The Quantification of Paclitaxel and Its Two Major Metabolites in Biological Samples by HPLC-MS/MS and Its Application in a Pharmacokinetic and Tumor Distribution Study in Xenograft Nude Mouse
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
Analysis Time | Reference |
---|---|
3.0 min | The present study |
3.5 min | J. Chromatogr. B, 2003, 785: 253–261. [15] |
4.5 min | Anal. Chem. 2005, 77: 4677–4683. [16] |
9.0 min | Rapid Commun. Mass Spectrom. 2006, 20: 2183–2189 [17] |
9.0 min | Biomed. Chromatogr. 2006, 20: 139–148. [18] |
7.0 min | J. Chromatogr. B, 2011, 879: 2018–2022. [19] |
25.0 min | Biomed. Chromatogr. 2013, 27: 539–544 [14] |
11.5 min | J. Pharm. Biomed. Anal. 2014, 91: 131–137 [20] |
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity and Lowest Limit of Quantification
2.2.3. Precision and Accuracy
2.2.4. Matrix Effect and Extraction Recovery
2.2.5. Stability
2.3. Application of PK and Tumor Tissue Distribution Study in Xenograft Nude Mice
3. Materials and Methods
3.1. Drugs and Reagents
3.2. HPLC-MS/MS Conditions
3.3. Preparation of Standard and Quality Control (QC) Samples
3.4. Sample Preparation
3.5. Method Validation
3.6. Pharmacokinetics and Tumor Tissue Distribution
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rowinsky, E.K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 1997, 48, 353–374. [Google Scholar] [CrossRef] [PubMed]
- Posocco, B.; Buzzo, M.; Follegot, A.; Giodini, L.; Sorio, R.; Marangon, E.; Toffoli, G. A new high-performance liquid chromatography-tandem mass spectrometry method for the determination of paclitaxel and 6α-hydroxy-paclitaxel in human plasma: Development, validation and application in a clinical pharmacokinetic study. PLoS ONE 2018, 13, e0193500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Ma, S.; Chen, H.Y.; Tang, Z.H.; Song, W.T.; Deng, M.X. Nucleobase-crosslinked poly(2-oxazoline) nanoparticles as paclitaxel carriers with enhanced stability and ultra-high drug loading capacity for breast cancer therapy. Asian J. Pharm. Sci. 2022, 17, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.W.; Rahman, A.; Kim, B.R.; Guengerich, F.P.; Collins, J.M. Metabolism of taxol by human hepatic microsomes and liver slices: Participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res. 1994, 54, 4026–4035. [Google Scholar] [PubMed]
- Rahman, A.; Korzekwa, K.R.; Grogan, J.; Gonzalez, F.J.; Harris, J.W. Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 1994, 54, 5543–5546. [Google Scholar] [PubMed]
- Kajosaari, L.I.; Laitila, J.; Neuvonen, P.J.; Backman, J.T. Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: Effect of fibrates and rifampicin. Basic Clin. Pharmacol. Toxicol. 2005, 97, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Walle, U.K.; Kuma, G.N.; Bhalla, K.N. Taxol metabolism and disposition in cancer patients. Drug Metab. Dispos. 1995, 23, 506–512. [Google Scholar] [PubMed]
