Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.1.1. Preparation of Benzimidazolium Salts 2a–d
2.1.2. Preparation of Ruthenium-Carbene Complexes 3a–3d
2.2. Biological Evaluation
2.2.1. Enzymatic Inhibitory, AChE and TyrE Inhibitory Activity
2.2.2. Antioxidant Activity
2.2.3. Antimicrobial Activity
2.2.4. Antiproliferative Activity
2.2.5. Antiparasitical Activity
Antileishmanial Results
Antitoxoplasmal Results
3. Materials and Methods
3.1. Synthesis of Ligands (2a–d)
3.2. Biological Activities
3.2.1. Enzymatic Inhibitory Assay
Acetylcholinesterase Inhibitory (AChEI)
Antityrosinase Activity
3.2.2. Antioxidant Activity
DPPH Radical Scavenging Activity
ABTS Assay
β-Carotene Bleaching Assay
3.2.3. Antimicrobial Activity
3.2.4. In Vitro Anticancer Proliferation Studies
3.2.5. Antiparasitical Assessment
Leishmania Major Cell Isolation, Culture Conditions, and Assays
Toxoplasma Gondii Cell Line, Culture Conditions, and Assay
3.2.6. In Vitro Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rosenberg, B.; Vancamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances, Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Noffke, A.L.; Habtemariam, A.; Pizarro, A.M.; Sadler, P.J. Designing organometallic compounds for catalysis and therapy. Chem. Commun. 2012, 48, 5219–5246. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gust, R. Update on metal N-heterocyclic carbene complexes as potential anti-tumor metallodrugs. Coord. Chem. Rev. 2016, 329, 191–213. [Google Scholar] [CrossRef]
- Wanzlick, H.W.; Schönherr, H.J. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. 1968, 7, 141–142. [Google Scholar] [CrossRef]
- Öfele, K. 1,3-Dimethyl-4-imidazolinyliden-(2-)pentacarbonylchrom. J. Organomet. Chem. 1968, 12, 42–43. [Google Scholar] [CrossRef]
- Arduengo, A.J.; Harlow, R.L.; Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 1991, 113, 361–363. [Google Scholar] [CrossRef]
- Herrmann, W.A. N-Heterocyclic carbenes: A new concept in organometallic catalysis. Angew. Chem. Int. Ed. 2002, 41, 1290–1309. [Google Scholar] [CrossRef]
- Çetinkaya, B.; Çetinkaya, E.; Küçükbay, H.; Durmaz, R. Antimicrobial activity of carbene complexes of rhodium(I) and ruthenium(II). Arzneim.Forsch. Drug Res. 1996, 46, 821–823. [Google Scholar]
- Melaiye, A.; Simons, R.S.; Milsted, A.; Pingitore, F.; Westemiotis, C.; Tessier, C.A.; Youngs, W.J. Formation of water-soluble Pincer silver(I)-carbene complexes: A novel antimicrobial agent. J. Med. Chem. 2004, 47, 973–977. [Google Scholar] [CrossRef]
- Barnard, P.J.; Baker, M.V.; Berners-Price, S.J.; Day, D.A. Mitochondrial permeability transition induced by dinuclear gold(I)-carbene complexes: Potential new antimitochondrial antitumour agents. J. Inorg. Biochem. 2004, 98, 1642–1647. [Google Scholar] [CrossRef] [PubMed]
- Garner, M.E.; Niu, W.; Chen, X.; Chiviriga, I.; Abboud, K.A.; Tan, W.; Veige, A.S. N-Heterocyclic carbene gold(I) and silver(I) complexes bearing functional groups for bio-conjugation. Dalton Trans. 2015, 44, 1914–1923. [Google Scholar] [CrossRef] [PubMed]
- Maftei, C.V.; Fodor, E.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. N-Heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: Synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes. Eur. J. Med. Chem. 2015, 101, 431–441. [Google Scholar] [CrossRef]
