Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method
Abstract
:1. Introduction
2. Methods and Models
2.1. General Computational Details
2.2. Structure Models for Cellulose
2.3. Structure Models for Polypropylene
2.4. Structure Models for PP–Cellulose Composite
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bledzki, A. Composites Reinforced with Cellulose Based Fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Bhat, A.H.; Dasan, Y.K.; Khan, I.; Jawaid, M. Cellulosic Biocomposites: Potential Materials for Future. In Green Biocomposites; Jawaid, M., Salit, M.S., Alothman, O.Y., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2017; pp. 69–100. ISBN 978-3-319-49381-7. [Google Scholar]
- Baghaei, B.; Skrifvars, M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules 2020, 25, 2836. [Google Scholar] [CrossRef] [PubMed]
- Gay, D. Composite Materials: Design and Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2015; ISBN 978-1-4665-8487-7. [Google Scholar]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Progress Report on Natural Fiber Reinforced Composites: Progress Report on Natural Fiber Composites. Macromol. Mater. Eng. 2014, 299, 9–26. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Drzal, L.T.; Misra, M. Engineered Natural Fiber Reinforced Polypropylene Composites: Influence of Surface Modifications and Novel Powder Impregnation Processing. J. Adhes. Sci. Technol. 2002, 16, 999–1015. [Google Scholar] [CrossRef]
- Karian, H.G. (Ed.) Handbook of Polypropylene and Polypropylene Composites; Plastics Engineering; Marcel Dekker: New York, NY, USA, 2003; ISBN 978-0-8247-4064-1. [Google Scholar]
- Chanda, M. Plastics Technology Handbook, 5th ed.; Plastics Engineering Series; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2018; ISBN 978-1-4987-8621-8. [Google Scholar]
- Campilho, R.D.S.G. (Ed.) Natural Fiber Composites; Taylor & Francis Group: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-3900-3. [Google Scholar]
- Kim, J.-K.; Pal, K. Recent Advances in the Processing of Wood-Plastic Composites; Engineering Materials; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010; ISBN 978-3-642-14876-7. [Google Scholar]
- Nachtigall, S.M.B.; Cerveira, G.S.; Rosa, S.M.L. New Polymeric-Coupling Agent for Polypropylene/Wood-Flour Composites. Polym. Test. 2007, 26, 619–628. [Google Scholar] [CrossRef]
- Ju, S.-P.; Chen, C.-C.; Huang, T.-J.; Liao, C.-H.; Chen, H.-L.; Chuang, Y.-C.; Wu, Y.-C.; Chen, H.-T. Investigation of the Structural and Mechanical Properties of Polypropylene-Based Carbon Fiber Nanocomposites by Experimental Measurement and Molecular Dynamics Simulation. Comput. Mater. Sci. 2016, 115, 1–10. [Google Scholar] [CrossRef]
- He, L.; Li, W.; Chen, D.; Lu, G.; Chen, L.; Zhou, D.; Yuan, J. Investigation on the Microscopic Mechanism of Potassium Permanganate Modification and the Properties of Ramie Fiber/Polypropylene Composites. Polym. Compos. 2018, 39, 3353–3362. [Google Scholar] [CrossRef]
- Modi, V.; Karttunen, A.J. Molecular Dynamics Simulations on the Elastic Properties of Polypropylene Bionanocomposite Reinforced with Cellulose Nanofibrils. Nanomaterials 2022, 12, 3379. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.L.C.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended Coverage for Polymer and Drug-like Molecule Databases. J. Mol. Model. 2016, 22, 47. [Google Scholar] [CrossRef]
- Hockney, R.W.; Eastwood, J.W. Computer Simulation Using Particles; IOP Publishing Ltd.: Bristol, UK, 1988; ISBN 978-0-85274-392-8. [Google Scholar]
- Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Nosé, S. Constant Temperature Molecular Dynamics Methods. Prog. Theor. Phys. Suppl. 1991, 103, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-Ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef] [PubMed]
- Designerdata. Polypropylene Property Data. Available online: https://designerdata.nl/materials/plastics/thermo-plastics/polypropylene-(cop.) (accessed on 21 January 2023).
