Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides
Abstract
1. Introduction
2. Polysaccharide Phytosynthesis
3. Chemistry of Polygonati Rhizoma Polysaccharides
3.1. Summary of Extraction and Purification
3.2. Structure of Polygonati Rhizoma Polysaccharides
4. Applications for Health-Promoting Activities
4.1. Antioxidant and Anti-Aging Activities
4.2. Immunomodulatory Effects
4.3. Potential Antidiabetic/Antiobesity Effects
4.4. Bone Homeostasis Benefits
4.5. Antimicrobial Activity
4.6. Anti-Fatigue Activities and Anti-Depression Benefits
4.7. Other Health-Promoting Activities
5. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Pharmacopoeia Commission of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China (Part I); Chinese Medicine Science and Technology Publishing House: Beijing, China, 2020; pp. 319–320.
- He, Y.; Huang, L.; Jiang, P.; Xu, G.; Sun, T. Immunological regulation of the active fraction from Polygonatum sibiricum F. Delaroche based on improvement of intestinal microflora and activation of RAW264.7 cells. J. Ethnopharmacol. 2022, 293, 115240. [Google Scholar] [CrossRef]
- Ahn, M.J.; Kim, C.Y.; Yoon, K.D.; Min, Y.R.; Kim, J. Steroidal saponins from the rhizomes of Polygonatum sibiricum. J. Nat. Prod. 2006, 69, 360–364. [Google Scholar] [CrossRef]
- Commission of Chinese Medicine Dictionary. Chinese Medicine Dictionary (Part II), Version 2; Shanghai Science and Technology Publishing House: Shanghai, China, 2006; pp. 2828–2829. [Google Scholar]
- Commission of Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China: Volume 1; China Medico-Pharmaceutical Science & Technology Publishing House: Beijing, China, 2015; pp. 288, 857, 864.
- Liu, D.H.; Chen, Q.H.; Li, J.X.; Deng, X.Y.; Liu, D.H.; Miao, Y.H. First report of southern blight on Polygonatum sibiricum caused by Sclerotium delphinii in China. Plant Dis. 2021, 105, 2268–2740. [Google Scholar] [CrossRef]
- Han, C.; Zhu, Y.; Yang, Z.; Fu, S.; Liu, C. Protective effect of Polygonatum sibiricum against cadmium-induced testicular injury in mice through inhibiting oxidative stress and mitochondria-mediated apoptosis. J. Ethnopharmacol. 2020, 261, 113060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Su, H.; Yin, S.; Han, C.; Hao, D.; Dong, X. The regulatory mechanism of chilling-induced dormancy transition from endo-dormancy to non-dormancy in Polygonatum kingianum Coll.et Hemsl rhizome bud. Plant Mol. Biol. 2019, 99, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.; Sheng, Y.; Chen, L.; Li, X.; Shao, J. Analysis of the genetic structure and morphology of Polygonatum cyrtonema in Anhui province, eastern China revealed three distinct genetic groups. Nord. J. Bot. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- An, J.; Liu, J.Z.; Wu, C.F.; Li, J.; Dai, L.; Damme, E.V.; Balzarine, J.; Clercq, E.D.; Chen, F.; Bao, J.K. Anti-HIV I/II activity and molecular cloning of a novel mannose/sialic acid-binding lectin from rhizome of Polygonatum cyrtonema Hua. Acta Biochim. Biophys. Sin. 2006, 38, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Ji, H.; Cheng, X.; Wang, D.; Li, T.; Ren, K.; Qu, S.; Pan, Y.; Liu, X. Characterization, classification, and authentication of Polygonatum sibiricum samples by volatile profiles and flavor properties. Molecules 2021, 27, 25. [Google Scholar] [CrossRef]
- Yang, X.X.; Wei, J.D.; Mu, J.K.; Liu, X.; Dong, J.C.; Zeng, L.X.; Gu, W.; Li, J.P.; Yu, J. Integrated metabolomic profiling for analysis of antilipidemic effects of Polygonatum kingianum extract on dyslipidemia in rats. World J. Gastroenterol. 2018, 24, 5505–5524. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Z.; Nie, X.; Wang, D.; Zhang, Q.; Peng, T.; Zhang, C.; Wu, D.; Zhang, J. Recent advances in polysaccharides from edible and medicinal Polygonati Rhizoma: From bench to market. Int. J. Biol. Macromol. 2022, 195, 102–116. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, P.; Wu, W.; Li, D.; Shang, E.X.; Guo, S.; Qian, D.; Yan, H.; Wang, W.; Duan, J.A. Multi-constituents variation in medicinal crops processing: Investigation of nine cycles of steam-sun drying as the processing method for the rhizome of Polygonatum cyrtonema. J. Pharm. Biomed. Anal. 2022, 209, 114497. [Google Scholar] [CrossRef] [PubMed]
