Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer
Abstract
:1. Introduction
2. Sulfoxides to NH Sulfoximines
3. Sulfides to NH Sulfoximines
4. Sulfinamides to NH Sulfonimidamides
5. Sulfenamides to NH Sulfonimidamides
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reggelin, M.; Zur, C. Sulfoximines: Structures, Properties and Synthetic Applications. Synthesis 2000, 6, 1–64. [Google Scholar] [CrossRef]
- Johnson, C.R. Applications of Sulfoximines in Synthesis. Aldrichim. Acta 1985, 18, 3–10. [Google Scholar]
- Langner, M.; Bolm, C. C1-Symmetric Sulfoximines as Ligands in Copper-Catalyzed Asymmetric Mukaiyama-Type Aldol Reactions. Angew. Chem. Int. Ed. 2004, 43, 5984–5987. [Google Scholar] [CrossRef] [PubMed]
- Bolm, C.; Felder, M.; Müller, J. Optically Active ß-Hydroxy Sulfoximine/Nickel Complexes as Catalysts for the Enantioselective Conjugate Addition of Diethylzinc to Chalcones. Synlett 1992, 1992, 439–441. [Google Scholar] [CrossRef]
- Yadav, M.R.; Rit, R.K.; Sahoo, A.K. Sulfoximines: A Reusable Directing Group for Chemo- and Regioselective Ortho C–H Oxidation of Arenes. Chem. Eur. J. 2012, 18, 5541–5545. [Google Scholar] [CrossRef]
- Rit, R.K.; Yadav, M.R.; Ghosh, K.; Shankar, M.; Sahoo, A.K. Sulfoximine Assisted Pd(II)-Catalyzed Bromination and Chlorination of Primary β-C(sp3)–H Bond. Org. Lett. 2014, 16, 5258–5261. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02522910 (accessed on 7 December 2022).
- Lücking, U.; Jautelat, R.; Krüger, M.; Brumby, T.; Lienau, P.; Schäfer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; et al. The Lab Oddity Prevails: Discovery of Pan-CDK Inhibitor (R)-S-Cyclopropyl-S-(4-{[4-{[(1R,2R)-2-hydroxy-1-methylpropyl]oxy}-5-(trifluoromethyl)pyrimidin-2-yl]amino}phenyl)sulfoximide (BAY1000394) for the Treatment of Cancer. ChemMedChem 2013, 8, 1067–1085. [Google Scholar] [CrossRef] [PubMed]
- Lücking, U. Neglected sulfur(vi) pharmacophores in drug discovery: Exploration of novel chemical space by the interplay of drug design and method development. Org. Chem. Front. 2019, 6, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Lücking, U. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry. Angew. Chem. Int. Ed. 2013, 52, 9399–9408. [Google Scholar] [CrossRef]
- Lücking, U.; Scholz, A.; Lienau, P.; Siemeister, G.; Kosemund, D.; Bohlmann, R.; Briem, H.; Terebesi, I.; Meyer, K.; Prelle, K. Identification of atuveciclib (BAY 1143572), the first highly selective, clinical PTEFb/CDK9 inhibitor for the treatment of cancer. ChemMedChem 2017, 12, 1776–1793. [Google Scholar] [CrossRef]
- Lücking, U.; Kosemund, D.; Böhnke, N.; Lienau, P.; Siemeister, G.; Denner, K.; Bohlmann, R.; Briem, H.; Terebesi, I.; Bömer, U.; et al. Changing for the Better: Discovery of the Highly Potent and Selective CDK9 Inhibitor VIP152 Suitable for Once Weekly Intravenous Dosing for the Treatment of Cancer. J. Med. Chem. 2021, 64, 11651–11674. [Google Scholar] [CrossRef] [PubMed]
