The Effect of Selected Flavonoids and Lipoic Acid on Natural and Model Cell Membranes: Langmuir and Microelectrophoretic Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Monolayers
2.2. Electrical Properties of Erythrocytes and Liposomes
2.2.1. Erythrocytes
2.2.2. Model Membrane Systems
3. Materials and Methods
3.1. Materials
3.1.1. Erythrocytes Isolation
3.1.2. Liposomes Preparation
3.1.3. Monolayer Preparation—Spreading Solvent and Subphase
3.2. Langmuir Monolayer Measurements
3.3. Microelectrophoretic Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohandas, N.; Gallagher, P.G. Red cell membrane: Past, present, and future. Blood 2008, 112, 3939–3948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, G.; Montagnana, M.; Franchini, M. Ex-vivo red blood cells generation: A step ahead in transfusion medicine? Eur. J. Intern. Med. 2011, 22, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, N.; Yamamoto, M. Red Blood Cell Function and Blood Storage. Vox Sang. 2000, 79, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Pasini, E.M.; Lutz, H.U.; Mann, M.; Thomas, A.W. Red blood cell (RBC) membrane proteomics—Part I: Proteomics and RBC physiology. J. Proteom. 2010, 73, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.S.; Rodriguez, M.S.; Matthiesen, R. Red Blood Cells in Clinical Proteomics. Methods Mol. Biol. 2017, 1619, 173–181. [Google Scholar] [CrossRef]
- Daleke, D.L. Regulation of transbilayer plasma membrane phospholipid asymmetry. J. Lipid Res. 2003, 44, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Fadeel, B.; Xue, D. The ins and outs of phospholipid asymmetry in the plasma membrane: Roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 264–277. [Google Scholar] [CrossRef]
- Rossi, L.; Fraternale, A.; Bianchi, M.; Magnani, M.; Rossi, L.; Fraternale, A.; Bianchi, M.; Magnani, M. Red Blood Cell Membrane Processing for Biomedical Applications. Front. Physiol. 2019, 10, 1070. [Google Scholar] [CrossRef]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell 2017, 9, 196–206. [Google Scholar] [CrossRef]
- Laszuk, P.; Petelska, A. Interactions between Phosphatidylcholine and Kaempferol or Myristicin: Langmuir Monolayers and Microelectrophoretic Studies. Int. J. Mol. Sci. 2021, 22, 4729. [Google Scholar] [CrossRef]
- Dynarowicz-Łątka, P.; Kita, K. Molecular interaction in mixed monolayers at the air/water interface. Adv. Colloid Interface Sci. 1999, 79, 1–17. [Google Scholar] [CrossRef]
- Dynarowicz-Łątka, P.; Dhanabalan, A.; Oliveira, O.N. Modern physicochemical research on Langmuir monolayers. Adv. Colloid Interface Sci. 2001, 91, 221–293. [Google Scholar] [CrossRef] [PubMed]
- Laszuk, P.; Urbaniak, W.; Petelska, A.D. The Equilibria in Lipid–Lipoic Acid Systems: Monolayers, Microelectrophoretic and Interfacial Tension Studies. Molecules 2020, 25, 3678. [Google Scholar] [CrossRef] [PubMed]
- Petelska, A.D.; Figaszewski, Z.A. The Equilibria of Phosphatidylethanolamine-Cholesterol and Phosphatidylcholine–Phosphatidylethanolamine in Monolayers at the Air/Water Interface. J. Macromol. Sci. Part A 2009, 46, 607–614. [Google Scholar] [CrossRef]
- Schneider, T.; Sachse, A.; Röβling, G.; Brandl, M. Generation of contrast-carrying liposomes of defined size with a new continuous high pressure extrusion method. Int. J. Pharm. 1995, 117, 1–12. [Google Scholar] [CrossRef]