- Horng, C.T.; Huang, J.K.; Wang, H.Y.; Huang, C.C.; Chen, F.A. Antioxidant and antifatigue activities of Polygonatum alte-lobatum Hayata rhizomes in rats. Nutrients 2014, 6, 5327–5337. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.J.; Huang, N.W.; Huang, J.P.; Wang, L.L.; Wu, L.L.; Wang, Q.; Zhao, H. Effects of the steaming process on the structural properties and immunological activities of polysaccharides from Polygonatum cyrtonema. J. Funct. Foods 2022, 88, 104866. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, B.; Chen, Z.; Cao, W.; Wang, J.; Li, S.; Zhao, J. Effects of steam on polysaccharides from Polygonatum cyrtonema based on saccharide mapping analysis and pharmacological activity assays. Chin. Med.-UK 2022, 17, 97. [Google Scholar] [CrossRef]
- Kun, H.S.; Jae, C.D.; Sam, S.K. Isolation of adenosine from the rhizomes of Polygonatum sibidcum. Arch. Pharm. Res. 1991, 14, 193–194. [Google Scholar] [CrossRef]
- Zeng, G.F.; Zhang, Z.Y.; Lu, L.; Xiao, D.Q.; Xiong, C.X.; Zhao, Y.X.; Zong, S.H. Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy- induced bone loss in rats. J. Ethnopharmacol. 2011, 136, 224–229. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Dong, X.T.; Fang, J.N.; Ding, K. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum. Carbohyd. Polym. 2007, 70, 304–309. [Google Scholar] [CrossRef]
- Luo, M.; Hu, Z.; Zhong, Z.; Liu, L.; Lin, C.; He, Q. Chemical structures and pharmacological properties of typical bioflavonoids in Polygonati Rhizoma (PGR). J. Environ. Public Health 2022, 2022, 4649614. [Google Scholar] [CrossRef]
- Sun, L.R.; Li, X.; Wang, S.X. Two new alkaloids from the rhizome of Polygonatum sibiricum. J. Asian Nat. Prod. Res. 2005, 7, 127–130. [Google Scholar] [CrossRef]
- Yu, H.S.; Ma, B.P.; Song, X.B.; Kang, L.P.; Zhang, T.; Fu, J.; Zhao, Y.; Xiong, C.Q.; Tan, D.W.; Zhang, L.J.; et al. Two new steroidal saponins from the processed Polygonatum kingianum. Helv. Chim. Acta 2010, 93, 1086–1092. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, B.P.; Kang, L.P.; Yu, H.S.; Yang, Y.; Yan, X.Z.; Dong, F.T. Furostanol saponins from the fresh rhizomes of Polygonatum kingianum. Chem. Pharm. Bull. 2006, 54, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Li, J. Chemical constituents of the genus Polygonatum and their role in medicinal treatment. Nat. Prod. Commun. 2015, 10, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Yu, Y.; Guo, P.; Huo, J.; Tang, S. Chemical constituents of Polygonatum sibiricum. Chem. Nat. Comp. 2019, 55, 331–333. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Y.; Fan, S.J.; Ding, X.B.; Ji, G.; Huang, C. Extracts of Rhizoma Polygonati Odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 mice. PLoS ONE 2013, 8, 81724. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.Z.; Zhang, X.P.; Wang, Y.X. Polygonatum sibiricum extract exerts inhibitory effect on diabetes in a rat model. Trop. J. Pharm. Res. 2021, 18, 1493–1497. [Google Scholar] [CrossRef]
- Cui, X.; Wang, S.; Cao, H.; Guo, H.; Li, Y.; Xu, F.; Zheng, M.; Xi, X.; Han, C. A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules 2018, 23, 1170. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Han, C.; Nie, S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front. Nutr. 2022, 9, 1074671. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015; pp. 191–193.
- Baek, S.H.; Lee, J.G.; Park, S.Y.; Piao, X.L.; Kim, H.Y.; Bae, O.N.; Park, J.H. Gas chromatographic determination of azetidine-2-carboxylic acid in rhizomes of Polygonatum sibiricum and Polygonatum odoratum. J. Food Compos. Anal. 2012, 25, 137–141. [Google Scholar] [CrossRef]
- Liu, Z.; Ni, H.; Yu, L.; Xu, S.; Bo, R.; Qiu, T.; Gu, P.; Zhu, T.; He, J.; Wusiman, A.; et al. Adjuvant activities of CTAB-modified Polygonatum sibiricum polysaccharide cubosomes on immune responses to ovalbumin in mice. Int. J. Biol. Macromol. 2020, 148, 793–801. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wang, B.; Hua, W.P.; Niu, J.F.; Dang, K.K.; Qiang, Y.; Wang, Z. De Novo assembly and analysis of Polygonatum sibiricum transcriptome and identification of genes involved in polysaccharide biosynthesis. Int. J. Mol. Sci. 2017, 18, 1950. [Google Scholar] [CrossRef]
- Feng, T.; Jiang, Y.; Jia, Q.; Han, R.; Wang, D.; Zhang, X.; Liang, Z. Transcriptome analysis of different sections of rhizome in Polygonatum sibiricum Red. and mining putative genes participate in polysaccharide biosynthesis. Biochem. Genet. 2022, 60, 1547–1566. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.Z.; Yang, M.Q.; Yang, W.Z.; Zhang, J.Y. Identification and evaluation of Polygonatum kingianum with different growth ages based on data fusion strategy. Microchem. J. 2021, 160, 105662. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Chen, S.; Liu, H.; Pan, K.; Li, J.; Luo, C.; Wang, H. De novo assembly and analysis of Polygonatum cyrtonema Hua and identification of genes involved in polysaccharide and saponin biosynthesis. BMC Genom. 2022, 23, 195. [Google Scholar] [CrossRef]
