Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction
Abstract
:1. Introduction
2. Fundamentals of CO2RR and Perovskite Oxides
2.1. Fundamentals of CO2RR
2.2. Fundamentals of Perovskite Oxides
2.3. Fabrication Methods of Perovskite Materials
3. Perovskite and Perovskite-Derived Catalysts for CO2RR
3.1. Perovskite-Based Catalysts for CO2RR Favoring C1 Products
3.2. Perovskite-Based Catalysts for C2+ Production
4. Summary and Outlook
- The pivotal factor in assessing a catalyst material lies in its catalytic activity. As for the production of C1 products, the recently developed noble metal-based or even transition metal-based catalysts can reach an FE (CO) close to 100% [102,103,104,105], and other lead- and tin-based catalysts can also reach an FE (formate) higher than 90% [106,107]. However, the selectivity of perovskite-based catalysts toward CO2RR is far below these levels, particularly in C2+ production. Thus, there is large space for further improving the activity and selectivity of perovskite-based catalysts for producing high-value C2+ products, which would be realized by precisely modulating the physicochemical characteristics of active sites.
- The active transition-metal ions in perovskites would be reduced under the negative potential condition during CO2RR. Though a few papers improved the stability of their perovskite-based materials during CO2RR, the reduction processes could be challenging to observe under the small current densities applied in their studies. Consequently, there is a pressing need for further investigations on the possible structure evolution of perovskites under high current densities.
- Moreover, in-situ technologies are essential to provide real-time information on the evolution of active sites during the CO2RR process. For instance, in-situ XRD and X-ray photoelectron spectroscopy (XPS) could provide direct experimental results to observe the change in crystal structure and metal valences; in-situ Raman and Fourier transform infrared (FTIR) are also crucial for revealing the catalytic mechanism [108,109]. Additionally, theoretical simulation of the reaction mechanisms of CO2RR over perovskites also needs to take the structural change into consideration, because the selection of active facets during CO2RR profoundly impacts the accuracy of the calculations.
- Until now, most studies have focused on applying perovskite oxides for CO2RR, while metal oxides have to face a series of issues such as instability under negative potentials and acidic electrolytes. Therefore, inorganic perovskites incorporate other anions such as halide elements (F−, Br−, I−, etc.) [110,111], which have been reported to possess the capability of regulating the electronic properties of copper and enhancing its selectivity toward C2+ products, so they deserve further exploration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, M.; Kong, F.; Tong, L.; Luo, Y.; Yin, S.; Liu, C.; Zhang, P.; Wang, L.; Chu, P.K.; Ding, Y. Carbon capture and storage (CCS): Development path based on carbon neutrality and economic policy. Carbon Neutrality 2022, 1, 37. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, M.; Shao, H. Recent advances in efficient and scalable solar hydrogen production through water splitting. Carbon Neutrality 2023, 2, 23. [Google Scholar] [CrossRef]
- Agency, I.E. CO2 Emissions in 2022; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Agency, I.E. Global Energy Review: CO2 Emissions in 2021; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Bai, X.F.; Chen, W.; Wang, B.Y.; Feng, G.H.; Wei, W.; Jiao, Z.; Sun, Y.H. Recent progress on electrochemical reduction of carbon dioxide. Acta Phys.-Chim. Sin. 2017, 33, 2388–2403. [Google Scholar]
- Van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.H.J.; van den Berg, M.; Bijl, D.L.; de Boer, H.S.; Daioglou, V.; Doelman, J.C.; Edelenbosch, O.Y.; Harmsen, M.; et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Chang. 2018, 8, 391–397. [Google Scholar] [CrossRef]
