Solubility and Decomposition of Organic Compounds in Subcritical Water
Abstract
:1. Introduction
2. Solubility in Subcritical Water
2.1. Solubilities of Polycyclic Aromatic Hydrocarbons and Derivatives in Subcritical Water
2.2. Alkyl and Chlorobenzene Solubilities in Subcritical Water
2.3. Organic Acid Solubilities in Subcritical Water
2.4. Pharmaceutical Compounds Solubilities in Subcritical Water
2.5. Carotenoids and Flavonoids Solubility in Subcritical Water
2.6. Carbohydrates Solubilities in Subcritical Water
2.7. Preservative Ingredient Solubilities in Subcritical Water
2.8. Fatty Acids Solubilities in Subcritical Water
2.9. Pesticide Solubilities in Subcritical Water
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Prini, R.J.; Corti, H.R.; Japas, M.L. High-Temperature Aqueous Solutions: Thermodynamic Properties; CRC Press: Boca Raton, FL, USA, 1991; pp. 11–12. [Google Scholar]
- IAPWS Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 K to 873 K and Pressures Up to 1000 MPa. 2022. Available online: https://www.iapws.org/ (accessed on 1 November 2022).
- Fernández, D.P.; Goodwin, A.R.H.; Lemmon, E.W.; Sengers, J.M.H.L.; Williams, R.C. A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye–Hückel Coefficients. J. Phys. Chem. Ref. Data 1997, 26, 1125–1166. [Google Scholar] [CrossRef] [Green Version]
- Yabalak, E.; Gizir, A.M. Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. J. Serb. Chem. Soc. 2013, 78, 1013–1022. [Google Scholar] [CrossRef]
- Carr, A.G.; Mammucari, R.; Foster, N.R. A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 2011, 172, 1–17. [Google Scholar] [CrossRef]
- Tsonopoulos, C.; Wilson, G.M. High-temperature mutual solubilities of hydrocarbons and water. Part I: Benzene, cyclohexane andn-hexane. AIChE J. 1983, 29, 990–999. [Google Scholar] [CrossRef]
- Thomson, H.W.; Snyder, J.R. Mutual solubilities of benzene and water equilibria in the two phase liquid-liquid region. J. Chem. Eng. Data 1964, 9, 516–519. [Google Scholar] [CrossRef]
- Connolly, J.F. Solubility of Hydrocarbons in Water Near the Critical Solution Temperatures. J. Chem. Eng. Data 1966, 11, 13–16. [Google Scholar] [CrossRef]
- Yang, Y.; Miller, D.J.; Hawthorne, S.B. Toluene Solubility in Water and Organic Partitioning from Gasoline and Diesel Fuel into Water at Elevated Temperatures and Pressures. J. Chem. Eng. Data 1997, 42, 908–913. [Google Scholar] [CrossRef]
- Yang, Y.; Belghazi, M.; Lagadec, A.; Miller, D.; Hawthorne, S.B. Elution of organic solutes from different polarity sorbents using subcritical water. J. Chromatogr. A. 1998, 810, 149–159. [Google Scholar] [CrossRef]
- Miller, D.J.; Hawthorne, S.B.; Gizir, A.M.; Clifford, A.A. Solubility of polycyclic aromatic hydrocarbons in subcritical (hot/liquid) water from 298 K to 473 K. J. Chem. Eng. Data 1998, 43, 1043–1047. [Google Scholar] [CrossRef]
- Miller, D.J.; Hawthorne, S. Solubility of liquid organics in environmental interests in subcritical water from 298 K to 498 K. J. Chem. Eng. Data 2000, 45, 78–81. [Google Scholar] [CrossRef]