- Min, A.; Im, S.-A.; Jang, H.; Kim, S.; Lee, M.; Kim, D.K.; Yang, Y.; Kim, H.-J.; Lee, K.-H.; Kim, J.W.; et al. AZD6738, A Novel Oral Inhibitor of ATR, Induces Synthetic Lethality with ATM Deficiency in Gastric Cancer Cells. Mol. Cancer Ther. 2017, 16, 566–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foote, K.M.; Nissink, J.W.M.; McGuire, T.; Turner, P.; Guichard, S.; Yates, J.W.T.; Lau, A.; Blades, K.; Heathcote, D.; Odedra, R.; et al. Discovery and Characterization of AZD6738, a Potent Inhibitor of Ataxia Telangiectasia Mutated and Rad3 Related (ATR) Kinase with Application as an Anticancer Agent. J. Med. Chem. 2018, 61, 9889–9907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henssen, A.G.; Reed, C.; Jiang, E.; Garcia, H.D.; von Stebut, J.; MacArthur, I.C.; Hundsdoerfer, P.; Kim, J.H.; de Stanchina, E.; Kuwahara, Y.; et al. Therapeutic targeting of PGBD5-induced DNA repair dependency in pediatric solid tumors. Sci. Transl. Med. 2017, 9, eaam9078. [Google Scholar] [CrossRef] [Green Version]
- Gege, C.; Bravo, F.J.; Uhlig, N.; Hagmaier, T.; Schmachtenberg, R.; Elis, J.; Burger-Kentischer, A.; Finkelmeier, D.; Hamprecht, K.; Grunwald, T.; et al. A helicase-primase drug candidate with sufficient target tissue exposure affects latent neural herpes simplex virus infections. Sci. Transl. Med. 2021, 13, eabf8668. [Google Scholar] [CrossRef]
- Gnamm, C.; Jeanguenat, A.; Dutton, A.C.; Grimm, C.; Kloer, D.P.; Crossthwaite, A.J. Novel Diamide Insecticides: Sulfoximines, Sulfonimidamides and Other New Sulfonimidoyl Derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3800–3806. [Google Scholar] [CrossRef]
- Mäder, P.; Kattner, L. Sulfoximines as Rising Stars in Modern Drug Discovery? Current Status and Perspective on an Emerging Functional Group in Medicinal Chemistry. J. Med. Chem. 2020, 63, 14243–14275. [Google Scholar] [CrossRef]
- Han, Y.; Xing, K.; Zhang, J.; Tong, T.; Shi, Y.; Cao, H.; Yu, H.; Zhang, Y.; Liu, D.; Zhao, L. Application of sulfoximines in medicinal chemistry from 2013 to 2020. Eur. J. Med. Chem. 2021, 209, 112885. [Google Scholar] [CrossRef]
- Lücking, U. New Opportunities for the Utilization of the Sulfoximine Group in Medicinal Chemistry from the Drug Designer’s Perspective. Chem. Eur. J. 2022, 28, e202201993. [Google Scholar]
- Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Sulfoximines from a Medicinal Chemist’s Perspective: Physicochemical and in vitro Parameters Relevant for Drug Discovery. Eur. J. Med. Chem. 2017, 126, 225–245. [Google Scholar] [CrossRef]
- Chinthakindi, P.K.; Naicker, T.; Thota, N.; Govender, T.; Kruger, H.G.; Arvidsson, P.I. Sulfonimidamides in Medicinal and Agricultural Chemistry. Angew. Chem. Int. Ed. 2017, 56, 4100–4109. [Google Scholar] [CrossRef]
- Sehgelmeble, F.; Janson, J.; Ray, C.; Rosqvist, S.; Gustavsson, S.; Nilsson, L.I.; Minidis, A.; Holenz, J.; Rotticci, D.; Lundkvist, J.; et al. Sulfonimidamides as Sulfonamides Bioisosteres: Rational Evaluation through Synthetic, in Vitro, and in Vivo Studies with γ-Secretase Inhibitors. ChemMedChem 2012, 7, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Chinthakindi, P.K.; Benediktsdottir, A.; Ibrahim, A.; Wared, A.; Aurell, C.J.; Pettersen, A.; Zamaratski, E.; Arvidsson, P.I.; Chen, Y.; Sandström, A. Synthesis of Sulfonimidamide-Based Amino Acid Building Blocks with Orthogonal Protecting Groups. Eur. J. Org. Chem. 2019, 2019, 1045–1057. [Google Scholar] [CrossRef]