- Faucher, J.A. Viscoelastic Behavior of Polyethylene and Polypropylene. Trans. Soc. Rheol. 1959, 3, 81–93. [Google Scholar] [CrossRef]
- Abbasi Moud, A. Cellulose Nanocrystals Examined by Atomic Force Microscopy: Applications and Fundamentals. ACS Food Sci. Technol. 2022, 2, 1789–1818. [Google Scholar] [CrossRef]
- Josefsson, G.; Tanem, B.S.; Li, Y.; Vullum, P.E.; Gamstedt, E.K. Prediction of Elastic Properties of Nanofibrillated Cellulose from Micromechanical Modeling and Nano-Structure Characterization by Transmission Electron Microscopy. Cellulose 2013, 20, 761–770. [Google Scholar] [CrossRef]
- Chen, M.; Coasne, B.; Guyer, R.; Derome, D.; Carmeliet, J. Role of Hydrogen Bonding in Hysteresis Observed in Sorption-Induced Swelling of Soft Nanoporous Polymers. Nat. Commun. 2018, 9, 3507. [Google Scholar] [CrossRef]
- Affdl, J.C.H.; Kardos, J.L. The Halpin-Tsai Equations: A Review. Polym. Eng. Sci. 1976, 16, 344–352. [Google Scholar] [CrossRef]
- Lei, Y.; Luo, L.; Kang, Z.; Zhang, J.; Zhang, B. Modified Halpin–Tsai Equation for Predicting Interfacial Effect in Water Diffusion Process. Sci. Eng. Compos. Mater. 2021, 28, 180–189. [Google Scholar] [CrossRef]
Young’s Modulus (GPa) | ||||||
---|---|---|---|---|---|---|
Monomers | Number of Chains | x | y | z | Bulk Modulus (GPa) | Shear Modulus (GPa) |
18 | 1 | 1.4 | 2.4 | 4.1 | 3.2 | 1.3 |
5 | 2.9 | 2.5 | 2.5 | 1.9 | 1.2 | |
10 | 2.5 | 3.2 | 3.1 | 2.1 | 1.2 | |
30 | 1 | 4.5 | 3.2 | 4.1 | 3.0 | 1.1 |
5 | 3.5 | 2.7 | 3.6 | 2.2 | 1.2 | |
10 | 2.5 | 2.6 | 3.5 | 2.1 | 1.1 | |
50 | 1 | 2.4 | 2.1 | 3.3 | 1.6 | 1.1 |
5 | 3.2 | 3.3 | 3.2 | 2.4 | 1.3 | |
10 | 3.9 | 4.0 | 3.0 | 2.6 | 1.3 | |
50 | 3.2 | 3.1 | 3.4 | 2.5 | 1.3 | |
100 | 1 | 3.4 | 3.4 | 2.4 | 2.4 | 1.2 |
5 | 3.3 | 3.4 | 3.5 | 2.4 | 1.3 | |
10 | 3.4 | 3.2 | 3.4 | 2.6 | 1.3 |
Young’s Modulus (GPa) | ||||||
---|---|---|---|---|---|---|
Cellulose | Mass Percentage | x | y | z | Bulk Modulus (GPa) | Shear Modulus (GPa) |
7 | 10 | 4.4 | 10.1 | 3.8 | 3.4 | 1.8 |
20 | 5.1 | 16.6 | 5.3 | 4.9 | 2.4 | |
30 | 4.8 | 23.6 | 4.8 | 4.9 | 2.5 | |
10 | 10 | 4.3 | 9.2 | 4.1 | 3.4 | 1.8 |
18 | 4.7 | 15.3 | 4.6 | 4.2 | 2.2 | |
20 | 5.4 | 17.1 | 5.1 | 4.9 | 2.5 | |
28 | 7.3 | 24.0 | 6.6 | 5.8 | 3.2 | |
14 | 20 | 5.5 | 16.4 | 5.1 | 4.9 | 2.5 |
30 | 7.7 | 25.9 | 7.2 | 6.4 | 3.3 |
Young’s Modulus (GPa) | ||||||||
---|---|---|---|---|---|---|---|---|
Cellulose | m-% (Cellulose) | m-% (PP-MAH) | m-% (MAH) | x | y | z | Bulk Modulus (GPa) | Shear Modulus (GPa) |
7 | 20 | 3.4 | 0.15 | 5.9 | 18.0 | 5.5 | 5.2 | 2.6 |
10 | 18 | 4.1 | 0.18 | 5.3 | 15.3 | 5.3 | 4.5 | 2.4 |
14 | 20 | 3.2 | 0.14 | 5.9 | 17.0 | 5.5 | 5.2 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Möttönen, N.B.; Karttunen, A.J. Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method. Molecules 2023, 28, 1115. https://doi.org/10.3390/molecules28031115
Möttönen NB, Karttunen AJ. Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method. Molecules. 2023; 28(3):1115. https://doi.org/10.3390/molecules28031115
Chicago/Turabian StyleMöttönen, Nea B., and Antti J. Karttunen. 2023. "Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method" Molecules 28, no. 3: 1115. https://doi.org/10.3390/molecules28031115
APA StyleMöttönen, N. B., & Karttunen, A. J. (2023). Mechanical Properties of Polypropylene–Cellulose Biocomposites: Molecular Dynamics Simulations Combined with Constant Strain Method. Molecules, 28(3), 1115. https://doi.org/10.3390/molecules28031115