- Briguglio, I.; Piras, S.; Corona, P.; Gavini, E.; Nieddu, M.; Boatto, G.; Carta, A. Benzotriazole: An overview on its versatile biological behaviour. Eur. J. Med. Chem. 2015, 97, 612–648. [Google Scholar] [CrossRef]
- He, Z.; Zhang, S.F.; Xue, J.R.; Liang, Y.; Zhang, X.; Jing, L.H.; Qin, D.B. Verstile silver(I) and nickel(II) NHC complexes bearing benzotriazole-function: Synthesis, fluorescence and catalytic properties. J. Organomet. Chem. 2016, 808, 12–22. [Google Scholar] [CrossRef]
- Monticelli, M.; Bellemin-Laponnaz, S.; Tubaro, C.; Rancan, M. Synthesis, structure and antitumoural activity of triazole functionalized NHC-metal complexes. Eur. J. Inorg. Chem. 2017, 2017, 2488–2495. [Google Scholar] [CrossRef]
- Onar, G.; Karataş, M.O.; Balcıoğlu, S.; Tok, T.T.; Gürses, C.; Kılıç-Cıkla, I.; Özdemir, N.; Ateş, B.; Alıcı, B. Benzotriazole functionalized N-heterocyclic carbene-silver(I) complexes: Synthesis, cytotoxicity, antimicrobial, DNA binding and molecular docking studies. Polyhedron 2018, 153, 31–40. [Google Scholar] [CrossRef]
- Oehninger, L.; Stefanopovlou, M.; Alborzinia, H.; Schur, J.; Ludewig, S.; Namikawa, K.; Munoz-Castro, A.; Köster, R.W.; Baumann, K.; Wolfl, S.; et al. Evaluation of arene ruthenium(II) N-heterocyclic carbene complexes as organometallics interacting with thiol and selenol containing biomolecules. Dalton Trans. 2013, 42, 1657–1666. [Google Scholar] [CrossRef]
- Ray, S.; Mohan, R.; Singh, J.K.; Samantaray, M.K.; Shaikh, M.M.; Panda, D.; Ghosh, P. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc. 2007, 129, 15042–15053. [Google Scholar] [CrossRef]
- Streciwilk, W.; Terenzi, A.; Cheng, X.; Hager, L.; Dabiri, Y.; Prochnow, P.; Bandow, J.E.; Wölfl, S.; Keppler, B.K.; Ott, I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects,cellular uptake and DNA-interaction. Eur. J. Med. Chem. 2018, 156, 148–161. [Google Scholar] [CrossRef]
- Teyssot, M.L.; Jarrousse, A.S.; Manin, M.; Chevry, A.; Roche, S.; Norre, F.; Beaudoin, C.; Morel, L.; Boyer, D.; Mahiou, R.; et al. Metal-NHC complexes: A survey of anti-cancer properties. Dalton Trans. 2009, 2009, 6894–6902. [Google Scholar] [CrossRef] [PubMed]
- Rilak, A.; Bratsos, I.; Zangrando, E.; Kljun, J.; Turel, I.; Bugarčic, Ž.D.; Alessio, E. New Water-Soluble Ruthenium(II) Terpyridine Complexes for Anticancer Activity: Synthesis, Characterization, Activation Kinetics, and Interaction with Guanine Derivatives. Inorg. Chem. 2014, 53, 6113. [Google Scholar] [CrossRef] [PubMed]
- Vuradi, R.K.; Nambigari, N.; Pendyala, P.; Gopu, S.; Kotha, L.R.; Deepika, G.; Rani, V.M.; Sirasani, S. Study of Anti-Apoptotic mechanism of Ruthenium (II)Polypyridyl Complexes via RT-PCR and DNA binding. Appl. Organometal. Chem. 2020, 34, e5332. [Google Scholar] [CrossRef]
- Ezhilarasu, T.; Balasubramanian, S. Synthesis, Characterization, Photophysical and Electrochemical Studies of Ruthenium(II) Complexes with 4′-Substituted Terpyridine Ligands and Their Biological Applications. ChemistrySelect 2018, 3, 12039. [Google Scholar] [CrossRef]
- Jakupec, M.A.; Galanski, M.; Arion, V.B.; Hartinger, C.G.; Keppler, B.K. Antitumour metal compounds: More than theme and variations. Dalton Trans. 2008, 2, 183. [Google Scholar] [CrossRef]