- Andersson, T.A.; Hartonen, K.M.; Riekkola, M.-L. Solubility of acenaphthene, anthracene, and pyrene in water At 50 °C to 300 °C. J. Chem. Eng. Data 2005, 50, 1177–1183. [Google Scholar] [CrossRef]
- Karásek, P.; Planeta, J.; Roth, M. Solubility of Solid Polycyclic Aromatic Hydrocarbons in Pressurized Hot Water: Correlation with Pure Component Properties. Ind. Eng. Chem. Res. 2006, 45, 4454–4460. [Google Scholar] [CrossRef]
- Karásek, P.; Planeta, J.; Roth, M. Solubility of Solid Polycyclic Aromatic Hydrocarbons in Pressurized Hot Water at Temperatures from 313 K to the Melting Point. J. Chem. Eng. Data 2006, 51, 616–622. [Google Scholar] [CrossRef]
- Karásek, P.; Planeta, J.; Roth, M. Aqueous solubility data for pressurized hot water extraction for solid heterocyclic analogs of anthracene, phenanthrene and fluorene. J. Chromatogr. A 2007, 1140, 195–204. [Google Scholar] [CrossRef]
- Fornari, T.; Stateva, R.P.; Señorans, F.J.; Reglero, G.; Ibañez, E. Applying UNIFAC-based models to predict the solubility of solids in subcritical water. J. Supercrit. Fluids 2008, 46, 245–251. [Google Scholar] [CrossRef]
- Karásek, P.; Planeta, J.; Roth, M. Solubilities of Triptycene, 9-Phenylanthracene, 9,10-Dimethylanthracene, and 2-Methylanthracene in Pressurized Hot Water at Temperatures from 313 K to the Melting Point. J. Chem. Eng. Data 2007, 53, 160–164. [Google Scholar] [CrossRef]
- Oliveira, M.B.; Oliveira, V.L.; Coutinho, J.; Queimada, A.J. Thermodynamic Modeling of the Aqueous Solubility of PAHs. Ind. Eng. Chem. Res. 2009, 48, 5530–5536. [Google Scholar] [CrossRef]
- Karásek, P.; Planeta, J.; Roth, M. Solubilities of Oxygenated Aromatic Solids in Pressurized Hot Water. J. Chem. Eng. Data 2009, 54, 1457–1461. [Google Scholar] [CrossRef]
- Teoh, W.H.; Mammucari, R.; de Melo, S.A.B.V.; Foster, N.R. Solubility and Solubility Modeling of Polycyclic Aromatic Hydrocarbons in Subcritical Water. Ind. Eng. Chem. Res. 2013, 52, 5806–5814. [Google Scholar] [CrossRef]
- Yang, Y.; Hildebrand, F. Phenanthrene degradation in subcritical water. Anal. Chim. Acta 2006, 555, 364–369. [Google Scholar] [CrossRef]
- Teoh, W.H.; de Melo, S.A.B.V.; Mammucari, R.; Foster, N.R. Solubility and Solubility Modeling of Polycyclic Aromatic Hydrocarbons in Subcritical Ethanol and Water Mixtures. Ind. Eng. Chem. Res. 2014, 53, 10238–10248. [Google Scholar] [CrossRef]
- Mathis, J.; Gizir, A.M.; Yang, Y. Solubility of alkylbenzenes and a model for predicting the solubility of liquid organics in high-temperature. J. Chem. Eng. Data 2004, 49, 1269–1272. [Google Scholar] [CrossRef]
- Pan, Z.; Dong, Z. Determination of Chlorobenzene Solubilities in Subcritical Water in a Fused Silica Capillary Reactor from 173 to 267 °C. Ind. Eng. Chem. Res. 2011, 50, 11724–11727. [Google Scholar] [CrossRef]