- Nandi, G.C.; Arvidsson, P.I. Sulfonimidamides: Synthesis and Applications in Preparative Organic Chemistry. Adv. Synth. Catal. 2018, 360, 2976–3001. [Google Scholar] [CrossRef]
- Andresini, M.; Tota, A.; Degennaro, L.; Bull, J.A.; Luisi, R. Synthesis and Transformations of NH-Sulfoximines. Chem. Eur. J. 2021, 27, 17293–17321. [Google Scholar] [CrossRef]
- Bull, J.A.; Degennaro, L.; Luisi, R. Straightforward Strategies for the Preparation of NH-Sulfoximines: A Serendipitous Story. Synlett 2017, 28, 2525–2538. [Google Scholar] [CrossRef]
- Bizet, V.; Hendriks, C.M.M.; Bolm, C. Sulfur imidations: Access to sulfimides and sulfoximines. Chem. Soc. Rev. 2015, 44, 3378–3390. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.Q.; Tilby, M.J.; Ren, J.; Parker, N.A.; Skolc, D.; Hall, A.; Duarte, F.; Willis, M.C. Harnessing Sulfinyl Nitrenes: A Unified One-Pot Synthesis of Sulfoximines and Sulfonimidamides. J. Am. Chem. Soc. 2020, 142, 15445–15453. [Google Scholar] [CrossRef]
- Greed, S.; Symes, O.; Bull, J.A. Stereospecific Reaction of Sulfonimidoyl Fluorides with Grignard Reagents for the Synthesis of Enantioenriched Sulfoximines. Chem. Commun. 2022, 58, 5387–5390. [Google Scholar] [CrossRef]
- Kowalczyk, R.; Edmunds, A.J.F.; Hall, R.G.; Bolm, C. Synthesis of CF3-Substituted Sulfoximines from Sulfonimidoyl Fluorides. Org. Lett. 2011, 13, 768–771. [Google Scholar] [CrossRef]
- Gao, B.; Li, S.; Wu, P.; Moses, J.E.; Sharpless, K.B. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew. Chem. Int. Ed. 2018, 57, 1939–1943. [Google Scholar] [CrossRef] [PubMed]
- Mendonça Matos, P.; Lewis, W.; Argent, S.P.; Moore, J.C.; Stockman, R.A. General Method for the Asymmetric Synthesis of N–H Sulfoximines via C–S Bond Formation. Org. Lett. 2020, 22, 2776–2780. [Google Scholar] [CrossRef] [PubMed]
- Aota, Y.; Kano, T.; Maruoka, K. Asymmetric Synthesis of Chiral Sulfoximines through the S-Alkylation of Sulfinamides. Angew. Chem. Int. Ed. 2019, 58, 17661–17665. [Google Scholar] [CrossRef] [PubMed]
- Aota, Y.; Kano, T.; Maruoka, K. Asymmetric Synthesis of Chiral Sulfoximines via the S-Arylation of Sulfinamides. J. Am. Chem. Soc. 2019, 141, 19263–19268. [Google Scholar] [CrossRef] [PubMed]
- Shultz, Z.P.; Scattolin, T.; Wojtas, L.; Lopchuk, J.M. Stereospecific α-(Hetero)Arylation of Sulfoximines and Sulfonimidamides. Nat. Synth. 2022, 1, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Mancheño, O.G.; Bolm, C. Comparative Study of Metal-Catalyzed Iminations of Sulfoxides and Sulfides. Chem. Eur. J. 2007, 13, 6674–6681. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.F.K.; Vogt, P. Cu(I)-Catalyzed Sulfoximination. Tetrahedron Lett. 1998, 39, 4805–4806. [Google Scholar] [CrossRef]
- Lacôte, E.; Amatore, M.; Fensterbank, L.; Malacria, M. Catalytic Synthesis of Sulfoximines Using Copper(II) Salts. Synlett 2002, 2002, 0116–0118. [Google Scholar] [CrossRef]