- Dabiri, Y.; Schmid, A.; Theobald, J.; Blagojevic, B.; Streciwilk, W.; Ott, I.; Wölfl, S.; Cheng, X. A Ruthenium(II) N-Heterocyclic Carbene (NHC) Complex with Naphthalimide Ligand Triggers Apoptosis in Colorectal Cancer Cells via Activating the ROS-p38 MAPK Pathway. Int. J. Mol. Sci. 2018, 19, 3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keene, F.R.; Smith, J.A.; Collins, J.G. Metal complexes as structure-selective binding agents for nucleic acids. Coord. Chem. Rev. 2009, 253, 2021. [Google Scholar] [CrossRef]
- Lam, N.Y.S.; Truong, D.; Burmeister, H.; Babak, M.V.; Holtkamp, H.U.; Movassaghi, S.; Ayine-Tora, D.M.; Zafar, A.; Kubanik, M.; Oehninger, L.; et al. From Catalysis to Cancer: Toward Structure-Activity Relationships for Benzimidazol-2-ylidene-Derived N-Heterocyclic-Carbene Complexes as Anticancer Agents. Inorg. Chem. 2018, 57, 14427–14434. [Google Scholar] [CrossRef]
- Onar, G.; Gürses, C.; Karataş, M.O.; Balcıoğlu, S.; Akbay, N.; Özdemir, N.; Ateş, B.; Alıcı, B. Palladium(II) and ruthenium(II) complexes of benzotriazole functionalized N-heterocyclic carbenes: Cytotoxicity, antimicrobial, and DNA interaction studies. J. Organomet. Chem. 2019, 886, 48–56. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. Afr. J. Biotechnol. 2007, 6, 1382–1386. [Google Scholar]
- Movassaghi, S.; Singh, S.; Mansur, A.; Tong, K.K.H.; Hanif, M.; Holtkamp, H.U.; Söhnel, T.; Jamieson, S.M.F.; Hartinger, C.G. (Pyridin-2-yl)-NHC Organoruthenium Complexes: Antiproliferative Properties and Reactivity toward Biomolecules. Organometallics 2018, 37, 1575–1584. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Kilimnik, A. Anti-melanoma agents derived from fungal species. Mathews J. Pharm. Sci. 2016, 1, 1–16. [Google Scholar]
- Yilmaz, A.; Price, R.W.; Gisslen, M. Antiretroviral drug treatment of CNS HIV-1 infection. J. Antimicrob. Chemother. 2012, 67, 299–311. [Google Scholar] [CrossRef]
- Ciurea, C.N.; Kosovski, I.B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020, 8, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as biomarkers in environmental and occupational medicine: New insights and future perspectives. BioMed. Res. Inter. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, L.; Tian, Z.; Liu, X.; Gong, Y.; Zheng, H.; Ge, X.; Liu, Z. Imine-N-Heterocyclic Carbenes as Versatile Ligands in Ruthenium(II) p-Cymene Anticancer Complexes: A Structure-Activity Relationship Study. Chem. Asian J. 2018, 13, 2923–2933. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, B.; Ahmad, M.; Iqbal, Z.; Nisar, M.; Ahmad, M. In vitro inhibition of acetylcholinesterase, butyrylcholinesterase and lipoxygenase by crude extract of Myricaria elegans Royle. J. Biol. Sci. 2003, 3, 1046–1049. [Google Scholar]
- Slimani, I.; Chakchouk-Mtibaa, A.; Mansour, L.; Mellouli, L.; Özdemir, I.; Gürbüzd, N.; Hamdi, N. Synthesis, characterization, biological determination and catalytic evaluation of ruthenium(ii) complexes bearing benzimidazole-based NHC ligands in transfer hydrogenation catalysis. New J. Chem. 2020, 44, 5309–5323. [Google Scholar] [CrossRef]
- Bilel, H.; Hamdi, N.; Zagrouba, F.; Fischmeister, C.; Bruneau, C. Terminal conjugated dienes via a ruthenium-catalyzed cross-metathesis/elimination sequence: Application to renewable resources. Catal. Sci. Technol. 2014, 4, 2064–2071. [Google Scholar] [CrossRef]
