Degree of Coupling in Microwave-Heating Polar-Molecule Reactions
Abstract
:1. Introduction
2. Entropy-Balance Equation of Microwave Heating
2.1. In the Polarized System
2.2. In Polar-Molecule Reactions
3. The Heat Flow and Polarization Current of Microwave Heating in Polar-Molecule Reactions
4. The Coupling Degree of the Electromagnetic Field and Thermal Field
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soni, A.; Smith, J.; Thompson, A.; Brightwell, G. Microwave-induced thermal sterilization-A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends. Food Sci. Tech. 2020, 97, 433–442. [Google Scholar] [CrossRef]
- Priecel, P.; Lopez-Sanchez, J.A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals. ACS Sustain. Chem. Eng. 2018, 7, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, Z.; Xiouras, C.; Stefanidis, G.D.; Li, X.; Gao, X. Fundamentals and applications of microwave heating to chemicals separation processes. Renew. Sust. Energ. Rev. 2019, 114, 109316. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Zhao, K.; Wang, L.; Gao, X. Microwave-assisted synthesis of MOFs: Rational design via numerical simulation. Chem. Eng. J. 2022, 428, 131006. [Google Scholar] [CrossRef]
- Ricciardi, L.; Verboom, W.; Lange, J.P.; Huskens, J. Local overheating explains the rate enhancement of xylose dehydration under microwave heating. ACS Sustain. Chem. Eng. 2019, 7, 14273–14279. [Google Scholar] [CrossRef] [Green Version]
- Vong, P.K.; Rodger, D. Coupled electromagnetic-thermal modeling of electrical machines. IEEE Trans. Magn. 2003, 39, 1614–1617. [Google Scholar] [CrossRef]
- Alotto, P.; Bullo, M.; Guarnieri, M.; Moro, F. A coupled thermo-electromagnetic formulation based on the cell method. IEEE Trans. Magn. 2008, 44, 702–705. [Google Scholar] [CrossRef]
- Clemens, M.; Gjonaj, E.; Pinder, P.; Weiland, T. Numerical simulation of coupled transient thermal and electromagnetic fields with the finite integration method. IEEE Trans. Magn. 2000, 36, 1448–1452. [Google Scholar]
- Keyes, D.; Curfman, L.; Woodward, C. Multiphysics Simulations: Challenges and Opportunities. Int. J. High Perform. C. 2013, 27, 4–83. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, K. Frequency changes of electromagnetic waves in simple polar-molecule reactions. Eur. Phys. J.-Appl. Phys. 2017, 77, 20901. [Google Scholar] [CrossRef]
- Settari, A.; Walters, D.A. Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. SPE J. 2001, 6, 334–342. [Google Scholar] [CrossRef]
- Bergese, P. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view. Acta Mater. 2006, 54, 1843–1849. [Google Scholar] [CrossRef]
- Adu, B.; Otten, L.; Afenya, E.; Groenevelt, P. Thermodynamics of microwave (polarized) heating systems. J. Microw. Power Electromagn. Energy 1995, 30, 90–96. [Google Scholar] [CrossRef]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover: New York, NY, USA, 1984. [Google Scholar]
- Demirel, Y.; Sandler, S.I. Nonequilibrium thermodynamics in engineering and science. J. Phys. Chem. B 2004, 108, 31–43. [Google Scholar] [CrossRef]
- Rottenberg, H. Non-equilibrium thermodynamics of energy conversion in bioenergetics. BBA Bioenerg. 1979, 549, 225–253. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, S.; Tang, Z.; Liu, X.; Huang, K. Power loss density of electromagnetic waves in unimolecular reactions. RSC Adv. 2017, 7, 26546–26550. [Google Scholar] [CrossRef] [Green Version]
- Demirel, Y.; Sandler, S.I. Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. Int. J. Heat Mass Tran. 2001, 44, 2439–2451. [Google Scholar] [CrossRef] [Green Version]
- Kedem, O.; Caplan, S.R. Degree of coupling and its relation to efficiency of energy conversion. Trans. Faraday Soc. 1965, 61, 1897–1911. [Google Scholar] [CrossRef]
- Caplan, S.R. The degree of coupling and efficiency of fuel cells and membrane desalination processes. J. Phys. Chem. 1965, 69, 3801–3804. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, H.; Huang, K. Thermal analysis on the process of microwave-assisted biodiesel production. Bioresour. Technol. 2013, 133, 279–284. [Google Scholar] [CrossRef]
- Muley, P.D.; Boldor, D. Multiphysics numerical modeling of the continuous flow microwave-assisted transesterification process. J. Microw. Power Electromagn. Energy 2012, 46, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, C.; Gao, M.; Chang, C. Particle-in-cell simulation for frequency up-conversion of microwave pulse in a rapidly created plasma. Phys. Plasmas 2017, 24, 033507. [Google Scholar] [CrossRef]
- Faith, J.; Kuo, S.P.; Huang, J. Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma. Phys. Rev. E 1997, 55, 1843. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Huang, H.; Yang, L.; Huang, K. Degree of Coupling in Microwave-Heating Polar-Molecule Reactions. Molecules 2023, 28, 1364. https://doi.org/10.3390/molecules28031364
Liu X, Huang H, Yang L, Huang K. Degree of Coupling in Microwave-Heating Polar-Molecule Reactions. Molecules. 2023; 28(3):1364. https://doi.org/10.3390/molecules28031364
Chicago/Turabian StyleLiu, Xingpeng, Heping Huang, Linsen Yang, and Kama Huang. 2023. "Degree of Coupling in Microwave-Heating Polar-Molecule Reactions" Molecules 28, no. 3: 1364. https://doi.org/10.3390/molecules28031364
APA StyleLiu, X., Huang, H., Yang, L., & Huang, K. (2023). Degree of Coupling in Microwave-Heating Polar-Molecule Reactions. Molecules, 28(3), 1364. https://doi.org/10.3390/molecules28031364