- Bei, K.; Zhang, C.; Wang, J.; Li, K.; Lyu, J.; Zhao, J.; Chen, J.; Chou, I.-M.; Pan, Z. Solubility and dissolution mechanism of 4-chlorotoluene in subcritical water investigated in a fused silica capillary reactor by in situ Raman spectroscopy. Fluid Phase Equilibria 2016, 425, 93–97. [Google Scholar] [CrossRef]
- Kayan, B.; Yang, Y.; Lindquist, E.J.; Gizir, A.M. Solubility of Benzoic and Salicylic Acids in Subcritical Water at Temperatures Ranging from (298 to 473) K. J. Chem. Eng. Data 2009, 55, 2229–2232. [Google Scholar] [CrossRef]
- Srinivas, K.; King, J.W.; Howard, L.R.; Monrad, J.K. Solubility of Gallic Acid, Catechin, and Protocatechuic Acid in Subcritical Water from (298.75 to 415.85) K. J. Chem. Eng. Data 2010, 55, 3101–3108. [Google Scholar] [CrossRef]
- Takebayashi, Y.; Sue, K.; Yoda, S.; Hakuta, Y.; Furuya, T. Solubility of Terephthalic Acid in Subcritical Water. J. Chem. Eng. Data 2012, 57, 1810–1816. [Google Scholar] [CrossRef]
- Yabalak, E.; Görmez, Ö.; Gözmen, B.; Gizir, A.M. The solubility of sebacic acid in subcritical water using the response surface methodology. Int. J. Ind. Chem. 2015, 6, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, K.; King, J.W.; Monrad, J.K.; Howard, L.R.; Hansen, C.M. Optimization of Subcritical Fluid Extraction of Bioactive Compounds Using Hansen Solubility Parameters. J. Food Sci. 2009, 74, E342–E354. [Google Scholar] [CrossRef]
- Carr, A.G.; Branch, A.; Mammucari, R.; Foster, N.R. The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions. J. Supercrit. Fluids 2010, 55, 37–42. [Google Scholar] [CrossRef]
- Carr, A.G.; Mammucari, R.; Foster, N.R. Solubility and Micronization of Griseofulvin in Subcritical Water. Ind. Eng. Chem. Res. 2010, 49, 3403–3410. [Google Scholar] [CrossRef]
- Carr, A.G.; Mammucari, R.; Foster, N.R. Solubility, Solubility Modeling, and Precipitation of Naproxen from Subcritical Water Solutions. Ind. Eng. Chem. Res. 2010, 49, 9385–9393. [Google Scholar] [CrossRef]
- Emire, Z.; Yabalak, E.; Görmez, Ö.; Gizir, M. Solubility and degradation of paracetamol in subcritical water. J. Serbian Chem. Soc. 2017, 82, 99–106. [Google Scholar] [CrossRef]
- Akay, S.; Kayan, B.; Yang, Y. Solubility and Chromatographic Separation of 5-Fluorouracil under Subcritical Water Conditions. J. Chem. Eng. Data 2017, 62, 1538–1543. [Google Scholar] [CrossRef]
- Pu, Y.; Lu, J.; Wang, D.; Cai, F.; Wang, J.-X.; Foster, N.R.; Chen, J.-F. Nanonization of ciprofloxacin using subcritical wa-ter-ethanol mixture as the solvent: Solubility and precipitation parameters. Powder Technol. 2017, 321, 197–203. [Google Scholar] [CrossRef]
- Pu, Y.; Cai, F.; Wang, D.; Li, Y.; Chen, X.; Maimouna, A.G.; Wu, Z.; Wen, X.; Chen, J.F.; Foster, N.R. Solubility of bicalutamide, megestrol acetate, prednisolone, beclomethasone dipropionate, and clarithromycin in subcritical water at different tempera-tures from 383.15 to 443.15 K. Ind. Eng. Chem. Res. 2017, 62, 1139–1145. [Google Scholar]
- Akay, S.; Kayan, B.; Cunbin, D.; Wang, J.; Yang, Y. Research of sulfadiazine using subcritical water and water + alcohol mixtures as the solvent: Solubility and thermodynamic property. J. Mol. Liq. 2018, 253, 270–276. [Google Scholar] [CrossRef]