- Ozge Karaca, E.; Imene Dehimat, Z.; Yasar, S.; Gürbüz, N.; Tebbani, D.; Çetinkaya, B.; Ozdemir, I. Ru(II)-NHC catalysed N-Alkylation of amines with alcohols under solvent-free conditions. Inorg. Chim. Acta 2021, 520, 120294. [Google Scholar] [CrossRef]
- Çiftçi, O.; Özdemir, İ.; Çakır, O.; Demir, S. The determination of oxidative damage in heart tissue of rats caused by ruthenium(II) and gold(I) N-heterocyclic carbene complexes. Toxicol. Ind. Health 2011, 27, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Atta-ur-Rahman, W.A.T.; Nawas, S.A.; Choudhary, M.I. New Cholinesterase Inhibiting Bisbenzylisoquinoline Alkaloids from Cocculus pendulus . Chem. Pharm. Bull. 2004, 52, 802–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro-Cerda, J.; Cossart, P. Microbe Profile: Listeria monocytogenes: A paradigm among intracellular bacterial pathogens. Microbiology 2019, 165, 719–721. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.M.; Flaws, M.L. Epidemiology and Pathogenesis of Pseudomonas aeruginosa Infections. Am. Soc. Clin. Lab. Sci. 2011, 24, 43–46. [Google Scholar] [CrossRef]
- Crump, J.A.; Luby, S.P.; Mintz, E.D. The global burden of typhoid fever. Bull. World. Health Organ. 2004, 82, 346–353. [Google Scholar]
- Molero, G.; Diez-Orejas, R.; Navarro-Garcia, F.; Monteoliva, L.; Pla, J.; Gil, C.; Sánchez-Pérez, M.; Nombela, C. Candida albicans: Genetics, dimorphism and pathogenicity. Int. Microbiol. 1998, 1, 95–106. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V.J.R.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. 2007, 45, 328–333. [Google Scholar] [CrossRef]
- Khan, T.A.; Koko, W.S.; Al Nasr, I.S.; Schobert, R.; Biersack, B. Activity of Fluorinated Curcuminoids against Leishmania major and Toxoplasma gondii Parasites. Chem. Biodivers. 2021, 18, e2100381. [Google Scholar] [CrossRef]
- Re, P.; Proteggente, R.; Pannala, N.; Yang, A.; Rice-Evans, C.M.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984, 61, 928–931. [Google Scholar] [CrossRef]
- Karataş, M.O.; Olgundeniz, B.; Günal, S.; Özdemir, İ.; Alıcı, B.; Çetinkaya, E. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg. Med. Chem. 2016, 24, 643–650. [Google Scholar]
- Jelali, H.; Koko, W.; Al-Hazmy, S.M.; Mansour, L.; Al-Tamimi, J.; Deniau, E.; Sauthier, M.; Dridi, K.; Hamdi, N. Copper-Catalyzed Hydroboration of Enamides with Bis(pinacolato)diboron: Promising Agents with Antimicrobial Activities. J. Chem. 2022, 2022, 6577185. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Boubakri, L.; Chakchouk-Mtiba, A.; Naouali, O.; Mellouli, L.; Mansour, L.; Özdemir, I.; Yaser, S.; Sauthier, M.; Hamdi, N. Ruthenium(II) complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands as potential antimicrobial, antioxidant, enzyme inhibition, and antiproliferative agents. J. Coord. Chem. 2022, 75, 645–667. [Google Scholar] [CrossRef]
- Jentzsch, J.; Koko, W.S.; Al Nasr, I.S.; Khan, T.A.; Schobert, R.; Ersfeld, K.; Biersack, B. New Antiparasitic Bis-Naphthoquinone Derivatives. Chem. Biodivers. 2019, 17, e1900597. [Google Scholar] [CrossRef] [Green Version]
- Şahin-Bölükbaşı, S.; Şahin, N. Novel Silver-NHC complexes: Synthesis and anticancer properties. J. Organomet. Chem. 2019, 891, 78–84. [Google Scholar] [CrossRef]