- Wang, C.; Peng, D.; Zhu, J.; Zhao, D.; Huang, L. Transcriptome analysis of Polygonatum cyrtonema Hua: Identification of genes involved in polysaccharide biosynthesis. Plant Methods 2019, 15, 65. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Dong, Z.H.; Zhu, X.S.; Xu, H.Y.; Zhao, Z.X. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int. J. Biol. Macromol. 2018, 107, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, G.; Zhang, X.; Wang, Y.; Qiang, Y.; Wang, B.; Zou, J.; Niu, J.; Wang, Z. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohyd. Polym. 2022, 291, 119524. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, N.; Xue, X.; Li, Q.; Sun, D.; Zhao, Z. Purification, structural characterization and in vivo immunoregulatory activity of a novel polysaccharide from Polygonatum sibiricum. Int. J. Biol. Macromol. 2020, 160, 688–694. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Y.; Tan, Z. CO2-triggered switchable hydrophilicity solvent as a recyclable extractant for ultrasonic-assisted extraction of Polygonatum sibiricum polysaccharides. Food Chem. 2023, 402, 134301. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.; Chang, J. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Li, G.; Ma, X.; Jiang, Y.; Li, W.; Wang, Y.; Liu, L.; Sun, C.; Xiao, S.; Lan, J.; Kuang, J.; et al. Aqueous two-phase extraction of polysaccharides from selaginella doederleinii and their bioactivity study. Process. Biochem. 2022, 118, 274–282. [Google Scholar] [CrossRef]
- Basak, S.; Annapure, U.S. The potential of subcritical water as a “green” method for the extraction and modifification of pectin: A critical review. Food Res. Int. 2022, 181, 111849. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seoane, P.; Torres Perez, M.D.; de Ana, C.F.; Sinde-Stompel, E.; Domínguez, H. Antiradical and functional properties of subcritical water extracts from edible mushrooms and from commercial counterparts. Int. J. Food Sci. Tech. 2022, 58, 1420–1428. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.; Mariatti, F.; Cravotto, G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 128, 244. [Google Scholar] [CrossRef] [PubMed]
- Getachew, A.T.; Lee, H.J.; Cho, Y.J.; Chae, S.J.; Chun, B.S. Optimization of polysaccharides extraction from Pacifific oyster (Crassostrea gigas) using subcritical water: Structural characterization and biological activities. Int. J. Biol. Macromol. 2019, 121, 852–861. [Google Scholar] [CrossRef]
- Tang, W.; Liu, C.; Liu, J.; Hu, L.; Huang, Y.; Yuan, L.; Liu, F.; Pan, S.; Chen, S.; Bian, S.; et al. Purification of polysaccharide from Lentinus edodes water extract by membrane separation and its chemical composition and structure characterization. Food Hydrocoll. 2020, 105, 105851. [Google Scholar] [CrossRef]
- Liu, J.; Li, T.; Chen, H.; Yu, Q.; Yan, C. Structural characterization and osteogenic activity in vitro of novel polysaccharides from the rhizome of Polygonatum sibiricum. Food Funct. 2021, 12, 6626–6636. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Y.; Wu, J.; Wang, S.; Wei, H.; Zhang, Y.; Zhou, J.; Shi, Y. Critical quality control methods for a novel anticoagulant candidate LFG-Na by HPSEC-MALLS-RID and bioactivity assays. Molecules 2022, 27, 4522. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Huang, X.; Hu, J.; Wang, J.; Yin, J.; Nie, S.; Xie, M. Structural characteristic of pectin-glucuronoxylan complex from Dolichos lablab L. hull. Carbohydr. Polym. 2022, 298, 120023. [Google Scholar] [CrossRef]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydr. Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef]
- Xu, S.; Bi, J.; Jin, W.; Fan, B.; Qian, C. Determination of polysaccharides composition in Polygonatum sibiricum and Polygonatum odoratum by HPLC-FLD with pre-column derivatization. Heliyon 2022, 8, e09363. [Google Scholar] [CrossRef]
- Jin, J.; Lao, J.; Zhou, R.; He, W.; Qin, Y.; Zhong, C.; Xie, J.; Liu, H.; Wan, D.; Zhang, S.; et al. Simultaneous identification and dynamic analysis of saccharides during steam processing of rhizomes of Polygonatum cyrtonema by HPLC-QTOF-MS/MS. Molecules 2018, 23, 2855. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, X.; Wang, Y.; Yan, L. Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp. Carbohyd. Polym. 2020, 233, 115836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cai, X.; Tian, Q.; Xiao, L.; Zeng, Z.; Cai, X.; Yan, J.; Li, Q. Microwave-assisted degradation of polysaccharide from Polygonatum sibiricum and antioxidant activity. J. Food Sci. 2019, 84, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.B.; Ge, J.C.; Zhang, W.J.; Liu, W.; Luo, J.P.; Xua, F.Q.; Wu, D.L.; Xie, S.Z. Physicochemical, morpho-structural, and biological characterization of polysaccharides from three Polygonatum spp. RSC Adv. 2021, 11, 37952–37965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, X.; Wang, Y.; Zhang, X.; Jia, H.; Guo, L.; Huang, L.; Gao, W. Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp. J. Pharm. Biomed. Anal. 2020, 186, 113243. [Google Scholar] [CrossRef]