- Okamura, H.; Bolm, C. Rhodium-Catalyzed Imination of Sulfoxides and Sulfides: Efficient Preparation of N-Unsubstituted Sulfoximines and Sulfilimines. Org. Lett. 2004, 6, 1305–1307. [Google Scholar] [CrossRef]
- Cho, G.Y.; Bolm, C. Silver-Catalyzed Imination of Sulfoxides and Sulfides. Org. Lett. 2005, 7, 4983–4985. [Google Scholar] [CrossRef]
- Mancheño, O.G.; Bolm, C. Iron-Catalyzed Imination of Sulfoxides and Sulfides. Org. Lett. 2006, 8, 2349–2352. [Google Scholar] [CrossRef]
- García Mancheño, O.; Dallimore, J.; Plant, A.; Bolm, C. Iron(II) Triflate as an Efficient Catalyst for the Imination of Sulfoxides. Org. Lett. 2009, 11, 2429–2432. [Google Scholar] [CrossRef]
- Zenzola, M.; Doran, R.; Luisi, R.; Bull, J.A. Synthesis of Sulfoximine Carbamates by Rhodium-Catalyzed Nitrene Transfer of Carbamates to Sulfoxides. J. Org. Chem. 2015, 80, 6391–6399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Chesti, J.; Armstrong, A.; Bull, J.A. Synthesis of Sulfoximine Propargyl Carbamates under Improved Conditions for Rhodium Catalyzed Carbamate Transfer to Sulfoxides. J. Org. Chem. 2022, 87, 16115–16126. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.Y.; Bolm, C. Metal-Free Imination of Sulfoxides and Sulfides. Tetrahedron Lett. 2005, 46, 8007–8008. [Google Scholar] [CrossRef]
- Dannenberg, C.A.; Fritze, L.; Krauskopf, F.; Bolm, C. Access to N-Cyanosulfoximines by Transition Metal-Free Iminations of Sulfoxides. Org. Biomol. Chem. 2017, 15, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Frings, M.; Bolm, C. Enantioselective Nitrene Transfer to Sulfides Catalyzed by a Chiral Iron Complex. Angew. Chem. Int. Ed. 2013, 52, 8661–8665. [Google Scholar] [CrossRef]
- Collet, F.; Dodd, R.H.; Dauban, P. Stereoselective Rhodium-Catalyzed Imination of Sulfides. Org. Lett. 2008, 10, 5473–5476. [Google Scholar] [CrossRef]
- Lai, C.; Mathieu, G.; Gabrielli Tabarez, L.P.; Lebel, H. Batch and Continuous-Flow Iron(II)-Catalyzed Synthesis of Sulfilimines and Sulfoximines Using N-Mesyloxycarbamates. Chem. Eur. J. 2019, 25, 9423–9426. [Google Scholar] [CrossRef]
- García Mancheño, O.; Bistri, O.; Bolm, C. Iodinane- and Metal-Free Synthesis of N-Cyano Sulfilimines: Novel and Easy Access of NH-Sulfoximines. Org. Lett. 2007, 9, 3809–3811. [Google Scholar] [CrossRef]
- Bizet, V.; Buglioni, L.; Bolm, C. Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions: A Photochemical Approach towards N-Acyl Sulfimides and Sulfoximines. Angew. Chem. Int. Ed. 2014, 53, 5639–5642. [Google Scholar] [CrossRef] [PubMed]
- Bizet, V.; Bolm, C. Sulfur Imidations by Light-Induced Ruthenium-Catalyzed Nitrene Transfer Reactions. Eur. J. Org. Chem. 2015, 2015, 2854–2860. [Google Scholar] [CrossRef]
- Johnson, C.R.; Haake, M.; Schroeck, C.W. Preparation and Synthetic Applications of (Dimethylamino)Phenyloxosulfonium Methylide. J. Am. Chem. Soc. 1970, 92, 6594–6598. [Google Scholar] [CrossRef]
- Misani, F.; Fair, T.W.; Reiner, L. The Reaction of Hydrazoic Acid with Thioether-Sulfoxides: Synthesis of Sulfoximines. J. Am. Chem. Soc. 1951, 73, 459–461. [Google Scholar] [CrossRef]