- Adzamli, I.K.; Seltzer, S.E.; Slifkin, M.; Blau, M.; Adams, D.F. Production and Characterization of Improved Liposomes Containing Radiographic Contrast Media. Investig. Radiol. 1990, 25, 1217–1223. [Google Scholar] [CrossRef]
- Naumowicz, M.; Kusaczuk, M.; Zając, M.; Gál, M.; Kotyńska, J. Monitoring of the Surface Charge Density Changes of Human Glioblastoma Cell Membranes upon Cinnamic and Ferulic Acids Treatment. Int. J. Mol. Sci. 2020, 21, 6972. [Google Scholar] [CrossRef]
- Morrow, D.J.; McCarron, P.A.; Woolfson, A.D.; Donnelly, R. Innovative Strategies for Enhancing Topical and Transdermal Drug Delivery. Open Drug Deliv. J. 2007, 1, 36–59. [Google Scholar] [CrossRef]
- Vahedi, A.; Bigdelou, P.; Farnoud, A.M. Quantitative analysis of red blood cell membrane phospholipids and modulation of cell-macrophage interactions using cyclodextrins. Sci. Rep. 2020, 10, 15111. [Google Scholar] [CrossRef]
- Targosz-Korecka, M.; Wnętrzak, A.; Chachaj-Brekiesz, A.; Gonet-Surówka, A.; Kubisiak, A.; Filiczkowska, A.; Szymoński, M.; Dynarowicz-Latka, P. Effect of selected B-ring-substituted oxysterols on artificial model erythrocyte membrane and isolated red blood cells. Biochim. Biophys. Acta (BBA)—Biomembr. 2019, 1862, 183067. [Google Scholar] [CrossRef]
- Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Marković, J.M.D.; Milenković, D.; Amić, D.; Popović-Bijelić, A.; Mojović, M.; Pašti, I.A.; Marković, Z.S. Energy requirements of the reactions of kaempferol and selected radical species in different media: Towards the prediction of the possible radical scavenging mechanisms. Struct. Chem. 2014, 25, 1795–1804. [Google Scholar] [CrossRef]
- Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, A.Y.; Li, M.; Chen, C.; Yao, Q. Ginkgo biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells. J. Surg. Res. 2008, 148, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Nasri, R.; Bidel, L.P.R.; Rugani, N.; Perrier, V.; Carrière, F.; Dubreucq, E.; Jay-Allemand, C. Inhibition of CpLIP2 Lipase Hydrolytic Activity by Four Flavonols (Galangin, Kaempferol, Quercetin, Myricetin) Compared to Orlistat and Their Binding Mechanisms Studied by Quenching of Fluorescence. Molecules 2019, 24, 2888. [Google Scholar] [CrossRef] [Green Version]
- Nöthlings, U.; Murphy, S.P.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. Flavonols and Pancreatic Cancer Risk: The Multiethnic Cohort Study. Am. J. Epidemiol. 2007, 166, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Pluta, R.; Januszewski, S.; Czuczwar, S.J. Myricetin as a Promising Molecule for the Treatment of Post-Ischemic Brain Neurodegeneration. Nutrients 2021, 13, 342. [Google Scholar] [CrossRef]
- Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Zhu, G.-H.; Zhang, Y.-N.; Hu, Q.; Wang, H.-N.; Yu, H.-N.; Qin, X.-Y.; Guan, X.-Q.; Xiang, Y.-W.; Tang, H.; et al. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. Int. J. Biol. Macromol. 2021, 187, 976–987. [Google Scholar] [CrossRef]
- Brookes, M.H.; Golding, B.T.; Howes, D.A.; Hudson, A.T. Proof that the absolute configuration of natural α-lipoic acid is R by the synthesis of its enantiomer [(S)-(–)-α-lipoic acid] from (S)-malic acid. J. Chem. Soc. Chem. Commun. 1983, 1051–1053. [Google Scholar] [CrossRef]