- Bertaud, F.; Sundberg, A.; Holmbom, B. Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr. Polym. 2002, 48, 319–324. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Yin, J.; Nie, S.; Xie, M. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll. 2021, 116, 106641. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Liu, G.; Xu, H.; Zhang, X. Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities. Int. J. Biol. Macromol. 2021, 190, 730–838. [Google Scholar] [CrossRef]
- Yelithao, K.; Surayot, U.; Lee, J.H.; You, S. RAW2647 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum. Prev. Nutr. Food Sci. 2016, 21, 245–254. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, H.; Li, Y.; Liu, Y.; Dai, W.; Fang, J.; Cao, C.; Die, Y.; Liu, Q.; Wang, C.; et al. Physicochemical properties and immunological activities of polysaccharides from both crude and wine-processed Polygonatum sibiricum. Int. J. Biol. Macromol. 2020, 143, 255–264. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Gong, P.; Wu, Y.; Li, H. Effect of steaming process on the structural characteristics and antioxidant activities of polysaccharides from Polygonatum sibiricum rhizomes. Glycoconj. J. 2021, 38, 561–572. [Google Scholar] [CrossRef]
- Fan, B.; Wei, G.; Gan, X.; Li, T.; Qu, Z.; Xu, S.; Liu, C.; Qian, C. Study on the varied content of Polygonatum cyrtonema polysaccharides in the processing of steaming and shining for nine times based on HPLC-MS/MS and chemometrics. Microchem. J. 2020, 159, 105352. [Google Scholar] [CrossRef]
- Hu, J.; Cheng, H.; Xu, J.; Liu, J.; Xing, L.; Shi, S.; Wang, R.; Wu, Z.; Yu, N.; Peng, D. Determination and analysis of monosaccharides in Polygonatum cyrtonema Hua polysaccharides from different areas by ultra-high-performance liquid chromatography quadrupole trap tandem mass spectrometry. J. Sep. Sci. 2021, 44, 3506–3515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhou, H.; Zhao, C.; Xia, L.; Wang, Y.; Wang, Y. Purification, characterization and immunomodulatory activity of fructans from Polygonatum odoratum and P. cyrtonema. Carbohyd. Polym. 2019, 214, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Zhang, X.; Dabu, X.L.T.; He, J.; Hai, M.R. Analysis of chemical constituents from Polygonatum cyrtonema after “nine-steam-nine-bask” processing. Phytochem. Lett. 2019, 29, 35–40. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Luo, L.; Zhou, Z.; Wu, M. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria. Carbohyd. Polym. 2021, 267, 118219. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tao, A.; Yang, R.; Fan, M.; Duan, B. Structural characterization, hypoglycemic effects and antidiabetic mechanism of a novel polysaccharides from Polygonatum kingianum Coll. et Hemsl. Biomed. Pharmacother. 2020, 131, 110687. [Google Scholar] [CrossRef]
- Luo, L.; Qiu, Y.; Gong, L.; Wang, W.; Wen, R. A review of Polygonatum Mill. genus: Its taxonomy, chemical constituents, and pharmacological effect due to processing changes. Molecules 2022, 27, 4821. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, T.; Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 2012, 22, R741–R752. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tao, M.; Wu, T.; Zhuo, Z.; Xu, T.; Pan, S.; Xu, X. A promising strategy for investigating the anti-aging effect of natural compounds: A case study of caffeoylquinic acids. Food Funct. 2021, 12, 8583–8593. [Google Scholar] [CrossRef]
- Li, R.; Chan, W.; Mat, W.; Ho, Y.; Yeung, R.K.; Tsang, S.; Xue, H. Antiaging and anxiolytic effects of combinatory formulas based on four medicinal herbs. Evid.-Based Complement. Altern. Med. 2017, 2017, 4624069. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.A.; Coppotelli, G.; Rolo, A.P.; Palmeira, C.M.; Ross, J.M.; Sinclair, D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 2022, 18, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An antioxidant with a critical role in anti-aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.E.; Fizeșan, I.; Vlase, L.; Popa, D.S. Antioxidants in age-related diseases and anti-aging atrategies. Antioxidants 2022, 11, 1868. [Google Scholar] [CrossRef]