- Akay, S.; Yang, Y.; Kayan, B. Investigation on the Solubility of the Antidepressant Drug Escitalopram in Subcritical Water. J. Chem. Eng. Data 2021, 66, 2550–2560. [Google Scholar] [CrossRef]
- Akay, S.; Kayan, B. Aqueous solubility and chromatographic studies of antifungal drug-fluconazole at high temperature conditions. J. Mol. Liq. 2021, 328, 115438. [Google Scholar] [CrossRef]
- Akay, S.; Öztürk, S.; Kalderis, D.; Kayan, B. Degradation, solubility and chromatographic studies of Ibuprofen under high temperature water conditions. Chemosphere 2021, 277, 130307. [Google Scholar] [CrossRef]
- Mohammadi, H.S.; Asl, A.H.; Khajenoori, M. Solubility measurement and preparation of nanoparticles of ampicillin using subcritical water precipitation method. Korean J. Chem. Eng. 2021, 38, 2304–2312. [Google Scholar] [CrossRef]
- Mohammadi, H.S.; Asl, A.H.; Khajenoori, M. Determination of amiodarone hydrochloride solubility in pure and etha-nol-modified subcritical water: Experimental data and modeling. J. Mol. Liq. 2022, 362, 119679. [Google Scholar] [CrossRef]
- Mohammadi, H.S.; Asl, A.H.; Khajenoori, M. Experimental study and modeling of letrozole (anticancer drug) solubility in subcritical water: Production of nanoparticles using subcritical water precipitation method. J. Drug Deliv. Sci. Technol. 2022, 67, 102949. [Google Scholar] [CrossRef]
- Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A.M. Terpene degradation and extraction from basil and oregano leaves using subcritical water. J. Chromatogr. A 2007, 1152, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, K.; King, J.W.; Howard, L.R.; Monrad, J.K. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water. J. Food Eng. 2010, 100, 208–218. [Google Scholar] [CrossRef]
- Mottahedin, P.; Asl, A.H.; Lotfollahi, M.N. Experimental and modeling investigation on the solubility of β-carotene in pure and ethanol-modified subcritical water. J. Mol. Liq. 2017, 237, 257–265. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Asl, A.H.; Mottahedin, P. Optimization of β-carotene solubility in pressurized hot water using a dynamic method and factorial methodology. Bulg. Chem. Commun. 2019, 51, 279–283. [Google Scholar] [CrossRef]
- Mohammadi, S.; Asl, A.H.; Mottahedin, P. Experiments, Correlation, and Modeling of Curcumin Solubility in Subcritical Water (Water/Ethanol). Chromatographia 2020, 83, 1293–1305. [Google Scholar] [CrossRef]
- Mohammadi, H.S.; Asl, A.H.; Khajenoori, M. Experimental measurement and correlation of solubility of β-carotene in pure and ethanol-modified subcritical water. Chin. J. Chem. Eng. 2020, 28, 2620–2625. [Google Scholar] [CrossRef]
- Zhang, D.; Montañés, F.; Srinivas, K.; Fornari, T.; Ibáñez, E.; King, J.W. Measurement and correlation of the solubility of carbohydrates in subcritical water. Ind. Eng. Chem. Res. 2010, 49, 6691–6698. [Google Scholar] [CrossRef] [Green Version]