- Touj, N.; Al Nasr, I.S.; Koko, W.; Khan, T.; Özdemir, I.; Yasar, S.; Mansour, L.; Alresheedi, F.; Hamdi, N. Anticancer, antimicrobial and antiparasitical activities of copper(I) complexes based on N-heterocyclic carbene (NHC) ligands bearing aryl substituents. J. Coord. Chem. 2020, 73, 2889–2905. [Google Scholar] [CrossRef]
Compound | AChEI | TyrEI |
---|---|---|
2a | 18.38 ± 2.7 | 45.05 ± 7.3 |
2b | 13.41 ± 1.8 | 55.64 ± 8.2 |
2c | 20.51 ± 3.2 | 48.01 ± 6.6 |
2d | 22.27 ± 3.1 | 43.25 ± 6.8 |
3a | 15.05 ± 2.2 | 50.75 ± 8.3 |
3b | 2.52 ± 3.4 | 19.88 ± 2.4 |
3c | 11.95 ± 1.6 | 38.17 ± 5.5 |
3d | 5.06 ± 0.8 | 24.95 ± 3.7 |
Galanthamine | 0.25 ± 0.04 | - |
Kojic acid | - | 5.05 ± 0.8 |
Compound | DPPH | ABTS | β-Carotene |
---|---|---|---|
2a | 58.27 ± 7.4 | 39.12 ± 5.9 | 395.75 ± 51.6 |
2b | 63.45 ± 10.1 | 38.14 ± 4.9 | 325.55 ± 48.7 |
2c | 70.23 ± 12.0 | 51.27 ± 8.6 | 348.70 ± 52.1 |
2d | 74.25 ± 11.6 | 55.21 ± 7.4 | 360.90 ± 40.8 |
3a | 61.25 ± 10.3 | 41.78 ± 7.3 | 401.12 ± 66.5 |
3b | 43.05 ± 5.7 | 32.05 ± 4.2 | 225.45 ± 31.5 |
3c | 65.49 ± 11.2 | 45.04 ± 6.6 | 374.87 ± 55.7 |
3d | 32.18 ± 5.4 | 18.17 ± 3.0 | 92.25 ± 11.9 |
BHT | 31.55 ± 4.8 | 17.41 ± 2.9 | 89.55 ± 13.3 |
Compounds | c | |
---|---|---|
HCT-116 | HepG-2 | |
2a | 7.76 ± 1.1 | 11.75 ± 2.1 |
2b | 13.56 ± 2.0 | 17.45 ± 2.7 |
2c | 15.36 ± 2.6 | 20.65 ± 3.3 |
2d | 16.04 ± 2.9 | 26.82 ± 3.6 |
3a | 4.12 ± 0.6 | 9.21 ± 1.3 |
3b | 19.45 ± 3.2 | 31.40 ± 4.8 |
3c | 8.45 ± 1.2 | 12.73 ± 1.8 |
3d | 8.45 ± 0.9 | 12.75 ± 1.7 |
Compound | CC50 Toxicity (Vero Cell) | Amastigote IC50 | Promastigotes IC50 | Amastigote SI | Promastigote SI |
---|---|---|---|---|---|
2a | 1.2 ± 0.2 | 1.1 ± 0.1 | 3.2 ± 0.5 | 1.1 | 0.4 |
2b | 1.1 ± 0.1 | 0.3 ± 0.04 | 2.2 ± 0.3 | 3.7 | 0.5 |
2c | 2.9 ± 0.4 | 1.7 ± 0.2 | 5.8 ± 0.9 | 1.7 | 0.5 |
2d | 1.7 ± 0.3 | 1.4 ± 0.2 | 1.9 ± 0.3 | 1.2 | 0.9 |
3a | 1.2 ± 0.3 | 2.4 ± 0.4 | 0.45 ± 0.07 | 0.5 | 2.7 |
3b | 1.3 ± 0.3 | 1.1 ± 0.2 | 0.74 ± 0.08 | 1.2 | 1.8 |
3c | 1.9 ± 0.4 | 4.2 ± 0.8 | 0.37 ± 0.06 | 0.45 | 5.1 |
3d | 1.8 ± 0.2 | 1.4 ± 0.3 | 0.32 ± 0.04 | 1.3 | 5.6 |
Compound | CC50 Toxicity (Vero Cell) | Toxoplasma IC50 | SI Toxoplasma |
---|---|---|---|
2a | 1.2 ± 0.2 | 8.4 ± 1.0 | 0.14 |
2b | 1.1 ± 0.1 | 3.7 ± 0.5 | 0.3 |
2c | 2.9 ± 0.4 | 2.1 ± 0.3 | 1.4 |
2d | 1.7 ± 0.3 | 3.8 ± 0.5 | 0.4 |
3a | 1.2 ± 0.3 | 1.3 ± 0.2 | 0.9 |
3b | 1.3 ± 0.3 | 1.4 ± 0.2 | 0.9 |
3c | 1.9 ± 0.4 | 1.5 ± 0.3 | 1.3 |
3d | 1.8 ± 0.2 | 1.4 ± 0.1 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Nasr, I.S.; Koko, W.S.; Khan, T.A.; Gürbüz, N.; Özdemir, I.; Hamdi, N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules 2023, 28, 1359. https://doi.org/10.3390/molecules28031359
Al Nasr IS, Koko WS, Khan TA, Gürbüz N, Özdemir I, Hamdi N. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules. 2023; 28(3):1359. https://doi.org/10.3390/molecules28031359
Chicago/Turabian StyleAl Nasr, Ibrahim S., Waleed S. Koko, Tariq A. Khan, Nevin Gürbüz, Ismail Özdemir, and Naceur Hamdi. 2023. "Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity" Molecules 28, no. 3: 1359. https://doi.org/10.3390/molecules28031359
APA StyleAl Nasr, I. S., Koko, W. S., Khan, T. A., Gürbüz, N., Özdemir, I., & Hamdi, N. (2023). Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Enzymatic Inhibitory Agents with Antioxidant, Antimicrobial, Antiparasitical and Antiproliferative Activity. Molecules, 28(3), 1359. https://doi.org/10.3390/molecules28031359