- Tang, S.P.; Mao, X.L.; Chen, Y.H.; Yan, L.L.; Ye, L.P.; Li, S.W. Reactive oxygen species induce fatty liver and Ischemia-Reperfusion injury by promoting inflammation and cell death. Front. Immunol. 2022, 13, 870239. [Google Scholar] [CrossRef]
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int. 2019, 2019, 8748253. [Google Scholar] [CrossRef]
- Gasmi, A.; Chirumbolo, S.; Peana, M.; Mujawdiya, P.K.; Dadar, M.; Menzel, A.; Bjørklund, G. Biomarkers of senescence during aging as possible warnings to use preventive measures. Curr. Med. Chem. 2021, 28, 1471–1488. [Google Scholar] [CrossRef]
- Alkadi, H. A review on free radicals and antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022, 48, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, X.; Li, C.; Ma, L.; Zhao, Z.; Guan, S.; Wang, L. Caffeic acid protects against a beta toxicity and prolongs lifespan in Caenorhabditis elegans models. Food Funct. 2021, 12, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wei, S.; Peng, W.; Sun, T.; Li, W. Antioxidant effect of Polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice. BioMed Res. Int. 2021, 2021, 6688855. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, S.; Huang, X.; Hu, X.; Zhang, Y. Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum in rabbit model and related cellular mechanisms. Evid.-Based Complement. Alternat. Med. 2015, 2015, 391065. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Cao, F.S.; Feng, J.; Chen, H.W.; Wan, J.R.; Lu, Q.; Wang, J. Nlrp3 inflammasome activation contributes to long-term behavioral alterations in mice injected with lipopolysaccharide. Neuroscience 2017, 343, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Zhang, Y.; Jin, C.; Wang, T.; Huang, S.; Li, L.; Xie, S.; Wu, D.; Xu, F. Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against D-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling. J. Sci. Food Agric. 2023, 103, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhou, R.; Cheng, F.; Tang, X.; Lao, J.; Xu, L.; He, W.; Wan, D.; Zeng, H.; et al. Polygonatum cyrtonema Hua polysaccharides protect BV2 microglia relief oxidative stress and ferroptosis by regulating NRF2/HO-1 pathway. Molecules 2022, 27, 7088. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.P.; Zhang, J.; Zhang, Y.Z. The function activities and application of Polygonatum sibiricum polysaccharides. J. Food Saf. Qual. 2013, 4, 273–278. [Google Scholar]
- Zheng, S. Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model. Sci. Rep. 2020, 10, 2246. [Google Scholar] [CrossRef]
- Xie, Y.; Mu, C.; Kazybay, B.; Sun, Q.; Kutzhanova, A.; Nazarbek, G.; Xu, N.; Nurtay, L.; Wang, Q.; Amin, A.; et al. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv. 2021, 28, 2187–2197. [Google Scholar] [CrossRef]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef]
- Chen, L.; Yu, J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int. Immunopharmacol. 2016, 37, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D. Overview of lactoferrin as a natural immune modulator. J. Pediatr. 2016, 173, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, E.; McAllister, F. Bacteria and fungi: The counteracting modulators of immune responses to radiation therapy in cancer. Cancer Cell 2021, 39, 1173–1175. [Google Scholar] [CrossRef]
- Hwang, J.; Yadav, D.; Lee, P.C.; Jin, J.O. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation. Phytother. Res. 2022, 36, 761–777. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, J.; Kong, X.; Li, H. Characterization and immunological activities of polysaccharides from Polygonatum sibiricum. Biol. Pharm. Bull. 2020, 43, 959–967. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Yan, B.; Yao, C.; Chen, X.; Li, L.; Wu, Y.; Song, Z.; Song, S.; Zhang, Z.; Luo, P. Oligosaccharides from Polygonatum cyrtonema Hua: Structural characterization and treatment of LPS-induced peritonitis in mice. Carbohyd. Polym. 2020, 255, 117392. [Google Scholar] [CrossRef]
- Shu, G.; Xu, D.; Zhao, J.; Yin, L.; Zhao, X. Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens. Res. Vet. Sci. 2021, 135, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, N.; Sun, C.; Sun, D.; Wang, Y. Polysaccharides from Polygonatum sibiricum Delar. ex Redoute induce an immune response in the raw 264.7 cell line via an NF-κB/mapk pathway. RSC Adv. 2019, 9, 17988–17994. [Google Scholar] [CrossRef]
- Ni, H.; Xu, S.; Gu, P.; Wusiman, A.; Zhang, Y.; Qiu, T.; Liu, Z.; Ni, H.; Hu, Y.; Liu, J.; et al. Optimization of preparation conditions for CTAB-modified Polygonatum sibiricum polysaccharide cubosomes using the response surface methodology and their effects on splenic lymphocytes. Int. J. Pharm. 2019, 559, 410–419. [Google Scholar] [CrossRef]
