031380
APA StyleGarzoli, S., Maggio, F., Vinciguerra, V., Rossi, C., Donadu, M. G., & Serio, A. (2023). Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules, 28(3), 1380. https://doi.org/10.3390/molecules28031380