A Combination of In Silico ADMET Prediction, In Vivo Toxicity Evaluation, and Potential Mechanism Exploration of Brucine and Brucine N-oxide—A Comparative Study
Abstract
:1. Introduction
2. Results and Discussions
2.1. Calculation of ADMET-Related Properties
2.2. In Vitro Embryotoxicity Test for the Prediction of Acute Zebrafish Toxicity to BRU and BNO
2.3. BRU- and BNO-Induced Hepatoxicity in Zebrafish
2.3.1. Effects of BRU and BNO on the Liver Phenotype of Wild-Type Zebrafish
2.3.2. Effects of BRU and BNO on Liver Development in Transgenic Zebrafish
2.4. Potential Action Mechanism Exploration of BRU and BNO
2.4.1. Functional Enrichment Analysis
2.4.2. Pathway Enrichment Analysis
2.4.3. “Component-Target-Pathway” Network of BRU and BNO
3. Materials and Methods
3.1. Prediction of ADMET In Silico
3.2. Toxicity Evaluation on Zebrafish
3.2.1. Test Compounds and Solution Preparation
3.2.2. Zebrafish Embryo Toxicity Test (ZET)
3.2.3. Zebrafish Hepatotoxicity Test (ZHT)
3.3. Network Pharmacology-Based Exploration of Potential Action Mechanism
3.3.1. Identification of Putative Targets of BRU and BNO
3.3.2. GO and KEGG Pathway Enrichment Analysis
3.3.3. Construction of “Component-Target-Pathway” Network
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wei, S.; Li, Y.L.; Gong, Q.; Liang, H.; Liu, Q.; Bernardi, R.E.; Zhang, H.T.; Chen, F.; Lawrence, A.J.; Liang, J.H. Brucine N-Oxide Reduces Ethanol Intake and Preference in Alcohol-Preferring Male Fawn-Hooded Rats. Alcohol Clin. Exp. Res. 2020, 44, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wen, J.; Zhang, M.; Wang, C.; Xiang, Y.; Wang, L.; Yu, C.; Deng, G.; Yan, M.; Zhang, B.; et al. Pharmacotherapy, Glycyrrhiza uralensis Fisch. and its active components mitigate Semen Strychni-induced neurotoxicity through regulating high mobility group box 1 (HMGB1) translocation. Biomed. Pharmacother. 2022, 149, 112884. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, R.; Qi, X.; Li, W.; Guan, Q.; Wang, R.; Li, X.; Li, Y.; Yang, Z.; Feng, Y.F. Novel transethosomes for the delivery of brucine and strychnine: Formulation optimization, characterization and in vitro evaluation in hepatoma cells. J. Drug Deliv. Sci. Technol. 2021, 64, 102425. [Google Scholar] [CrossRef]
- Qin, J.M.; Yin, P.H.; Li, Q.; Sa, Z.Q.; Sheng, X.; Yang, L.; Huang, T.; Zhang, M.; Gao, K.P.; Chen, Q.H. Anti-tumor effects of brucine immuno-nanoparticles on hepatocellular carcinoma. Int. J. Nanomed. 2012, 7, 369. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.P.; Xiao, L.; Liu, D.; Feng, M.S.; Xiao, Y.Y.; Chen, J.; Li, W.; Li, W.D.; Cai, B.C. Synthesis of a novel polymer cholesterol-poly (ethylene glycol) 2000-glycyrrhetinic acid (chol-PEG-GA) and its application in brucine liposome. J. Appl. Polym. Sci. 2012, 124, 4554–4563. [Google Scholar] [CrossRef]
- Haroun, M.; Elsewedy, H.S.; Shehata, T.M.; Tratrat, C.; Al Dhubiab, B.E.; Venugopala, K.N.; Almostafa, M.M.; Kochkar, H.; Elnahas, H.M. Significant of injectable brucine PEGylated niosomes in treatment of MDA cancer cells. J. Drug Deliv. Sci. Technol. 2022, 71, 103322. [Google Scholar] [CrossRef]
- Chen, J.; Hou, T.; Fang, Y.; Chen, Z.-P.; Liu, X.; Cai, H.; Lu, T.-L.; Yan, G.-J.; Cai, B.-C. HPLC determination of strychnine and brucine in rat tissues and the distribution study of processed semen strychni. Yakugaku Zasshi. 2011, 131, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Saraswati, S.; Alhaider, A.A.; Agrawal, S. Anticarcinogenic effect of brucine in diethylnitrosamine initiated and phenobarbital-promoted hepatocarcinogenesis in rats. Chem. Biol. Interact. 2013, 206, 214–221. [Google Scholar] [CrossRef]