- Joseph, S.; David, G.; Steven, G.C.; Arnold, L.S.; Ashley, J.; Deepak, J.; Tim, B.; Maria, D.G.F.; George, B. Novel renal autologous cell therapy for type 2 diabetes mellitus chronic diabetic kidney disease: Clinical trial design. Am. J. Nephrol. 2022, 53, 50–58. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, L.; Chen, Y.; Ding, X.; Liu, Y.; Tong, B.; Lv, H.; Meng, X.; Li, J.; Jian, T.; et al. Sesquiterpene glycoside isolated from loquat leaf targets gut microbiota to prevent type 2 diabetes mellitus in db/db mice. Food Funct. 2022, 13, 1519–1534. [Google Scholar] [CrossRef] [PubMed]
- Benninger Richard, K.P.; Vira, K. The physiological role of β-cell heterogeneity in pancreatic islet function. Nat. Rev. Endocrinol. 2022, 18, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jia, Q.J.; Peng, Y.Q.; Feng, T.H.; Hu, S.T.; Dong, J.E.; Liang, Z.S. Advances in mechanism research on Polygonatum in prevention and treatment of diabetes. Front. Pharmacol. 2022, 13, 758501. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qin, S.; Pen, G.; Chen, D.; Han, C.; Miao, C.; Lu, B.; Su, C.; Feng, S.; Li, W.; et al. Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats’ model. Exp. Biol. Med. 2017, 242, 92–101. [Google Scholar] [CrossRef]
- Yan, H.; Lu, J.; Wang, Y.; Gu, W.; Yang, X.; Yu, J. Intake of total saponins and polysaccharides from Polygonatum kingianum affects the gut microbiota in diabetic rats. Phytomedicine 2017, 26, 45–54. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, Y.; Zuo, Y.; Tong, Q.; Zhang, Z.; Yang, L.; Li, X.; Yi, G. Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high glucose and high insulin induced 3T3L1 adipocytes by promoting Nrf2 expression. Mol. Med. Rep. 2019, 20, 3951–3958. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.S.; Liu, D.Y.; Xu, Y.T.; Zhu, Y.; Wu, H.H. Constituents from Polygonatum sibiricum and their inhibitions on the formation of advanced glycosylation end products. J. Asian Nat. Prod. Res. 2016, 18, 697–704. [Google Scholar] [CrossRef]
- Mao, Y.P.; Song, Y.M.; Pan, S.W.; Li, N.; Wang, W.X.; Feng, B.B.; Zhang, J.H. Effect of Codonopsis Radix and Polygonati Rhizoma on the regulation of the IRS1/PI3K/AKT signaling pathway in type 2 diabetic mice. Front. Endocrinol. 2022, 13, 1068555. [Google Scholar] [CrossRef]
- Dong, J.; Gu, W.; Yang, X.; Zeng, L.; Wang, X.; Mu, J.; Wang, Y.; Li, F.; Yang, M.; Yu, J. Crosstalk between Polygonatum kingianum, the miRNA, and gut microbiota in the regulation of lipid metabolism. Front. Pharmacol. 2021, 12, 740528. [Google Scholar] [CrossRef]
- Borciani, G.; Montalbano, G.; Baldini, N.; Cerqueni, G.; Ciapetti, G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020, 108, 22–45. [Google Scholar] [CrossRef]
- Pietschmann, P.; Rauner, M.; Sipos, W.; Kerschan-Schindl, K. Osteoporosis: An age-related and gender-specific disease-a mini review. Gerontology 2009, 55, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Nong, M.N.; Zhao, J.M.; Peng, X.M.; Zong, S.H.; Zeng, G.F. Polygonatum sibiricum polysaccharide inhibits osteoporosis by promoting osteoblast formation and blocking osteoclastogenesis through Wnt/β-catenin signalling pathway. Sci. Rep. 2016, 6, 32261. [Google Scholar] [CrossRef]
- Peng, X.M.; He, J.C.; Zhao, J.M.; Wu, Y.L.; Shi, X.Z.; Du, L.; Nong, M.N.; Zong, S.H.; Zeng, G.F. Polygonatum sibiricum polysaccharide promotes osteoblastic differentiation through the ERK/GSK-3β/β-catenin signaling pathway in vitro. Rejuvenation Res. 2017, 21, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, P.; Fu, W.; Xiong, Y.; Zhang, L.; Gao, Y.; Deng, G.Y.; Zong, S.; Zeng, G. The role and mechanism of miRNA-1224 in the Polygonatum Sibiricum polysaccharide regulation of bone marrow-derived macrophages to osteoclast differentiation. Rejuvenation Res. 2019, 22, 420–430. [Google Scholar] [CrossRef]
- Yang, M.; Meng, F.; Gu, W.; Fu, L.; Zhang, F.; Li, F.; Tao, Y.; Zhang, Z.; Wang, X.; Yang, X.; et al. Influence of polysaccharides from Polygonatum kingianum on short-chain fatty acid production and quorum sensing in Lactobacillus faecis. Front. Microbiol. 2021, 12, 758870. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ye, Y.; Liu, C.; Chen, B.; Ji, J.; Sun, J.; Zhang, Y.; Sun, X. Positive effects of steamed Polygonatum sibiricum polysaccharides including a glucofructan on fatty acids and intestinal microflora. Food Chem. 2023, 402, 134068. [Google Scholar] [CrossRef]
- Cao, G.H.; Li, Z.D.; Zhao, R.H.; Zhang, Q.R.; Li, J.B.; He, Z.W.; Kang, K.; He, S. Compare of antibacterial effect produced by polysaccharides between raw materials and processing Polygonatum sibirium. Food Sci. Technol. 2017, 42, 202–206. [Google Scholar]