- De Graan, A.J.M.; Elens, L.; Sprowl, J.A.; Sparreboom, A.; Friberg, L.E.; Van der Holt, B.; De Raaf, P.J.; De Bruijn, P.; Engels, F.K.; Eskens, F.A.L.M.; et al. CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin. Cancer Res. 2013, 19, 3316–3324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leskelä, S.; Jara, C.; Leandro-García, L.J.; Martínez, A.; García-Donas, J.; Hernando, S.; Hurtado, A.; Vicario, J.C.C.; Montero-Conde, C.; Landa, I.; et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharm. J. 2011, 11, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Václavíková, R.; Horský, S.; Simek, P.; Gut, I. Paclitaxel metabolism in rat and human liver microsomes is inhibited by phenolic antioxidants. Naunyn Schmiedebergs Arch. Pharmacol. 2003, 368, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Qi, H.; Pan, P.; Hou, T.; Li, J.; He, G.; Zhang, H.J. Pathway-dependent inhibition of paclitaxel hydroxylation by kinase inhibitors and assessment of drug-drug interaction potentials. Drug Metab. Dispos. 2014, 42, 782–795. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Choi, J.S. Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. Int. J. Pharm. 2007, 337, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Choi, J.S. Effects of naringin on the pharmacokinetics of intravenous paclitaxel in rats. Biopharm. Drug Dispos. 2006, 27, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Fujikawa, A.; Ito, H.; Tanaka, N.; Furugen, A.; Miyamori, K.; Takahashi, N.; Ogura, J.; Kobayashia, M.; Yamadac, T.; et al. Quantitative determination of paclitaxel and its metabolites, 6α-hydroxypaclitaxel and p-3′-hydroxypaclitaxel, in human plasma using column-switching liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 2013, 27, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.S.; Melissa, M.; Kiser, M.M.; Culley, T.; John, R.; Kern, J.R.; Dolan, J.W.; McChesney, J.D.; Zygmunt, J.; Bannister, S.J. Measurement of paclitaxel in biological matrices: High-throughput liquid chromatographic–tandem mass spectrometric quantifification of paclitaxel and metabolites in human and dog plasma. J. Chromatogr. B 2003, 785, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Mortier, K.A.; Renard, V.; Verstraete, A.G.; Van Gussem, A.; Van Belle, S.; Willy, E.; Lambert, W.E. Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry assay for the quantification of docetaxel and paclitaxel in human plasma and oral fluid. Anal. Chem. 2005, 77, 4677–4683. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Vretenbrant, K.; Norlander, B.; Peterson, C. Measurement of paclitaxel and its metabolites in human plasma using liquid chromatography/ion trap mass spectrometry with a sonic spray ionization interface. Rapid Commun. Mass Spectrom. 2006, 20, 2183–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vainchtein, L.D.; Thijssen, B.; Stokvis, E.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H. A simple and sensitive assay for the quantitative analysis of paclitaxel and metabolites in human plasma using liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 2006, 20, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dutschman, G.E.; Li, X.; Cheng, Y.C. Quantitation of paclitaxel and its two major metabolites using a liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. B 2011, 879, 2018–2022. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Peralbo, M.A.; Priego-Capote, F.; Luque de Castro, M.D.; Casado-Adam, A.; Arjona-Sánchez, A.; Munoz-Casares, F.C. LC–MS/MS quantitative analysis of paclitaxel and its major metabolites in serum, plasma and tissue from women with ovarian cancer after intraperitoneal chemotherapy. J. Pharm. Biomed. Anal. 2014, 91, 131–137. [Google Scholar] [CrossRef] [PubMed]
- FDA. Bioanalytical Method Validation Guidance for Industry; U.S. Department of Health and Human Service, Food and Drug Administration: Silver Spring, MD, USA, 2018.