- Gutmann, B.; Elsner, P.; O’Kearney-McMullan, A.; Goundry, W.R.F.; Roberge, D.M.; Kappe, C.O. Development of a Continuous Flow Sulfoxide Imidation Protocol Using Azide Sources under Superacidic Conditions. Org. Process Res. Dev. 2015, 19, 1062–1067. [Google Scholar] [CrossRef]
- Tamura, Y.; Sumoto, K.; Minamikawa, J.; Ikeda, M. A Novel Method for Sulfilimines and Sulfoximines. Tetrahedron Lett. 1972, 13, 4137–4140. [Google Scholar] [CrossRef]
- Johnson, C.R.; Kirchhoff, R.A.; Corkins, H.G. Chemistry of Sulfoxides and Related Compounds. XLIX. Synthesis of Optically Active Sulfoximines from Optically Active Sulfoxides. J. Org. Chem. 1974, 39, 2458–2459. [Google Scholar] [CrossRef]
- Mendiola, J.; Rincon, J.A.; Mateos, C.; Soriano, J.F.; de Frutos, O.; Niemeier, J.K.; Davis, E.M. Preparation, Use, and Safety of O-Mesitylenesulfonylhydroxylamine. Org. Process Res. Dev. 2009, 13, 263–267. [Google Scholar] [CrossRef]
- Miao, J.; Richards, N.G.; Ge, H. Rhodium-catalyzed direct synthesis of unprotected NH-sulfoximines from sulfoxides. Chem. Commun. 2014, 50, 9687–9689. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Bolm, C. Iron (II)-Catalyzed Direct Synthesis of NH Sulfoximines from Sulfoxides. Angew. Chem. Int. Ed. 2018, 57, 324–327. [Google Scholar] [CrossRef]
- Zenzola, M.; Doran, R.; Degennaro, L.; Luisi, R.; Bull, J.A. Transfer of Electrophilic NH Using Convenient Sources of Ammonia: Direct Synthesis of NH Sulfoximines from Sulfoxides. Angew. Chem. Int. Ed. 2016, 55, 7203–7207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tota, A.; St John-Campbell, S.; Briggs, E.L.; Estévez, G.O.; Afonso, M.; Degennaro, L.; Luisi, R.; Bull, J.A. Highly Chemoselective NH- and O-Transfer to Thiols Using Hypervalent Iodine Reagents: Synthesis of Sulfonimidates and Sulfonamides. Org. Lett. 2018, 20, 2599–2602. [Google Scholar] [CrossRef] [PubMed]
- Tota, A.; Colella, M.; Carlucci, C.; Aramini, A.; Clarkson, G.; Degennaro, L.; Bull, J.A.; Luisi, R. N−N Bond Formation Using an Iodonitrene as an Umpolung of Ammonia: Straightforward and Chemoselective Synthesis of Hydrazinium Salts. Adv. Synth. Catal. 2021, 363, 194–199. [Google Scholar] [CrossRef]
- Glachet, T.; Marzag, H.; Saraiva Rosa, N.; Colell, J.F.P.; Zhang, G.; Warren, W.S.; Franck, X.; Theis, T.; Reboul, V. Iodonitrene in Action: Direct Transformation of Amino Acids into Terminal Diazirines and 15N2-Diazirines and Their Application as Hyperpolarized Markers. J. Am. Chem. Soc. 2019, 141, 13689–13696. [Google Scholar] [CrossRef]
- Ibert, Q.; Cauwel, M.; Glachet, T.; Tite, T.; Le Nahenec-Martel, P.; Lohier, J.; Renard, P.; Franck, X.; Reboul, V.; Sabot, C. One-Pot Synthesis of Diazirines and 15N2-Diazirines from Ketones, Aldehydes and Derivatives: Development and Mechanistic Insight. Adv. Synth. Catal. 2021, 363, 4390–4398. [Google Scholar] [CrossRef]
- Hui, C.; Brieger, L.; Strohmann, C.; Antonchick, A.P. Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. J. Am. Chem. Soc. 2021, 143, 18864–18870. [Google Scholar] [CrossRef]