- Liu, F.; Liu, Y.; Meng, Y.; Yang, M.; He, K. Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments. Antivir. Res. 2004, 63, 183–189. [Google Scholar] [CrossRef]
- Liu, X.X.; Wan, Z.J.; Lin, S.; Lu, X.X. Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua. Carbohyd. Polym. 2011, 83, 737–742. [Google Scholar] [CrossRef]
- Luo, C.; Xu, X.; Wei, X.; Feng, W.; Huang, H.; Liu, H.; Xu, R.; Lin, J.; Han, L.; Zhang, D. Natural medicines for the treatment of fatigue: Bioactive components, pharmacology, and mechanisms. Pharmacol. Res. 2019, 148, 104409. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, B.; Hou, Y.; Gu, X.; Wei, Q.Q.; Ou, R.; Zhao, B.; Song, W.; Shang, H. Fatigue in patients with multiple system atrophy: A prospective cohort study. Neurology 2022, 98, e73–e82. [Google Scholar] [CrossRef] [PubMed]
- Solem, S.; Hagen, R.; Wang, C.E.; Hjemdal, O.; Waterloo, K.; Eisemann, M.; Halvorsen, M. Metacognitions and mindful attention awareness in depression: A comparison of currently depressed, previously depressed and never depressed individuals. Clin. Psychol. Psychother. 2017, 24, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Song, Z.; Xie, P.; Li, L.; Wang, B.; Peng, D.; Zhu, G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021, 275, 114164. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Li, Y.Q.; Yu, L.P.; Li, X.; Yang, X.X. Muscle fatigue-alleviating effects of a prescription composed of Polygonati Rhizoma and Notoginseng radix et rhizoma. BioMed Res. Int. 2020, 2020, 3963045. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.F.; Hu, Y.Q.; Wu, Q.G.; Zhang, R. Virtual screening of potential anti-fatigue mechanism of Polygonati Rhizoma based on network pharmacology. Comb. Chem. High Throughput Screen. 2019, 22, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Jiang, Z.; Yang, R.; Ye, Y.; Liu, S. Polysaccharide-rich extract from Polygonatum sibiricum protects hematopoiesis in bone marrow suppressed by triple negative breast cancer. Biomed. Pharmacother. 2021, 137, 111338. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, H.; Liu, Y.; Wang, W.; You, S.; Hu, X.; Song, M.; Wu, R.; Wu, J. Anti-cancer potential of polysaccharide extracted from Polygonatum sibiricum on HepG2 cells via cell cycle arrest and apoptosis. Front. Nutr. 2022, 9, 938290. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, W.; Chen, X.; Yang, F.; Zhang, J.; Hou, J. Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats. Acta Cir. Bras. 2018, 33, 868–878. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, X.; Cao, M.; Zheng, S.; Ma, Y.; Huang, Q. NF-κB and AMPK-Nrf2 pathways support the protective effect of polysaccharides from Polygonatum cyrtonema Hua in lipopolysaccharide-induced acute lung injury. J. Ethnopharmacol. 2022, 291, 115153. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, Y.; Zhang, B.; Bian, H.J.; Bao, J.K. Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Lett. 2009, 275, 54–60. [Google Scholar] [CrossRef]
- Shen, F.; Xie, P.; Li, C.; Bian, Z.; Wang, X.; Peng, D.; Zhu, G. Polysaccharides from Polygonatum cyrtonema Hua reduce depression-like behavior in mice by inhibiting oxidative stress-Calpain-1-NLRP3 signaling axis. Oxidative Med. Cell. Longev. 2022, 2022, 2566917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Cao, Y.Z.; Chen, L.X.; Wang, J.J.; Tian, Q.H.; Wang, N. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells. Carbohydr. Polym. 2015, 117, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s Disease: Past, present, and future. J. Int. Neuropsychol. Soc. 2017, 23, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, J.G.; Wang, L.H.; Mao, D.X. Effects of Polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia. Neural Regen. Res. 2008, 3, 33–36. [Google Scholar] [CrossRef]
- Bian, Z.; Li, C.; Peng, D.; Wang, X.; Zhu, G. Use of steaming process to improve biochemical activity of Polygonatum sibiricum polysaccharides against D-Galactose-induced memory impairment in mice. Int. J. Mol. Sci. 2022, 23, 11220. [Google Scholar] [CrossRef]
- Xiao, L.; Qi, L.; Zhang, G.; Liu, H.; Gu, Y.; Zhang, L.; Zhang, M.; Wu, H. Polygonatum sibiricum polysaccharides attenuate Lipopoly-Saccharide-induced Septic Liver Injury by Suppression of Pyroptosis via NLRP3/GSDMD Signals. Molecules 2022, 27, 5999. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Wang, X.; Shi, T.T.; Dong, J.C.; Li, F.J.; Zeng, L.X.; Yang, M.; Gu, W.; Li, J.P.; Yu, J. Mitochondrial dysfunction in high-fat diet-induced nonalcoholic fatty liver disease: The alleviating effect and its mechanism of Polygonatum kingianum. Biomed. Pharmacother. 2019, 117, 109083. [Google Scholar] [CrossRef]