- Yalkowsky, S.H.; He, Y.; Jain, P. Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Kapalavavi, B.; Ankney, J.; Baucom, M.; Yang, Y. Solubility of Parabens in Subcritical Water. J. Chem. Eng. Data 2014, 59, 912–916. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Adachi, S.; Matsuno, R. Solubility of Saturated Fatty Acids in Water at Elevated Temperatures. Biosci. Biotechnol. Biochem. 2002, 66, 1723–1726. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Kimura, Y.; Matsuno, R.; Adachi, S. Solubility of Oleic and Linoleic Acids in Subcritical Water. Food Sci. Technol. Res. 2004, 10, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Fujii, T.; Khuwijitjaru, P.; Kimura, Y.; Adachi, S. Decomposition kinetics of monoacyl glycerol and fatty acid in subcritical water under temperature-programmed heating conditions. Food Chem. 2006, 94, 341–347. [Google Scholar] [CrossRef]
- Huang, P.-P.; Yang, R.-F.; Qiu, T.-Q.; Fan, X.-D. Solubility of fatty acids in subcritical water. J. Supercrit. Fluids 2013, 81, 221–225. [Google Scholar] [CrossRef]
- Huang, P.-P.; Yang, R.-F.; Qiu, T.-Q.; Zhang, W.; Li, C.-M. Ultrasound-Enhanced Subcritical Water Extraction of Volatile Oil from Lithospermum erythrorhizon. Sep. Sci. Technol. 2010, 45, 1433–1439. [Google Scholar] [CrossRef]
- Curren, M.S.S.; King, J.W. Solubility of Triazine Pesticides in Pure and Modified Subcritical Water. Anal. Chem. 2001, 73, 740–745. [Google Scholar] [CrossRef]
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2) a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
Anthracene | 298–498 | 30–60 | Subcritical (superheated) water | 8.10 × 10−9 to 2.10 × 10−4 | [11] | |
Pyrene | 1.07 × 10−8 to 1.00 × 10−7 | |||||
Chrysene | 6.30 × 10−10 to 7.58 × 10−5 | |||||
Perylene | 2.90 × 10−10 to 5.00 × 10−6 | |||||
Carbazole | 1.10 × 10−7 to 1.90 × 10−3 | |||||
Naphthalene | 298–473 | 30–70 | Subcritical (superheated) water | 4.50 × 10−6 to 3.04 × 10−5 | [12] | |
Benzo[a]pyrene | 2.90 × 10−10 to 7.82 × 10−5 | |||||
Acenaphthene | 323–573 | 50–100 | Subcritical (superheated) water | 1.25 × 10−3 | N/A | [13] |
Anthracene | 1.02 × 10−7–3.78 × 10−3 | |||||
Pyrene | 6.87 × 10−8–1.41 × 10−3 | |||||
Naphthalene | 298–498 | 1–70 | Subcritical (superheated) water | 4.50 × 10−6–4.35 × 10−5 | [14] | |
Anthracene | 7.40 × 10−9–2.20 × 10−4 | |||||
Pyrene | 1.07 × 10−8–5.40 × 10−6 | |||||
Chrysene | 1.60 × 10−10–7.58 × 10−5 | |||||
1,2-benzanthracene | 3.37 × 10−9–2.96 × 10−6 | |||||
Triphenylene | 1.82 × 10−9–2.83 × 10−5 | |||||
Perylene | 3.00 × 10−11–5.00 × 10−6 | |||||
p-terphenyl | 8.49 × 10−10–3.93 × 10−5 | |||||
Naphthalene | 313–483 | 40–80 | Subcritical (superheated) water | 6.92 × 10−6–4.35 × 10−5 | [15] | |
Anthracene | 1.19 × 10−8–2.20 ×10−3 | |||||
1,2-benzanthracene | 3.37 × 10−9–2.96 × 10−6 | |||||
Triphenylene | 1.82 × 10−9–2.83 × 10−5 | |||||
p-terphenyl | 0.849 × 10−9–3.93 × 10−5 | |||||
Phenanthrene | 313–453 | 50 | Subcritical (superheated) water | 2.17 × 10−7 to 3.27 × 10−6 | [16] | |
Phenanthridine | 6.29 × 10−6 to 5.92 × 10−5 | |||||