Compound | Standard Curves | Correlation Coefficients (r) | Linear Range (ng/mL) | LLOQ (ng/mL) |
---|---|---|---|---|
Plasma | ||||
PTX | y = 0.023x + 0.00356 | 0.9912 | 0.5~1000.0 | 0.5 |
6α-OHP | y = 0.0343x + 0.00824 | 0.9982 | 0.25~500.0 | 0.25 |
3′-OHP | y = 0.0109x + 0.00289 | 0.9943 | 0.25~500.0 | 0.25 |
Tumor tissue homogenate | ||||
PTX | y = 0.0292x + 0.00721 | 0.9971 | 0.5~1000.0 | 0.5 |
6α-OHP | y = 0.0391x + 0.00752 | 0.9965 | 0.25~500.0 | 0.25 |
3′-OHP | y = 0.0402x + 0.00947 | 0.9951 | 0.25~500.0 | 0.25 |
Compound | Concentration (ng/mL) | RSD (%) | RE(%) | ||
---|---|---|---|---|---|
Added | Found (Mean) | Intra-Day | Inter-Day | ||
Plasma | |||||
PTX | 1.0 | 1.11 | 7.9 | 6.4 | 11.0 |
500.0 | 544.6 | 8.7 | 9.1 | 8.9 | |
800.0 | 853.6 | 7.1 | 5.8 | 6.7 | |
6α-OHP | 0.50 | 0.53 | 9.1 | 8.4 | 6.0 |
250.0 | 272.1 | 5.7 | 5.1 | 8.8 | |
400.0 | 439.4 | 6.1 | 4.4 | 9.8 | |
3′-OHP | 0.50 | 0.46 | 8.9 | 10.2 | −8.0 |
250.0 | 239.5 | 5.3 | 6.6 | −4.2 | |
400.0 | 387.1 | 4.9 | 5.4 | −3.2 | |
Tumor tissue homogenate | |||||
PTX | 1.0 | 0.93 | 10.2 | 11.1 | −7.0 |
500.0 | 487.1 | 7.4 | 6.8 | −2.6 | |
800.0 | 848.2 | 8.1 | 5.4 | 6.0 | |
6α-OHP | 0.50 | 0.52 | 9.2 | 9.6 | 4.0 |
250.0 | 271.9 | 7.6 | 8.1 | 8.8 | |
400.0 | 432.6 | 7.3 | 5.2 | 8.2 | |
3′-OHP | 0.50 | 0.48 | 9.4 | 7.2 | −4.8 |
250.0 | 269.4 | 7.6 | 8.9 | 7.8 | |
400.0 | 423.8 | 4.3 | 6.1 | 6.0 |
Parameters | PTX | PTX + Resveratrol |
---|---|---|
AUC (ng·h/mL) | 7506.8 ± 809.3 | 9799.2 ± 783.1 * |
Clt (mL/h) | 14.1 ± 1.6 | 10.2 ± 1.3 * |
k (h−1) | 0.27 ± 0.021 | 0.24 ± 0.031 |
t1/2 (h) | 2.62 ± 0.23 | 2.90 ± 0.34 |
Parameter | 6α-OHP | 3′-OHP | ||
---|---|---|---|---|
Without Resveratrol | Resveratrol | Without Resveratrol | Resveratrol | |
AUC (ng·h/mL) | 922.4 ± 103.2 | 663.8 ± 79.4 * | 196.4 ± 23.6 | 126.7 ± 23.1 * |
t1/2 (h) | 1.77 ± 0.12 | 1.65 ± 0.14 | 3.03 ± 0.05 | 2.17 ± 0.26 |
K (h−1) | 0.39 ± 0.031 | 0.42 ± 0.045 | 0.23 ± 0.04 | 0.32 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Huang, H.; Sun, Y.; Liu, Q. The Quantification of Paclitaxel and Its Two Major Metabolites in Biological Samples by HPLC-MS/MS and Its Application in a Pharmacokinetic and Tumor Distribution Study in Xenograft Nude Mouse. Molecules 2023, 28, 1027. https://doi.org/10.3390/molecules28031027
Huang H, Huang H, Sun Y, Liu Q. The Quantification of Paclitaxel and Its Two Major Metabolites in Biological Samples by HPLC-MS/MS and Its Application in a Pharmacokinetic and Tumor Distribution Study in Xenograft Nude Mouse. Molecules. 2023; 28(3):1027. https://doi.org/10.3390/molecules28031027
Chicago/Turabian StyleHuang, Haijin, Haolin Huang, Yongbing Sun, and Qian Liu. 2023. "The Quantification of Paclitaxel and Its Two Major Metabolites in Biological Samples by HPLC-MS/MS and Its Application in a Pharmacokinetic and Tumor Distribution Study in Xenograft Nude Mouse" Molecules 28, no. 3: 1027. https://doi.org/10.3390/molecules28031027
APA StyleHuang, H., Huang, H., Sun, Y., & Liu, Q. (2023). The Quantification of Paclitaxel and Its Two Major Metabolites in Biological Samples by HPLC-MS/MS and Its Application in a Pharmacokinetic and Tumor Distribution Study in Xenograft Nude Mouse. Molecules, 28(3), 1027. https://doi.org/10.3390/molecules28031027