A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction
Abstract
:1. Introduction
2. Diamond/AIN Heterojunction
2.1. Light-Emitting Diode
2.2. First-Principles Calculations
3. Diamond/GaN HEMTs
4. Diamond/Si Heterojunction
5. Diamond/Carbon-Based Semiconductor Heterojunction
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isberg, J.; Hammersberg, J.; Johansson, E.; Wikström, T.; Twitchen, D.J.; Whitehead, A.J.; Coe, S.; Scarsbrook, G.A. High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Scarsbrook. Science 2002, 297, 1670. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, H.; Nagase, M.; Kato, Y.; Shikata, S.I. High temperature application of diamond power device. Diam. Relat. Mater. 2012, 24, 201–205. [Google Scholar] [CrossRef]
- Yao, Y.; Sang, D.; Duan, S.; Wang, Q.; Liu, C. Review on the Properties of Boron-Doped Diamond and One-Dimensional-Metal-Oxide Based P-N Heterojunction. Molecules 2021, 26, 71. [Google Scholar]
- Khramtsov, I.; Fedyanin, D.Y. Bright Single-Photon Emitting Diodes Based on the Silicon-Vacancy Center inAlN/Diamond Heterostructures Igor A. Nanomaterials 2020, 10, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scolfaro, L.; Welch, E. Hybrid density functional theory study on zinc blende GaN and diamond surfaces and interfaces: Effects of size, hydrogen passivation, and dipole corrections. Condens. Matter. 2022, 30, e00653. [Google Scholar]
- Guo, X.; Yang, B.; Lu, J.; Li, H.; Huang, N.; Liu, L.; Jiang, X. Electrical tailoring of the photoluminescence of silicon-vacancy centers in diamond/silicon heterojunctions. J. Mater. Chem. C 2022, 10, 9334–9343. [Google Scholar] [CrossRef]
- Yamada, T.; Masuzawa, T.; Mimura, H.; Okano, H. Field emission spectroscopy measurements of graphene/n-type diamond heterojunction. Phys. Lett. Appl. 2019, 114, 231601. [Google Scholar] [CrossRef]
- Valappil1, S.M.; Ohmagari, S.; Zkria, A.; Sittimart, P.; Abubakr, E.; Kato, H.; Yoshitake, T. Nanocarbon ohmic electrodes fabricated by coaxial arc plasma deposition for phosphorusdoped diamond electronics application. AIP Adv. 2022, 12, 085007. [Google Scholar] [CrossRef]
- Feudis, M.D.; Mille, V.; Valentin, A.; Brinza, O.; Tallaire, A.; Tardieu, A.; Issaoui, R.; Achard, J. Ohmic graphite-metal contacts on oxygen-terminated lightly boron-doped CVDmonocrystalline diamond. Diam. Relat. Mater. 2019, 92, 18–24. [Google Scholar] [CrossRef]
- Kocak, M.N.; Pürlü, K.M.; Perkitel, İ.; Altuntaş, İ.; Demir, İ. In-situ and ex-situ face-to-face annealing of epitaxial AlN. Vacuum 2022, 203, 111284. [Google Scholar] [CrossRef]
- Morkoç, H.; Weinheim, W. Handbook of Nitride Semiconductors and Devices, Volume 1, Materials Properties. Phys. Growth 2009. [Google Scholar]
- Assouar, M.B.; Elmazria, O.; Kirsch, P.; Alnot, P.; Mortet, V.; Tiusan, C. High-frequency surface acoustic wave devices based on AlN/diamond layered structure realized using ebeam lithography. J. Appl. Phys. 2007, 101, 114507. [Google Scholar] [CrossRef] [Green Version]
- Miskys, C.R.; Garrido, J.A.; Nebel, C.E.; Hermann, M.; Ambacher, O.; Eickhoff, M.; Stutzmann, M. AlN/diamond heterojunction diodes. Appl. Phys. Lett. 2003, 82, 290292. [Google Scholar] [CrossRef]
- Nebel, C.E.; Miskys, C.R.; Garrido, J.A.; Hermann, M.; Ambacher, O.; Eickhoff, M.; Stutzmann, M. AlN/Diamond np-junctions. Diam. Relat. Mater. 2003, 12, 1873–1876. [Google Scholar] [CrossRef]
- Kueck, D.; Leber, P.; Schmidt, A.; Speranza, G.; Kohn, E. AlN as passivation for surface channel FETs on H-terminated diamond. Diam. Relat. Mater. 2010, 19, 932–935. [Google Scholar] [CrossRef]
- Khramtsov, A.; Fedyanin, D.Y. Superinjection in Diamond p-i-n Diodes: Bright Single-Photon Electroluminescence of Color Centers Beyond the Doping Limit. IgorA. Nanomaterial 2020, 10, 361. [Google Scholar] [CrossRef] [Green Version]
- Hirama, K.; Taniyasu, Y.; Kasu, M. Electroluminescence and capacitance-voltage characteristics of single-crystal n-type AlN (000)/p-type diamond (111) heterojunction diodes. Appl. Phys. Lett. 2011, 98, 011908. [Google Scholar] [CrossRef]
- Sznajder, M.; Hrytsak, R. Ab initio studies of early stages of AlN growth process on the oxygenterminated diamond (111) surface. Diam. Relat. Mater. 2018, 83, 94–103. [Google Scholar] [CrossRef]
- Sznajder, M. DFT-based modelling of carbon adsorption on the AlN surfaces and influence of point defects on the stability of diamond/AlN interfaces. Materials 2020, 103, 107694. [Google Scholar] [CrossRef]