- Handoko, A.D.; Wei, F.; Jenndy; Yeo, B.S.; Seh, Z.W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Pérez-Gallent, E.; Figueiredo, M.C.; Göttle, A.J.; Calle-Vallejo, F.; Koper, M.T.M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745. [Google Scholar] [CrossRef]
- Yan, Y.; Ke, L.; Ding, Y.; Zhang, Y.; Rui, K.; Lin, H.; Zhu, J. Recent advances in Cu-based catalysts for electroreduction of carbon dioxide. Mater. Chem. Front. 2021, 5, 2668–2683. [Google Scholar] [CrossRef]
- Nitopi, S.; Bertheussen, E.; Scott, S.B.; Liu, X.Y.; Engstfeld, A.K.; Horch, S.; Seger, B.; Stephens, I.E.L.; Chan, K.; Hahn, C.; et al. Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672. [Google Scholar] [CrossRef]
- Woldu, A.R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340. [Google Scholar] [CrossRef]
- Huang, J.; Buonsanti, R. Colloidal nanocrystals as heterogeneous catalysts for electrochemical CO2 conversion. Chem. Mater. 2019, 31, 13–25. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 2021, 4, 943–951. [Google Scholar] [CrossRef]
- Yan, T.; Chen, X.; Kumari, L.; Lin, J.; Li, M.; Fan, Q.; Chi, H.; Meyer, T.J.; Zhang, S.; Ma, X. Multiscale CO2 electrocatalysis to C2+ products: Reaction mechanisms, catalyst design, and device fabrication. Chem. Rev. 2023, 123, 10530–10583. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Liu, L.; Zhang, D.; De Marco, N.; Lee, J.W.; Lin, O.; Chen, Q.; Yang, Y. The emergence of the mixed perovskites and their applications as solar cells. Adv. Energy Mater. 2017, 7, 1700491. [Google Scholar] [CrossRef]
- Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Peña, M.A.; Hadermann, J.; Greenblatt, M.; et al. La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity. ACS Appl. Mater. Interfaces 2019, 11, 21454–21464. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhou, W.; Zhong, Y.; Bu, Y.; Chen, X.; Zhong, Q.; Liu, M.; Shao, Z. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 2017, 7, 1602122. [Google Scholar] [CrossRef]
- Sun, Y.; Li, R.; Chen, X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Wang, L.; Zhang, Z.; Liao, Q.; et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 2021, 11, 2003755. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhou, W.; Zhu, Z.; Su, C.; Liu, M.; Shao, Z. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, D.; Lim, K.-S.; Hu, Y.; Rong, Y.; Mei, A.; Park, N.-G.; Han, H. A review on scaling up perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2008621. [Google Scholar] [CrossRef]
- Tilley, R.J. Perovskites: Structure-Property Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Xu, X.M.; Pan, Y.L.; Zhong, Y.J.; Ran, R.; Shao, Z.P. Ruddlesden-Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Yukta; Parikh, N.; Chavan, R.D.; Yadav, P.; Nazeeruddin, M.K.; Satapathi, S. Highly efficient and stable 2D Dion Jacobson/3D perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 2022, 14, 29744–29753. [Google Scholar] [CrossRef]
- Kendall, K.R.; Navas, C.; Thomas, J.K.; zur Loye, H.-C. Recent developments in oxide Ion conductors: Aurivillius phases. Chem. Mater. 1996, 8, 642–649. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Z.; Hu, C.; Yang, P.; Yuan, X.; Wang, Y.; Zhang, L.; Moskaleva, L.; Gong, J. Tuning oxygen vacancies of oxides to promote electrocatalytic reduction of carbon dioxide. ACS Energy Lett. 2020, 5, 552–558. [Google Scholar] [CrossRef]
- Lee, D.; Lee, H.N. Controlling oxygen mobility in Ruddlesden-Popper oxides. Materials 2017, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Toda, K.; Kameo, Y.; Kurita, S.; Sato, M. Crystal structure determination and ionic conductivity of layered perovskite compounds NaLnTiO4 (Ln = rare earth). J. Alloys Compd. 1996, 234, 19–25. [Google Scholar] [CrossRef]
- May, K.J.; Carlton, C.E.; Stoerzinger, K.A.; Risch, M.; Suntivich, J.; Lee, Y.-L.; Grimaud, A.; Shao-Horn, Y. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 2012, 3, 3264–3270. [Google Scholar] [CrossRef]
- Xu, X.; Su, C.; Shao, Z. Fundamental understanding and application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite in energy storage and conversion: Past, present, and future. Energy Fuels 2021, 35, 13585–13609. [Google Scholar] [CrossRef]