- Li, W.; Yu, L.; Fu, B.; Chu, J.; Chen, C.; Li, X.; Ma, J.; Tang, W. Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells. Int. J. Biol. Macromol. 2022, 202, 68–79. [Google Scholar] [CrossRef]
- Wang, J.; Wang, F.; Yuan, L.; Ruan, H.; Zhu, Z.; Fan, X.; Zhu, L.; Peng, X. Blood-enriching effects and immune-regulation mechanism of steam- processed Polygonatum sibiricum polysaccharide in blood deficiency syndrome mice. Front. Immunol. 2022, 13, 813676. [Google Scholar] [CrossRef]
- Zhao, P.; Zhao, C.C.; Li, X.; Gao, Q.Z.; Huang, L.Q.; Xiao, P.G.; Gao, W.Y. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef]
- Liu, J.; Peng, L.; Huang, W.; Li, Z.; Pan, J.; Sang, L.; Lu, S.; Zhang, J.; Li, W.; Luo, Y. Balancing between aging and cancer: Molecular genetics meets traditional Chinese medicine. J. Cell. Biochem. 2017, 118, 2581–2586. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.O.; Kim, K.S.; Lee, G.D.; Kwon, J.H. Antihyperglycemic and antioxidative effects of new herbal formula in streptozotocin-induced diabetic rats. J. Med. Food. 2009, 12, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Gan, X.; Li, Y.; Chen, J.; Xu, Y.; Shi, S.; Li, T.; Li, B.; Wang, H.; Wang, S. Review on the genus Polygonatum polysaccharides: Extraction, purification, structural characteristics and bioactivities. Int. J. Biol. Macromol. 2023, 229, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sun, W.; Gu, L.B.; Tu, Y.; Yu, B.Y.; Hu, H. Huaiqihuang Granules (槐杞黄颗粒) reduce proteinuria by enhancing nephrin expression and regulating necrosis factor κB signaling pathway in adriamycin-induced nephropathy. Chin. J. Integr. Med. 2017, 23, 279–287. [Google Scholar] [CrossRef]
- Ye, S.; Kee, K.H.; Wen, F.; Xu, Y.; Wei, W.; Xu, C.; Cai, J. Effect of a traditional Chinese herbal medicine formulation on cell survival and apoptosis of MPP+-treated MES 23.5 dopaminergic cells. Park. Dis. 2017, 2017, 4764212. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.J.; Ji, B.P.; Cai, S.B.; Wang, R.J.; Zhou, F.; Yang, J.S.; Liu, H.J. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells. Food Funct. 2014, 5, 1038–1049. [Google Scholar] [CrossRef]
Type | Molecular Weight | Composition | Reference |
---|---|---|---|
PSP | (2.2–4400) × 103 Da | Man, Glu Gal, Ara, Fru, Rha, Xyl, GalA, GlcA, homogalactan, and galactomannans | [36,58] |
PCP | (8.5–42,400) × 103 Da | Glu, Man, Rha, Gal, Rib, Ara, Fruf, Glcp | [66,67] |
PKP | 8.7 × 103 Da | Fru, Glu, Gal, Man, Xyl, Ara, Man, and β1,2-link Glc | [58] |
Model | Active Components | Dose | Putative Mechanism | References |
---|---|---|---|---|
NCI-H716 cells | Polygonatum polysaccharides | 25–100 μg/mL for 2h | stimulate GLP-1 production | [58] |
HepG2 cells | PKPs-1 | 0.78–100 mg/L for 24 h | upregulate the levels of Glu utilization efficiency | [66] |
STZ-induced diabetic mice | PKPs-1 | 1190 mg/kg once daily for 15 consecutive days | improve insulin tolerance; affect metabolism of serum lipids; activate PI3K/AKT signaling pathway; increase expression of IRS-1, PI3K, and AKT | [66] |
STZ-induced diabetic SD rats | PSP | 200–800 mg/kg·d for 12 weeks | lower levels of FBG and glycated hemoglobin; improve polydipsia, polyphagia, polyuria and weight loss; delay cataract progression; suppress oxidative stress reaction; alleviate retinal vasculopathy; elevate levels of insulin and C-peptide in plasma; inhibit formation of advanced glycosylation end products | [108] |
T2DM rats | PKP | 0.1 g/kg for 56 days | increase the content of fasting insulin and lowered the levels of FBG | [109] |
IR-3T3-L1 adipocytes | PSP | 50–250 µg/mL | alleviate inflammatory cytokines; promoting Nrf2 expression | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; He, F.; Wu, H.; Xiang, F.; Zheng, H.; Wu, W.; Li, S. Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules 2023, 28, 1350. https://doi.org/10.3390/molecules28031350
Wang S, He F, Wu H, Xiang F, Zheng H, Wu W, Li S. Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules. 2023; 28(3):1350. https://doi.org/10.3390/molecules28031350
Chicago/Turabian StyleWang, Shuzhen, Feng He, Hongmei Wu, Fu Xiang, Hongyan Zheng, Wei Wu, and Shiming Li. 2023. "Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides" Molecules 28, no. 3: 1350. https://doi.org/10.3390/molecules28031350
APA StyleWang, S., He, F., Wu, H., Xiang, F., Zheng, H., Wu, W., & Li, S. (2023). Health-Promoting Activities and Associated Mechanisms of Polygonati Rhizoma Polysaccharides. Molecules, 28(3), 1350. https://doi.org/10.3390/molecules28031350