- Reisenbauer, J.C.; Green, O.; Franchino, A.; Finkelstein, P.; Morandi, B. Late-Stage Diversification of Indole Skeletons through Nitrogen Atom Insertion. Science 2022, 377, 1104–1109. [Google Scholar] [CrossRef]
- Hui, C.; Antonchick, A.P. Iodonitrene: A Direct Metal-Free Electrophilic Aminating Reagent. Org. Chem. Front. 2022, 9, 3897–3907. [Google Scholar] [CrossRef]
- Andresini, M.; Colella, M.; Degennaro, L.; Luisi, R. Hypervalent Iodine (III) Reagents and Ammonia as Useful Combination for Highly Chemoselective N-Transfer to Low-Valent Organosulfur Compounds and Amines. Arkivoc 2021, 2021, 141–163. [Google Scholar] [CrossRef]
- Collins, K.D.; Glorius, F. A Robustness Screen for the Rapid Assessment of Chemical Reactions. Nat. Chem. 2013, 5, 597–601. [Google Scholar] [CrossRef]
- Degennaro, L.; Tota, A.; De Angelis, S.; Andresini, M.; Cardellicchio, C.; Capozzi, M.A.; Romanazzi, G.; Luisi, R. A Convenient, Mild, and Green Synthesis of NH-Sulfoximines in Flow Reactors. Eur. J. Org. Chem. 2017, 2017, 6486–6490. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cheng, Y.; Becker, P.; Raabe, G.; Bolm, C. Synthesis of Sulfoximidoyl-Containing Hypervalent Iodine(III) Reagents and Their Use in Transition-Metal-Free Sulfoximidations of Alkynes. Angew. Chem. Int. Ed. 2016, 55, 12655–12658. [Google Scholar] [CrossRef] [PubMed]
- Glachet, T.; Franck, X.; Reboul, V. Late-Stage Sulfoximination: Improved Synthesis of the Anticancer Drug Candidate Atuveciclib. Synthesis 2019, 51, 971–975. [Google Scholar]
- Sirvent, J.A.; Lücking, U. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates. ChemMedChem 2017, 12, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.A.; Askey, H.; Campbell, A.D.; Chan, L.; Cooper, K.G.; Cui, Z.; Dalgleish, A.; Dave, D.; Ensor, G.; Galan Espinosa, M.R.; et al. Development and Scale-Up of an Improved Manufacturing Route to the ATR Inhibitor Ceralasertib. Org. Process Res. Dev. 2021, 25, 43–56. [Google Scholar] [CrossRef]
- Tota, A.; Zenzola, M.; Chawner, S.J.; John-Campbell, S.S.; Carlucci, C.; Romanazzi, G.; Degennaro, L.; Bull, J.A.; Luisi, R. Synthesis of NH-Sulfoximines from Sulfides by Chemoselective One-Pot N- and O-Transfers. Chem. Commun. 2017, 53, 348–351. [Google Scholar] [CrossRef] [Green Version]
- Lohier, J.-F.; Glachet, T.; Marzag, H.; Gaumont, A.-C.; Reboul, V. Mechanistic Investigation of the NH-Sulfoximination of Sulfide. Evidence for λ6-Sulfanenitrile Intermediates. Chem. Commun. 2017, 53, 2064–2067. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, B.; Zhou, S.; Zhou, S.; Wei, W.; Liu, J.; Zhan, Y.; Cheng, D.; Chen, M.; Li, Y.; et al. Sulfimine-Promoted Fast O Transfer: One-Step Synthesis of Sulfoximine from Sulfide. ChemistrySelect 2017, 2, 1620–1624. [Google Scholar] [CrossRef]
- Yoshimura, T.; Tsukurimichi, E.; Kita, H.; Fujii, H.; Shimasaki, C. Formation of S,S-Diphenyl-S-Methoxythiazyne Ph2S(OMe)(≡N) in the Alkaline Hydrolysis of S,S-Diphenyl-N-Halosulfilimines. Tetrahedron Lett. 1989, 30, 6339–6340. [Google Scholar] [CrossRef]
- Yoshimura, T.; Tsukurimichi, E.; Kita, H.; Fujii, H.; Shimasaki, C. Kinetic Study on the Alkaline Hydrolysis of S,S -Diaryl-N-Halosulfilimines. Bull. Chem. Soc. Jpn. 1990, 63, 1764–1769. [Google Scholar] [CrossRef] [Green Version]