- Fan, G.; Liang, X.; He, Y.; Ren, H.; Zhao, J.; Liang, T.; Wei, J.; Wang, T.; Zhang, F. Brucine sensitizes HepG2 human liver cancer cells to 5-fluorouracil via Fas/FasL apoptotic pathway. Int. J. Pharmacol. 2017, 13, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.K.; Yin, W.; Li, W.D.; Yin, F.Z.; Lu, X.Y.; Zhang, X.C.; Hua, Z.C.; Cai, B.C. The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J. Ethnopharmacol. 2006, 106, 179–186. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Zhao, J.; Xiao, W.; Xiong, L.; Chen, W. Anticarcinogenic effect of brucine on DMBA-induced skin cancer via regulation of PI3K/AKT signaling pathway. Pharmacogn. Mag. 2022, 18, 29. [Google Scholar]
- Saminathan, U.; Pugalendhi, P.; Subramaniyan, S.; Jayaganesh, R. Biochemical studies evaluating the chemopreventive potential of brucine in chemically induced mammary carcinogenesis of rats. Toxicol. Mech. Methods. 2019, 29, 8–17. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, W.Y. Pharmacological Effects, Pharmacokinetics, and Strategies to Reduce Brucine Toxicity. Rev. Bras. Farmacogn. 2021, 32, 39–49. [Google Scholar] [CrossRef]
- Yu, G.; Qian, L.; Yu, J.; Tang, M.; Wang, C.; Zhou, Y.; Geng, X.; Zhu, C.; Yang, Y.; Pan, Y. Brucine alleviates neuropathic pain in mice via reducing the current of the sodium channel. J. Ethnopharmacol. 2019, 233, 56–63. [Google Scholar] [CrossRef]
- Shu, G.; Mi, X.; Cai, J.; Zhang, X.; Yin, W.; Yang, X.; Li, Y.; Chen, L.; Deng, X. Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: The role of hypoxia inducible factor 1 pathway. Toxicol. Lett. 2013, 222, 91–101. [Google Scholar] [CrossRef]
- Chen, J.; Yan, G.J.; Hu, R.R.; Gu, Q.W.; Chen, M.L.; Gu, W.; Chen, Z.P.; Cai, B.C. Improved pharmacokinetics and reduced toxicity of brucine after encapsulation into stealth liposomes: Role of phosphatidylcholine. Int. J. Nanomed. 2012, 7, 3567. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.H.; Luo, Z.Y.; Zhou, Y.; Lei, S.; Xu, C.X.; Peng, C.; Li, S.J.; Li, X.W.; Zhu, X.H.; Gao, T.M. Removal of hERG potassium channel affinity through introduction of an oxygen atom: Molecular insights from structure-activity relationships of strychnine and its analogs. Toxicol. Appl. Pharmacol. 2018, 360, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wang, X.L.; Han, X.; Tan, X.X.; Kang, W.J. Cytotoxicity and DNA interaction of brucine and strychnine—Two alkaloids of semen strychni. Int. J. Biol. Macromol. 2015, 77, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Lin, Y.K.; Gao, L.; Yang, Z.M.; Wang, S.; Wu, B.J. Cyp3a11 metabolism-based chronotoxicity of brucine in mice. Toxicol. Lett. 2019, 313, 188–195. [Google Scholar] [CrossRef]
- Gu, L.Q.; Wang, X.F.; Liu, Z.Z.; Ju, P.; Zhang, L.H.; Zhang, Y.; Ma, B.; Bi, K.; Chen, X.J.F.; Toxicology, C. A study of Semen Strychni-induced renal injury and herb–herb interaction of Radix Glycyrrhizae extract and/or Rhizoma Ligustici extract on the comparative toxicokinetics of strychnine and brucine in rats. Food Chem. Toxicol. 2014, 68, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.C.; Hattori, M.; Namba, T.J.C.; Bulletin, P. Prosessing of Nux Vomica. II.: Changes in Alkaloid Composition of the Seeds of Strychnos nux-vomica on Traditional Drug-Processing. Chem. Pharm. Bull. 1990, 38, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.G.; Lai, Y.Q.; Cai, Z.W. Simultaneous analysis of strychnine and brucine and their major metabolites by liquid chromatography–electrospray ion trap mass spectrometry. J. Anal. Toxicol. 2012, 36, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behpour, M.; Ghoreishi, S.M.; Khayatkashani, M.; Motaghedifard, M. A New Method for the Simultaneous Analysis of Strychnine and Brucine in Strychnos nux-vomica Unprocessed and Processed Seeds Using a Carbon-paste Electrode Modified with Multi-walled Carbon Nanotubes. Phytochem. Anal. 2012, 23, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.H.; Su, X.C.; She, D.; Qiu, K.C.; He, Q.M.; Liu, Y.M. LC–MS/MS determination and comparative pharmacokinetics of strychnine, brucine and their metabolites in rat plasma after intragastric administration of each monomer and the total alkaloids from Semen Strychni. J. Chromatogr. B 2016, 1008, 65–73. [Google Scholar] [CrossRef]