- He, J.; Xu, X.; Li, M.; Zhou, S.; Zhou, W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal. Chim. Acta 2023, 1251, 341007. [Google Scholar] [CrossRef]
- Peng, X.; Feng, S.; Lai, S.; Liu, Z.; Gao, J.; Javanbakht, M.; Gao, B. Structural engineering of rare-earth-based perovskite electrocatalysts for advanced oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 39470–39485. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent advances in novel nanostructuring methods of perovskite electrocatalysts for energy-related applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Han, X.; Hu, Y.; Yang, J.; Cheng, F.; Chen, J. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries. Chem. Commun. 2014, 50, 1497–1499. [Google Scholar] [CrossRef]
- Jung, J.I.; Jeong, H.Y.; Lee, J.S.; Kim, M.G.; Cho, J. A bifunctional perovskite catalyst for oxygen reduction and evolution. Angew. Chem. 2014, 126, 4670–4674. [Google Scholar] [CrossRef]
- Chen, C.-F.; King, G.; Dickerson, R.M.; Papin, P.A.; Gupta, S.; Kellogg, W.R.; Wu, G. Oxygen-deficient BaTiO3−x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy 2015, 13, 423–432. [Google Scholar] [CrossRef]
- Cui, X.; Wu, T.; Gai, D.; Yang, C.; Ding, Y.; Zhao, P. Enhancement of perovskites performance for coal tar decomposition by pore structure and acid-base modification. Fuel 2023, 331, 125654. [Google Scholar] [CrossRef]
- Lu, F.; Wang, Y.; Jin, C.; Li, F.; Yang, R.; Chen, F. Microporous La0.8Sr0.2MnO3 perovskite nanorods as efficient electrocatalysts for lithium-air battery. J. Power Sources 2015, 293, 726–733. [Google Scholar] [CrossRef]
- Lee, Y.C.; Peng, P.Y.; Chang, W.S.; Huang, C.M. Hierarchical meso-macroporous LaMnO3 electrode material for rechargeable zinc–air batteries. J. Taiwan Inst. Chem. Eng. 2014, 45, 2334–2339. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Li, Y.; Chen, L.; Shu, Z.; Chen, H.; Shi, J. High surface area mesoporous LaFexCo1−xO3 oxides: Synthesis and electrocatalytic property for oxygen reduction. Dalton Trans. 2013, 42, 9448–9452. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, W.; Liu, R.; Li, M.; Rufford, T.E.; Zhu, Z. In Situ tetraethoxysilane-templated porous Ba0. 5Sr0. 5Co0. 8Fe0. 2O3−δ perovskite for the oxygen evolution reaction. ChemElectroChem 2015, 2, 200–203. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Yang, Y.; Chen, J.; Hua, B.; Shi, Y.; Wang, C.; Luo, J. Smart tuning of 3D ordered electrocatalysts for enhanced oxygen reduction reaction. Appl. Catal. B Environ. 2017, 219, 640–644. [Google Scholar] [CrossRef]
- Oh, M.Y.; Lee, J.J.; Zahoor, A.; Gnana kumar, G.; Nahm, K.S. Enhanced electrocatalytic activity of three-dimensionally-ordered macroporous La0.6Sr0.4CoO3−δ perovskite oxide for Li-O2 battery application. RSC Adv. 2016, 6, 32212–32219. [Google Scholar] [CrossRef]
- Qiu, P.; Ma, B.; Hung, C.-T.; Li, W.; Zhao, D. Spherical mesoporous materials from single to multilevel architectures. Acc. Chem. Res. 2019, 52, 2928–2938. [Google Scholar] [CrossRef]
- Su, X.; Sun, Y.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S.; He, J. Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B Environ. 2020, 269, 118800. [Google Scholar] [CrossRef]
- Ham, Y.S.; Choe, S.; Kim, M.J.; Lim, T.; Kim, S.-K.; Kim, J.J. Electrodeposited Ag catalysts for the electrochemical reduction of CO2 to CO. Appl. Catal. B Environ. 2017, 208, 35–43. [Google Scholar] [CrossRef]
- Hao, Y.; Hu, F.; Zhu, S.; Sun, Y.; Wang, H.; Wang, L.; Wang, Y.; Xue, J.; Liao, Y.-F.; Shao, M.; et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion. Angew. Chem. Int. Ed. 2023, 62, e202304179. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sun, C.; Xiao, J.; Luo, J.-L. Unraveling structure sensitivity in CO2 electroreduction to near-unity CO on silver nanocubes. ACS Catal. 2020, 10, 3158–3163. [Google Scholar] [CrossRef]
- Kim, Y.E.; Ko, Y.N.; An, B.-S.; Hong, J.; Jeon, Y.E.; Kim, H.J.; Lee, S.; Lee, J.; Lee, W. Atomically dispersed nickel coordinated with nitrogen on carbon nanotubes to boost electrochemical CO2 reduction. ACS Energy Lett. 2023, 8, 3288–3296. [Google Scholar] [CrossRef]