- Chaabouni, S.; Lohier, J.-F.; Barthelemy, A.-L.; Glachet, T.; Anselmi, E.; Dagousset, G.; Diter, P.; Pégot, B.; Magnier, E.; Reboul, V. One-Pot Synthesis of Aryl- and Alkyl S -Perfluoroalkylated NH -Sulfoximines from Sulfides. Chem. Eur. J. 2018, 24, 17006–17010. [Google Scholar] [CrossRef] [PubMed]
- Bizet, V.; Kowalczyk, R.; Bolm, C. Fluorinated Sulfoximines: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014, 43, 2426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Tan, H.; Chen, W.; Shen, H.C.; Lu, Y.; Zheng, C.; Xu, H. Synthesis of NH-Sulfoximines by Using Recyclable Hypervalent Iodine(III) Reagents under Aqueous Micellar Conditions. ChemSusChem 2020, 13, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Lin, L.; Chen, X.; Chen, Y.; Wang, W.; Xu, B. Electrochemical Oxidative Syntheses of NH-Sulfoximines, NH-Sulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates. ChemSusChem 2021, 14, 3277–3282. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Chen, X.; Chen, F.; He, Z.; Zeng, Q. Syntheses and Transformations of Sulfoximines. Chem. Rec. 2021, 21, 396–416. [Google Scholar] [CrossRef]
- Bär, R.M.; Langer, L.; Nieger, M.; Bräse, S. Bicyclo [1.1.1]pentyl Sulfoximines: Synthesis and Functionalization. Adv. Synth. Catal. 2020, 362, 1356–1361. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Fujii, T.; Dong, T.; Wakai, Y. Yoshimura, T. Application of alkoxy-λ6-sulfanenitriles as strong alkylating reagents. Heteroat. Chem. 2004, 15, 193–198. [Google Scholar] [CrossRef]
- Tota, A.; Carlucci, C.; Pisano, L.; Cutolo, G.; Clarkson, G.J.; Romanazzi, G.; Degennaro, L.; Bull, J.A.; Rollin, P.; Luisi, R. Synthesis of Glycosyl Sulfoximines by a Highly Chemo- and Stereoselective NH- and O-Transfer to Thioglycosides. Org. Biomol. Chem. 2020, 18, 3893–3897. [Google Scholar] [CrossRef] [PubMed]
- Craven, G.B.; Briggs, E.L.; Zammit, C.M.; McDermott, A.; Greed, S.; Affron, D.P.; Leinfellner, C.; Cudmore, H.R.; Tweedy, R.R.; Luisi, R.; et al. Synthesis and Configurational Assignment of Vinyl Sulfoximines and Sulfonimidamides. J. Org. Chem. 2021, 86, 7403–7424. [Google Scholar] [CrossRef]
- Ding, Y.; Pedersen, S.S.; Lin, A.; Qian, R.; Ball, Z.T. Direct Formation and Site-Selective Elaboration of Methionine Sulfoximine in Polypeptides. Chem. Sci. 2022, 13, 14101–14105. [Google Scholar] [CrossRef]
- Moessner, C.; Bolm, C. Cu(OAc)2-Catalyzed N-Arylations of Sulfoximines with Aryl Boronic Acids. Org. Lett. 2005, 7, 2667–2669. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.Q.; Hall, A.; Willis, M.C. One-Pot, Three-Component Sulfonimidamide Synthesis Exploiting the Sulfinylamine Reagent N-Sulfinyltritylamine, TrNSO. Angew. Chem. Int. Ed. 2017, 56, 14937–14941. [Google Scholar] [CrossRef] [PubMed]
- Greed, S.; Briggs, E.L.; Idiris, F.I.M.; White, A.J.P.; Lücking, U.; Bull, J.A. Synthesis of Highly Enantioenriched Sulfonimidoyl Fluorides and Sulfonimidamides by Stereospecific Sulfur–Fluorine Exchange (SuFEx) Reaction. Chem. Eur. J. 2020, 26, 12533–12538. [Google Scholar] [CrossRef]