- El-Mekkawy, S.; Meselhy, M.R.; Kawata, Y.; Kadota, S.; Hattori, M.; Namba, T. Metabolism of strychnine N-oxide and brucine N-oxide by human intestinal bacteria. Planta Med. 1993, 59, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, T.S.; Yin, F.Z.; Cai, B.C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica. J. Ethnopharmacol. 2003, 88, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Jianyin, Z.; Huimin, B.; Chen, M. Study on the effect of brucine and brucine N-oxide on platelet aggregation and blood clot formation. Jiangsu J. Chin. Trad. Med. 1998, 19, 41–42. [Google Scholar]
- Ma, C.; He, Y.M.; Cai, B.C.; Chen, L. Strychnine and brucine compared with strychnine N-oxide and brucine N-oxide in toxicity. J. Nanjing Univ. Trad. Chin. Med. 1994, 10, 37–39. [Google Scholar]
- Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci. 2002, 65, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parvez, M.K.; Rishi, V. Herb-drug interactions and hepatotoxicity. Curr. Drug Metab. 2019, 20, 275–282. [Google Scholar] [CrossRef]
- Navarro, V.J.; Senior, J.R. Drug-related hepatotoxicity. N. Engl. J. Med. 2006, 354, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.J.; Li, Y.; Li, X.; Fan, L.J.; He, X.R.; Fu, Y.H.; Dong, Z.J. A Simple UPLC/MS-MS Method for Simultaneous Determination of Lenvatinib and Telmisartan in Rat Plasma, and Its Application to Pharmacokinetic Drug-Drug Interaction Study. Molecules 2022, 27, 1291. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Q.; Yan, C.; Gong, Z.Y. Interaction of hepatic stellate cells with neutrophils and macrophages in the liver following oncogenic kras activation in transgenic zebrafish. Sci. Rep. 2018, 8, 8495. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.Y.; Li, J.Y.; Hao, G.F.; Yang, G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today 2020, 25, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Göller, A.H.; Kuhnke, L.; Montanari, F.; Bonin, A.; Schneckener, S.; Ter Laak, A.; Wichard, J.; Lobell, M.; Hillisch, A. Bayer’s in silico ADMET platform: A journey of machine learning over the past two decades. Drug Discov. Today 2020, 25, 1702–1709. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional Chinese medicine: Review and assessment. Front. Pharmacol. 2019, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.B.; Kuo, C.L.; Lien, L.L.; Lien, E.J. Structure–activity relationship: Analyses of p-glycoprotein substrates and inhibitors. J. Clin. Pharm. Ther. 2003, 28, 203–228. [Google Scholar] [CrossRef]
- Alexander, S.P.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. Br. J. Pharmacol. 2019, 176, S21–S141. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.Q.; Yao, X.X.; Gao, S.H.; Li, R.; Li, B.J.; Yang, W.; Cui, R.J. Role of 5-HT receptors in neuropathic pain: Potential therapeutic implications. Pharmacol. Res. 2020, 159, 104949. [Google Scholar] [CrossRef]
- Feng, Y.; He, X.Z.; Yang, Y.L.; Chao, D.M.; Lazarus, L.H.; Xia, Y. Current research on opioid receptor function. Curr. Drug Targets 2012, 13, 230–246. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.Q.; Zhou, J.; Chen, Y.; Xie, X.F.; Rao, C.L.; Liang, J.; Zhang, Y.; Peng, C. Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury. Toxicol. Lett. 2020, 323, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Baulies, A.; Insausti-Urkia, N.; Alarcón-Vila, C.; Fucho, R.; Solsona-Vilarrasa, E.; Núñez, S.; Robles, D.; Ribas, V.; Wakefield, L.; et al. Endoplasmic reticulum stress-induced upregulation of STARD1 promotes acetaminophen-induced acute liver failure. Gastroenterology 2019, 157, 552–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.Y.; Ishaq, S.M.; Wang, Q.E.; Yuan, J.T.; Gao, J.L.; Lu, Z.B. DDAH1 Protects against Acetaminophen-Induced Liver Hepatoxicity in Mice. Antioxidants 2022, 11, 880. [Google Scholar] [CrossRef]