- Hirama, K.; Taniyasu, Y.; Kasu, M. Heterostructure growth of a single-crystal hexagonal AlN (0001) layer on cubic diamond (111) surface. J. Appl. Phys. Lett. 2010, 108, 013528. [Google Scholar]
- Hoshi, S.; Okita, H.; Morino, Y.; Itoh, M. Gallium nitride high electron mobility transistor (GaN-HEMT) technology for high gain and highly efficient power amplifiers. OkiTech. Rev. 2007, 74, 90–93. [Google Scholar]
- Mu, F.; Xu, B.; Wang, X.; Gao, R.; Huang, S.; Wei, K.; Takeuchi, K.; Chen, X. A novel strategy for GaN-on-diamond device with a high thermal boundary conductance. J. Alloys Compd. 2022, 905, 164076. [Google Scholar] [CrossRef]
- Yaita, J.; Yamada, A.; Kotani, J. Growth of microcrystalline diamond films after fabrication of GaN highelectronmobility transistors for effective heat dissipation. J. Appl. Phys. 2021, 60, 076502. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Z. Near-junction microfluidic cooling for GaN HEMT with capped diamond heat spreader. Int. J. Heat Mass Transf. 2022, 186, 122476. [Google Scholar] [CrossRef]
- Ranjan, k.; Arulkumaran, S.; Ng, G.I. Investigations of temperature-dependent interface traps in AlGaN/GaN HEMT on CVD-diamond. Appl. Phys. 2019, 12, 106506. [Google Scholar] [CrossRef]
- Mendes, J.C.; Liehr, M.; Li, C. Diamond/GaN HEMTs: Where from and Where to? Materials 2022, 15, 415. [Google Scholar] [CrossRef]
- Ło’s, S.; Paprocki, K.; Szybowicz, M.; Fabisiak, K. The n–Si/p–CVD Diamond Heterojunction. Materials 2020, 13, 3530. [Google Scholar]
- Ło’s, S.; Fabisiak, K.; Paprocki, K.; Szybowicz, M.; Dychalska, A.; Fabisiak, E.S.; Franków, W. The Hydrogenation Impact on Electronic Properties of p-Diamond/n-Si Heterojunctions. Materials 2021, 14, 6615. [Google Scholar]
- Teii, k.; Ikeda, T. Rectification properties of nanocrystalline diamond/silicon p-n heterojunction diodes. J. Appl. Phys. 2013, 114, 093705. [Google Scholar] [CrossRef]
- Zkria, A.; Shaban, M.; Abubakr, E.; Yoshitake, T. Impedance spectroscopy analysis of n-type (nitrogen-doped) ultrananocrystalline diamond/p-type Si heterojunction diodes. Phys. Scr. 2020, 95, 9. [Google Scholar] [CrossRef]
- Uehigashi, Y.U.; Ohmagari, S.; Umezawa, H.; Yamada, H.; Liang, J.; Shigekawa, N. Comparison of thermal stabilities of p+-Si/p-diamond heterojunction and Al/p-diamond Schottky barrier diodes. Jpn. J. Appl. Phys. 2022, 61, SF1009. [Google Scholar] [CrossRef]
- Bogdanowicz, R.; Ficek, M.; Sobaszek, M.; Nosek, A.; Gołun´ski, Ł.; Karczewski, J.; Botero, A.J.; Goddard III, W.A.; Bockrath, M.; Ossowski, T. Growth and Isolation of Large Area Boron-Doped Nanocrystalline Diamond Sheets: A Route toward Diamond-on-Graphene Heterojunction. Adv. Funct. Mater. 2018, 29, 1805242. [Google Scholar] [CrossRef]
- Zkria1, A.; Gima, H.; Yoshitake, T. Application of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films for ultraviolet detection. Appl. Phys. 2017, 123, 167. [Google Scholar] [CrossRef]
- Wei, M.; Yao, K.; Liu, Y.; Yang, C.; Zang, X.; Lin, L. A Solar-Blind UV Detector Based on Graphene-Microcrystalline Diamond Heterojunctions. Small 2017, 13, 1701328. [Google Scholar] [CrossRef] [PubMed]
Other Relevant Work Need to be Studied in Depth | |
---|---|
Performance Need to Raise: | High-Temperature Performance: |
Seeking new manufacturing routes | Carrier mobility and generation rate |
Seek new electrode types | Intrinsic carrier density |
Raise the reaction speed | Current transmission mechanism |
Combined with different device structures | Power loss and reducing circuit behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, X.; Wang, Y.; Wang, Q.; Zou, L.; Ge, S.; Yao, Y.; Wang, X.; Fan, J.; Sang, D. A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction. Molecules 2023, 28, 1334. https://doi.org/10.3390/molecules28031334
Sang X, Wang Y, Wang Q, Zou L, Ge S, Yao Y, Wang X, Fan J, Sang D. A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction. Molecules. 2023; 28(3):1334. https://doi.org/10.3390/molecules28031334
Chicago/Turabian StyleSang, Xianhe, Yongfu Wang, Qinglin Wang, Liangrui Zou, Shunhao Ge, Yu Yao, Xueting Wang, Jianchao Fan, and Dandan Sang. 2023. "A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction" Molecules 28, no. 3: 1334. https://doi.org/10.3390/molecules28031334
APA StyleSang, X., Wang, Y., Wang, Q., Zou, L., Ge, S., Yao, Y., Wang, X., Fan, J., & Sang, D. (2023). A Review on Optoelectronical Properties of Non-Metal Oxide/Diamond-Based p-n Heterojunction. Molecules, 28(3), 1334. https://doi.org/10.3390/molecules28031334