Acridine | 9.10 × 10−6 to 6.09 × 10−5 | |||||
Phenazine | 7.17 × 10−6 to 8.27 × 10−4 | |||||
Thianthrene | 1.50 × 10−8–1.61 × 10−5 | |||||
Phenothiazine | 2.92 × 10−7–4.31 × 10−4 | |||||
Phenoxathiine | 2.28 × 10−7–7.51 × 10−7 | |||||
Phenoxazine | 1.94 × 10−6 – 2.23 × 10−4 | |||||
Carbazole | 2.72 × 10−7–1.68 × 10−4 | |||||
Dibenzofuran | 9.17 × 10−7–7.04 × 10−6 | |||||
Dibenzothiophene | 2.06 × 10−7–3.49 × 10−6 | |||||
4,6-DMDBT | 3.17 × 10−9–5.15 × 10−6 | |||||
Anthracene, Perylene, Benzo-pyrene, Pyrene, Chrysene, Naphthalene, Fluorene, Fluoranthene, Phenanthrene, 1,2-Benzanthracene, p-terphenyl | 298–500 | N/A | Subcritical water (pressurized hot water) | N/A | UNIFAC-based thermodynamic models | [17] |
2-methylanthracene | 313–513 | 50–64 | Pressurized hot water | 5.23 × 10−9–3.06 × 10−5 | [18] | |
9,10-dimethylanthracene | 3.27 × 10−9–1.24 × 10−5 | |||||
9-phenylanthracene | 7.57 × 10−10–1.2 × 10−6 | |||||
Triptycene | 2.69 × 10−10–5.39 × 10−4 | |||||
Fluorene, Biphenyl, Triphenylene, Benz[a]anthracene, Naphthalene, Anthracene, Pyrene, Fluoranthene, Chrysene, Acenaphthene, and Phenanthrene | 313–498 | 40–65 | Subcritical water (pressurized hot water) | N/A | [19] | |
Xanthene | 313–473 | 50 | Pressurized hot water | 2.52 × 10−7–5.56 × 10−6 | [20] | |
Anthrone | 3.45 × 10−7–1.26 × 10−4 | |||||
Xanthone | 7.09 × 10−7–2.71 × 10−4 | |||||
Thioxanthone | 1.18 × 10−7 to 3.83 × 10−4 | |||||
9,10-anthraquinone | 7.25 × 10−8 to 2.96 × 10−5 | |||||
9,10-phenanthrenequinone | 5.50 × 10−7 to 1.83 × 10−3 | |||||
Anthracene | 393–443 | 50–150 | Subcritical water | 1.22 × 10−6–2.84 × 10−5 | The Peng−Robinson equation of state (PR-EOS) | [21] |
p-terphenyl | 1.82 × 10−7–8.67 × 10−6 | |||||
Anthracene | 393–443 | 50–150 | Subcritical ethanol | 1.64 × 10−2–6.82 × 10−2 | UNIQUAC, O-UNIFAC, and M-UNIFAC models | [23] |
f = 0.10 ethanol-modified subcritical water | 9.09 × 10−5–1.11 × 10−3 | |||||
p-terphenyl | Subcritical ethanol | 6.55 × 10−3–9.54 × 10−2 | ||||
f = 0.10 ethanol-modified subcritical water | 1.34 × 10−5–2.26 × 10−4 to |
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2) a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
Ethylbenzene | 298–473 | 50 | High-temperature water (subcritical water) | 2.80 × 10−5 to 8.10 × 10−4 | [24] | |
m-xylene | 3.70 × 10−5 to 1.02 × 10−3 | |||||
Benzene | 4.20 × 10−4 to 4.60 × 10−3 | |||||
Chlorobenzene | 446–540 | 22 | Subcritical water | 6.90 × 10−4–1.13 × 10−3 | N/A | [25] |
4-chlorotoluene | 535–566 | 50–500 | Subcritical water | 4.59 × 10−3–1.36 × 10−2 | N/A | [26] |
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2) a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
Benzoic acid | 298–473 | 50 | Subcritical water | 2.22–1.36 × 102 | [27] | |
Salicylic acid | 4.69 × 10−1–1.02 × 102 | |||||
Gallic acid | 298–415 | 3.5 | Subcritical water | 1.24 × 10−3–2.33 × 10−1 | [28] | |
Protocatechuic acid | 3.55 × 10−3–1.26 × 10−1 | |||||