- Jia, R.; Oda, S.; Tsuneyama, K.; Urano, Y.; Yokoi, T. Establishment of a mouse model of troglitazone-induced liver injury and analysis of its hepatotoxic mechanism. J. Appl. Toxicol. 2019, 39, 1541–1556. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Shinohara, M.; Ybanez, M.D.; Saberi, B.; Kaplowitz, N. Signal transduction pathways involved in drug-induced liver injury. Advers. Drug React. 2010, 196, 267–310. [Google Scholar]
- Iorga, A.; Dara, L.; Kaplowitz, N. Drug-induced liver injury: Cascade of events leading to cell death, apoptosis or necrosis. Int. J. Mol. Sci. 2017, 18, 1018. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, A.; Nabila, J.; Temitope, I.A.; Wang, S. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacol. Res. 2020, 161, 105102. [Google Scholar] [CrossRef]
- Hernández-Guerra, M.; Hadjihambi, A.; Jalan, R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J. Hepatol. 2019, 70, 759–772. [Google Scholar] [CrossRef] [Green Version]
- Saito, C.; Shinzawa, K.; Tsujimoto, Y. Synchronized necrotic death of attached hepatocytes mediated via gap junctions. Sci. Rep. 2014, 4, 5169. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.L.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
Property | Predicted Values | |
---|---|---|
Physicochemical Property | Brucine | Brucine N-Oxide |
TPSA | 51.24 | 71.06 |
LogS (Solubility) | −3.126 log mol/L | −1.702 log mol/L |
LogD7.4 (Distribution Coefficient D) | 2.083 | 0.392 |
LogP (Distribution Coefficient P) | 1.585 | 1.443 |
Medicinal Chemistry | ||
QED | 0.719 | 0.424 |
SAscore | 5.739 | 6.162 |
Absorption | ||
Papp (Caco-2 Permeability) | −4.609 | −5.312 |
Pgp-inhibitor | 0.96 | 0.001 |
Pgp-substrate | 0.611 | 0.998 |
HIA (Human Intestinal Absorption) | 0.011 | 0.908 |
Distribution | ||
PPB (Plasma Protein Binding) | 48.53% | 22.48% |
VD (Volume Distribution) | 1.483 L/kg | 1.518 L/kg |
BBB (Blood–Brain Barrier) | 0.952 | 0.314 |
Metabolism | ||
P450 CYP1A2 inhibitor | 0.024 | 0.011 |
P450 CYP1A2 Substrate | 0.764 | 0.683 |
P450 CYP3A4 inhibitor | 0.221 | 0.029 |
P450 CYP3A4 substrate | 0.887 | 0.920 |
P450 CYP2C9 inhibitor | 0.026 | 0.008 |
P450 CYP2C9 substrate | 0.191 | 0.147 |
P450 CYP2C19 inhibitor | 0.026 | 0.018 |
P450 CYP2C19 substrate | 0.914 | 0.827 |
P450 CYP2D6 inhibitor | 0.023 | 0.002 |
P450 CYP2D6 substrate | 0.532 | 0.274 |
Elimination | ||
T 1/2 (Half Life Time) | 0.699 h | 0.928 h |
CL (Clearance Rate) | 10.81 mL/min/kg | 11.487 mL/min/kg |
Toxicity | ||
hERG (hERG Blockers) | 0.034 | 0.022 |
H-HT (Human Hepatotoxicity) | 0.334 | 0.368 |
AMES (Ames Mutagenicity) | 0.013 | 0.009 |
SkinSen (Skin sensitization) | 0.157 | 0.217 |
DILI (Drug Induced Liver Injury) | 0.187 | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Guo, L.; Han, Y.; Zhang, J.; Dai, Z.; Ma, S. A Combination of In Silico ADMET Prediction, In Vivo Toxicity Evaluation, and Potential Mechanism Exploration of Brucine and Brucine N-oxide—A Comparative Study. Molecules 2023, 28, 1341. https://doi.org/10.3390/molecules28031341
Gao Y, Guo L, Han Y, Zhang J, Dai Z, Ma S. A Combination of In Silico ADMET Prediction, In Vivo Toxicity Evaluation, and Potential Mechanism Exploration of Brucine and Brucine N-oxide—A Comparative Study. Molecules. 2023; 28(3):1341. https://doi.org/10.3390/molecules28031341
Chicago/Turabian StyleGao, Yan, Lin Guo, Ying Han, Jingpu Zhang, Zhong Dai, and Shuangcheng Ma. 2023. "A Combination of In Silico ADMET Prediction, In Vivo Toxicity Evaluation, and Potential Mechanism Exploration of Brucine and Brucine N-oxide—A Comparative Study" Molecules 28, no. 3: 1341. https://doi.org/10.3390/molecules28031341
APA StyleGao, Y., Guo, L., Han, Y., Zhang, J., Dai, Z., & Ma, S. (2023). A Combination of In Silico ADMET Prediction, In Vivo Toxicity Evaluation, and Potential Mechanism Exploration of Brucine and Brucine N-oxide—A Comparative Study. Molecules, 28(3), 1341. https://doi.org/10.3390/molecules28031341