- Wu, P.; Demaerel, J.; Kong, D.; Ma, D.; Bolm, C. Copper-Catalyzed, Aerobic Synthesis of NH-Sulfonimidamides from Primary Sulfinamides and Secondary Amines. Org. Lett. 2022, 24, 6988–6992. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, Z.; Bolm, C. Copper-Catalyzed Transsulfinamidation of Sulfinamides as a Key Step in the Preparation of Sulfonamides and Sulfonimidamides. Angew. Chem. Int. Ed. 2018, 57, 15602–15605. [Google Scholar] [CrossRef]
- Izzo, F.; Schäfer, M.; Stockman, R.A.; Lücking, U. A New, Practical One-Pot Synthesis of Unprotected Sulfonimidamides by Transfer of Electrophilic NH to Sulfinamides. Chem. Eur. J. 2017, 23, 15189–15193. [Google Scholar] [CrossRef] [Green Version]
- Leca, D.; Fensterbank, L.; Lacôte, E.; Malacria, M. A New Practical One-Pot Access to Sulfonimidates. Org. Lett. 2002, 4, 4093–4095. [Google Scholar] [CrossRef]
- Felim, A.; Toussaint, A.; Phillips, C.R.; Leca, D.; Vagstad, A.; Fensterbank, L.; Lacôte, E.; Malacria, M. Improved Method for the Iodine(III)-Mediated Preparation of Aryl Sulfonimidates. Org. Lett. 2006, 8, 337–339. [Google Scholar] [CrossRef]
- Matos, P.M.; Stockman, R.A. Synthetic Approaches and Applications of Sulfonimidates. Org. Biomol. Chem. 2020, 18, 6429–6442. [Google Scholar] [CrossRef]
- Izzo, F.; Schäfer, M.; Lienau, P.; Ganzer, U.; Stockman, R.A.; Lücking, U. Exploration of Novel Chemical Space: Synthesis and in Vitro Evaluation of N-Functionalized Tertiary Sulfonimidamides. Chem. Eur. J. 2018, 24, 9295–9304. [Google Scholar] [CrossRef]
- Feng, J.; Liu, H.; Yao, Y.; Lu, C.D. Synthesis of Enantioenriched Primary Tert-Butanesulfonimidamides via Imination-Hydrazinolysis of N′-tert-Butanesulfinyl Amidines. J. Org. Chem. 2022, 87, 5005–5016. [Google Scholar] [CrossRef] [PubMed]
- Briggs, E.L.; Tota, A.; Colella, M.; Degennaro, L.; Luisi, R.; Bull, J.A. Synthesis of Sulfonimidamides from Sulfenamides via an Alkoxy-Amino-λ6-Sulfanenitrile Intermediate. Angew. Chem. Int. Ed. 2019, 58, 14303–14310. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.A.; Friedman, A.J.; Kluger, E.W.; Skibo, E.B.; Fretz, E.R.; Milicia, A.P.; LeMasters, W.C.; Bentley, M.D.; Lacadie, J.A.; Douglass, I.B. Chemistry of the Sulfur-Nitrogen Bond. 12.1 Metal-Assisted Synthesis of Sulfenamide Derivatives from Aliphatic and Aromatic Disulfides. J. Org. Chem. 1977, 42, 967–972. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luisi, R.; Bull, J.A. Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer. Molecules 2023, 28, 1120. https://doi.org/10.3390/molecules28031120
Luisi R, Bull JA. Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer. Molecules. 2023; 28(3):1120. https://doi.org/10.3390/molecules28031120
Chicago/Turabian StyleLuisi, Renzo, and James A. Bull. 2023. "Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer" Molecules 28, no. 3: 1120. https://doi.org/10.3390/molecules28031120
APA StyleLuisi, R., & Bull, J. A. (2023). Synthesis of Sulfoximines and Sulfonimidamides Using Hypervalent Iodine Mediated NH Transfer. Molecules, 28(3), 1120. https://doi.org/10.3390/molecules28031120