- Salehi, B.; Berkay Yılmaz, Y.; Antika, G.; Boyunegmez Tumer, T.; Fawzi Mahomoodally, M.; Lobine, D.; Akram, M.; Riaz, M.; Capanoglu, E.; Sharopov, F.; et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019, 9, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, L.; Witt, E.H.; Tritschler, H.J. Alpha-lipoic acid as a biological antioxidant. Free. Radic. Biol. Med. 1995, 19, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Vaz, W.L.C. Model systems, lipid rafts, and cell membranes. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 269–295. [Google Scholar] [CrossRef]
- Sabatini, K.; Mattila, J.-P.; Kinnunen, P.K. Interfacial Behavior of Cholesterol, Ergosterol, and Lanosterol in Mixtures with DPPC and DMPC. Biophys. J. 2008, 95, 2340–2355. [Google Scholar] [CrossRef] [Green Version]
- Bacia, K.; Schwille, P.; Kurzchalia, T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 2005, 102, 3272–3277. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Feigenson, G.W. A Microscopic Interaction Model of Maximum Solubility of Cholesterol in Lipid Bilayers. Biophys. J. 1999, 76, 2142–2157. [Google Scholar] [CrossRef] [Green Version]
- McConnell, H.M.; Radhakrishnan, A. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta (BBA)—Biomembr. 2003, 1610, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Gong, K.; Feng, S.-S.; Go, M.L.; Soew, P.H. Effects of pH on the stability and compressibility of DPPC/cholesterol monolayers at the air–water interface. Colloids Surfaces A Physicochem. Eng. Asp. 2002, 207, 113–125. [Google Scholar] [CrossRef]
- Grzybek, M.; Kubiak, J.; Łach, A.; Przybyło, M.; Sikorski, A.F. A Raft-Associated Species of Phosphatidylethanolamine Interacts with Cholesterol Comparably to Sphingomyelin. A Langmuir-Blodgett Monolayer Study. PLoS ONE 2009, 4, e5053. [Google Scholar] [CrossRef]
- Vollhardt, D. Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface. Curr. Opin. Colloid Interface Sci. 2014, 19, 183–197. [Google Scholar] [CrossRef]
- Liu, X.; Testa, B.; Fahr, A. Lipophilicity and Its Relationship with Passive Drug Permeation. Pharm. Res. 2010, 28, 962–977. [Google Scholar] [CrossRef] [PubMed]
- Zschörnig, O.; Opitz, F.; Pittler, J. Interaction of Proteins with Liposomes as Detected by Microelectrophoresis and Fluorescence. Methods Enzymol. 2003, 372, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Kotyńska, J.; Naumowicz, M. Effect of Selected Anionic and Cationic Drugs Affecting the Central Nervous System on Electrical Properties of Phosphatidylcholine Liposomes: Experiment and Theory. Int. J. Mol. Sci. 2021, 22, 2270. [Google Scholar] [CrossRef] [PubMed]
- Nalecz, M.; Wojtczak, L. Surface charge of biological membranes and its regulatory functions. Post. Biochem. 1982, 28, 191–225. [Google Scholar]
- Norde, W. Colloids and Interfaces in Life Sciences and Bionanotechnology; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Wojtczak, L.; Nalecz, M.J. Surface Charge of Biological Membranes as a Possible Regulator of Membrane-Bound Enzymes. JBIC J. Biol. Inorg. Chem. 1979, 94, 99–107. [Google Scholar] [CrossRef]