Terephthalic acid | 349–547 | 100 | Subcritical water | 1.25 × 10−5 to 2.99 × 10−2 | N/A | [29] |
Sebacic acid | 313–433 | 50 | Subcritical water | 2.22 × 10−5 to 25.69 × 10−3 | [30] |
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2) a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
Antiviral agentvitamin B3 flavonoids | 323–398 | N/A | Subcritical water and compressed hydroethanolic mixtures | N/A | [31] | |
Budesonide | 373 to 433 | 70 | Subcritical water | 8.31 × 10−7–4.53 × 10−5 | The M-UNIFAC and MF-UNIFAC models | [32] |
Antifungal drug–griseofulvin | 413 to 443 | 70 | Subcritical water | 1.60 × 10−4–5.28 × 10−4 | M-UNIFAC and MF-UNIFAC model | [33] |
Naproxen | 403 to 443 | 70 | Subcritical water | 4.09 × 10−6–5.56 × 10−5 | M-UNIFAC model | [34] |
Paracetamol | 293 to 403 | 50 | Subcritical water | 1.52 × 10−3–1.47 × 10−2 | [35] | |
Anticancer drug– 5-Fluorouracil | 298 to 473 | 51 | Subcritical water | 1.69 × 10−3–2.10 × 10-−2 | [36] | |
Antibiotic drug–ciprofloxacin | 373 to 443 | 40 | Subcritical water–ethanol mixture | 2.0 × 10−6–5.50 × 10−5 | The modified Apelblat model | [37] |
Bicalutamide | 383 to 443 | 55 | Subcritical water | 7.90 × 10−6–6.24 × 10−4 | Modified Apelblat model | [38] |
Megestrol acetate | 2.70 × 10−6–9.90 × 10−5 | |||||
Prednisolone | 1.63 × 10−4–58.70 × 10−4 | |||||
Clarithromycin | 3.56 × 10−4–22.81 × 10−4 | |||||
Beclomethasone dipropionate | 2.00 × 10−6–2.13 × 10−5 | |||||
Antibiotic drug–sulfadiazine | 343 to 403 | 51 | Subcritical water | 0.57 × 10−4–6.30 × 10−4 | Modified Apelblat equation and CNIBS/R-K model | [39] |
20% ethanol-modified subcritical water | 0.23 × 10−3–2.09 × 10−3 | |||||
20% propanol-modified subcritical water | 0.27 × 10−3–3.24 × 10−3 | |||||
Antidepressant drug– escitalopram | 298 to 473 | 50 | Subcritical water | 2.94 × 10−3 to 60.83 × 10−3 | [40] | |
Antifungal drug–fluconazole | 298 to 473 | 50 | Subcritical water | 2.40 × 10−4–11.31 × 10−3 | [41] | |
Ibuprofen | 298 to 473 | 50 | Subcritical water | 2.30 × 10−4 to 21.36 × 10−2 | [42] | |
Ampicillin | 303 to 403 | 50 | Subcritical water | 3.80 × 10−4–17.69 × 10−3 | N/A | [43] |
Antiarrhythmic drug–amiodarone hydrochloride | 298 to 393 | 50 | Subcritical water | 0.14 × 10−4 to 2.85 × 10−4 | The linear and modified Apelblat models | [44] |
5% ethanol-modified subcritical water | 0.31 × 10−4 to 5.58 × 10−4 | |||||
10% propanol-modified subcritical water | 0.50 × 10−4–9.81 × 10−4 | |||||
Anticancer drug–letrozole | 298 to 383 | 50 | Subcritical water | 5.00 × 10−6 to 1.16 × 10−4 | The linear and the Apelblat models | [45] |
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2)a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
α-pinene, Limonene, Camphor, Citronellol, and Carvacrol | 423–523 | 16 | Subcritical Water | Degradation Range 20–42% | N/A | [46] |
Catechin hydrate | 298–415 | 3.5 | Subcritical water | 1.32 × 10−4–3.52 × 10−2 | [28] | |
Quercetin | 298–413 | N/A | Subcritical water | 2.05 × 10−7–7.12 × 10−5 | Modified Apelblat equation | [47] |