- Petelska, A.D.; Janica, J.R.; Kotynska, J.; Łebkowska, U.; Figaszewski, Z.A. The Effect of Contrast Medium SonoVue® on the Electric Charge Density of Blood Cells. J. Membr. Biol. 2011, 245, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Petelska, A.D.; Kotyńska, J.; Figaszewski, Z.A. The effect of fatal carbon monoxide poisoning on the equilibria between cell membranes and the electrolyte solution. J. Membr. Biol. 2014, 248, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, M.A.; Kotyńska, J.; Kusaczuk, M.; Gál, M.; Naumowicz, M. The Modulating Effect of p-Coumaric Acid on the Surface Charge Density of Human Glioblastoma Cell Membranes. Int. J. Mol. Sci. 2019, 20, 5286. [Google Scholar] [CrossRef] [Green Version]
- Kotyńska, J.; Naumowicz, M. Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules 2019, 25, 132. [Google Scholar] [CrossRef]
- Orczyk, M.; Wojciechowski, K. Comparison of the effect of two Quillaja bark saponin extracts on DPPC and DPPC/cholesterol Langmuir monolayers. Colloids Surf. B Biointerfaces 2015, 136, 291–299. [Google Scholar] [CrossRef]
- Sandez-Macho, I.; Casas, M.; Lage, E.V.; Rial-Hermida, M.I.; Concheiro, A.; Alvarez-Lorenzo, C. Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content. Colloids Surf. B Biointerfaces 2015, 133, 270–277. [Google Scholar] [CrossRef]
- Makyła, K.; Paluch, M. The linoleic acid influence on molecular interactions in the model of biological membrane. Colloids Surf. B Biointerfaces 2009, 71, 59–66. [Google Scholar] [CrossRef]
System | Isoelectric Point | Surface Charge Density δ (10−2 C m−2) | |
---|---|---|---|
Low pH Values | High pH Values | ||
Erythrocyte | 3.5 | 1.2 ± 0.1 | −0.9 ± 0.1 |
Erythrocyte + 0.1 mg K | 3.4 | 1.3 ± 0.2 | −1.7 ± 0.2 |
Erythrocyte + 0.1 mg M | 3.6 | 1.0 ± 0.2 | −1.8 ± 0.3 |
Erythrocyte + 0.1 mg LA | 3.4 | 0.8 ± 0.2 | −1.0 ± 0.1 |
System | Isoelectric Point | Surface Charge Density δ (10−2 C m−2) | |
---|---|---|---|
Low pH Values | High pH Values | ||
DPPC:CHOL | 2.8 | 0.7 ± 0.2 | −1.3 ± 0.2 |
DPPC:CHOL:K | 2.6 | 0.7 ± 0.1 | −2.1 ± 0.1 |
DPPC:CHOL:M | 2.2 | 0.2 ± 0.1 | −2.5 ± 0.3 |
DPPC:CHOL:LA | 2.5 | 0.8 ± 0.1 | −1.8 ± 0.2 |
SM:CHOL | 5.2 | 1.3 ± 0.1 | −1.9 ± 0.1 |
SM:CHOL:K | 3.4 | 0.8 ± 0.1 | −1.7 ± 0.2 |
SM:CHOL:M | 3.0 | 0.5 ± 0.2 | −2.3 ± 0.1 |
SM:CHOL:LA | 4.7 | 0.8 ± 0.2 | −1.8 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laszuk, P.; Urbaniak, W.; Petelska, A.D. The Effect of Selected Flavonoids and Lipoic Acid on Natural and Model Cell Membranes: Langmuir and Microelectrophoretic Methods. Molecules 2023, 28, 1013. https://doi.org/10.3390/molecules28031013
Laszuk P, Urbaniak W, Petelska AD. The Effect of Selected Flavonoids and Lipoic Acid on Natural and Model Cell Membranes: Langmuir and Microelectrophoretic Methods. Molecules. 2023; 28(3):1013. https://doi.org/10.3390/molecules28031013
Chicago/Turabian StyleLaszuk, Paulina, Wiesław Urbaniak, and Aneta D. Petelska. 2023. "The Effect of Selected Flavonoids and Lipoic Acid on Natural and Model Cell Membranes: Langmuir and Microelectrophoretic Methods" Molecules 28, no. 3: 1013. https://doi.org/10.3390/molecules28031013
APA StyleLaszuk, P., Urbaniak, W., & Petelska, A. D. (2023). The Effect of Selected Flavonoids and Lipoic Acid on Natural and Model Cell Membranes: Langmuir and Microelectrophoretic Methods. Molecules, 28(3), 1013. https://doi.org/10.3390/molecules28031013