Quercetin dihydrate | 1.38 × 10−7–8.58 × 10−5 | |||||
β–carotene | 343–403 | 50 | Subcritical water | 1.08 × 10−8 –1.20 × 10−6 | The cubic-plus-association equation of state (CPA EOS) | [48] |
5% ethanol-modified subcritical water | 1.34 × 10−8–2.04 × 10−6 | |||||
10% ethanol-modified subcritical water | 1.52 × 10−8–2.27 × 10−6 | |||||
β–carotene | 343–403 | 20 | Pressurized hot water | 3.53 × 10−6–6.04 × 10−6 β–carotene decomposed after 403 K | Dielectric constant model ln x = Ad + B | [49] |
Curcumin | 363–423 | 50 | Subcritical water | 1.08 × 10−8–1.20 × 10−6 | The linear model and modified Apelblat model | [50] |
5% ethanol-modified subcritical water | 1.34 × 10−8–20.45 × 10−7 | |||||
10% ethanol-modified subcritical water | 1.52 × 10−8–22.71 × 10−7 | |||||
β–carotene | 298–403 | 20 | Subcritical water | 9.47 × 10−4–2.29 × 10−3 | Cubic-plus-association equation of state (CPA EOS) and Dielectric constant model | [51] |
5% ethanol-modified subcritical water | 1.37 × 10−3–5.69 × 10−3 | |||||
10% ethanol-modified subcritical water | 2.31 × 10−3–7.27 × 10−3 |
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2) a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
Caprylic acid | 333–573 | 50–150 | Subcritical water | ≈1.8 × 10−7 to 1.8 × 10−3 | [54] | |
Capric acid | ||||||
Lauric acid | ||||||
Myristic acid | ≈9.9 × 10−8 to 1.8 × 10−2 | |||||
Stearic acid | ||||||
Palmitic acid | ||||||
Oleic | 333–503 | 150 | Subcritical water | ≈10−8–10−2 | [55] | |
Linoleic | ||||||
Stearic acid | 433–453 | 150 | Subcritical water | 0.0–8.61 × 10−5 | N/A | [57] |
Palmitic acid | 0.0–1.25 × 10−5 |
Compound | Temperature Range (K) | Pressure (Bar) | Solvent | Solubility Range (x2) a | Empirical Equations | Reference |
---|---|---|---|---|---|---|
Propazine, | 298–498 | 30–60 | Subcritical water | 4.93 × 10−7–2.10 × 10−3 | [11] | |
Chlorothalonil | 1.22 × 10−3–1.58 × 10−2 | |||||
Endosufan II | 1.19 × 10−7–1.99 × 10−4 | |||||
Simazine | 323–373 | 50.6 | Modified Subcritical water | 1.5 × 10−6 to 2.1 × 10−5 | [60] | |
Atrazine | 5.8 × 10−6 to 4.6 × 10−5 | |||||
Cyanazine | 3.6 × 10−5 to 1.5 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yabalak, E.; Akay, S.; Kayan, B.; Gizir, A.M.; Yang, Y. Solubility and Decomposition of Organic Compounds in Subcritical Water. Molecules 2023, 28, 1000. https://doi.org/10.3390/molecules28031000
Yabalak E, Akay S, Kayan B, Gizir AM, Yang Y. Solubility and Decomposition of Organic Compounds in Subcritical Water. Molecules. 2023; 28(3):1000. https://doi.org/10.3390/molecules28031000
Chicago/Turabian StyleYabalak, Erdal, Sema Akay, Berkant Kayan, A. Murat Gizir, and Yu Yang. 2023. "Solubility and Decomposition of Organic Compounds in Subcritical Water" Molecules 28, no. 3: 1000. https://doi.org/10.3390/molecules28031000
APA StyleYabalak, E., Akay, S., Kayan, B., Gizir, A. M., & Yang, Y. (2023). Solubility and Decomposition of Organic Compounds in Subcritical Water. Molecules, 28(3), 1000. https://doi.org/10.3390/molecules28031000