- Sun, D.; Xu, X.; Qin, Y.; Jiang, S.P.; Shao, Z. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: A review. ChemSusChem 2020, 13, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, D.R.; Alfonso, D.; Matranga, C.; Qian, H.; Jin, R. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243. [Google Scholar] [CrossRef]
- Zhu, W.; Kattel, S.; Jiao, F.; Chen, J.G. Shape-controlled CO2 electrochemical reduction on nanosized Pd hydride cubes and octahedra. Adv. Energy Mater. 2019, 9, 1802840. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.-Z.; Tao, H.; Li, T.; Liu, Q.; Xu, Z.; Fu, X.-Z.; Luo, J.-L. Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy 2018, 45, 456–462. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, J.; Li, M.; Züttel, A. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 2019, 9, 3783–3791. [Google Scholar] [CrossRef]
- Li, C.; Shen, G.; Zhang, R.; Wu, D.; Zou, C.; Ling, T.; Liu, H.; Dong, C.; Du, X. Zn nanosheets coated with a ZnS subnanometer layer for effective and durable CO2 reduction. J. Mater. Chem. A 2019, 7, 1418–1423. [Google Scholar] [CrossRef]
- Aljabour, A.; Coskun, H.; Apaydin, D.H.; Ozel, F.; Hassel, A.W.; Stadler, P.; Sariciftci, N.S.; Kus, M. Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Appl. Catal. B Environ. 2018, 229, 163–170. [Google Scholar] [CrossRef]
- Cardona, J.F.Z.; Sacanell, J.; Barral, M.A.A.; Vildosola, V.; Viva, F. CO2 reduction on a nanostructured La0.5Ba0.5CoO3 perovskite: Electrochemical characterization and DFT calculations. J. CO2 Util. 2022, 59, 101973. [Google Scholar] [CrossRef]
- An, L.; Chen, R. Direct formate fuel cells: A review. J. Power Sources 2016, 320, 127–139. [Google Scholar] [CrossRef]
- Calabrese, M.; Russo, D.; di Benedetto, A.; Marotta, R.; Andreozzi, R. Formate/bicarbonate interconversion for safe hydrogen storage: A review. Renew. Sustain. Energy Rev. 2023, 173, 113102. [Google Scholar] [CrossRef]
- Yang, F.; Elnabawy, A.O.; Schimmenti, R.; Song, P.; Wang, J.; Peng, Z.; Yao, S.; Deng, R.; Song, S.; Lin, Y.; et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Liu, X.; Chen, J.; Tian, P.; Dai, S.; Zhu, M.; Han, Y. Probing the role of surface hydroxyls for Bi, Sn and In catalysts during CO2 reduction. Appl. Catal. B Environ. 2021, 298, 120581. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, L.; Li, L.; Chen, S.; Hu, C.; Zhao, Z.J.; Wang, T.; Gong, J. Crucial role of surface hydroxyls on the activity and stability in electrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2911–2915. [Google Scholar] [CrossRef]
- Pander, J.E.; Lum, J.W.J.; Yeo, B.S. The importance of morphology on the activity of lead cathodes for the reduction of carbon dioxide to formate. J. Mater. Chem. A 2019, 7, 4093–4101. [Google Scholar] [CrossRef]
- Lu, X.; Wu, Y.; Yuan, X.; Wang, H. An integrated CO2 electrolyzer and formate fuel cell enabled by a reversibly restructuring Pb-Pd bimetallic catalyst. Angew. Chem. Int. Ed. 2019, 58, 4031–4035. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, C.; Brosnahan, J.T.; Zhou, H.; Xu, W.; Zhang, S. Revealing structural evolution of PbS nanocrystal catalysts in electrochemical CO2 reduction using in situ synchrotron radiation X-ray diffraction. J. Mater. Chem. A 2019, 7, 23775–23780. [Google Scholar] [CrossRef]
- Li, J.; Meng, C.; Gu, J.; Wang, H.; Dai, R.; Sha, H.; Zhu, H. High faradaic efficiency of CO2 conversion to formic acid catalyzed by Cu2O hollow-dices. Carbon Neutrality 2022, 1, 36. [Google Scholar] [CrossRef]
- Pi, Y.; Guo, J.; Shao, Q.; Huang, X. All-inorganic SrSnO3 perovskite nanowires for efficient CO2 electroreduction. Nano Energy 2019, 62, 861–868. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, Z.L.; Wang, D.; Mao, J.J.; Zhang, C.C.; Zhang, Y. Revealing the doping effect of Cu2+ on SrSnO3 perovskite oxides for CO2 electroreduction. ChemElectroChem 2022, 9, e202200635. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Wang, J.; Du, Y.; Xi, S.; Sun, Y.; Sherburne, M.; Ager, J.W.; Fisher, A.C.; Xu, Z.J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cheng, C.; Huang, B.; Cao, J.; Li, L.; Shao, Q.; Zhang, L.; Huang, X. Grain-boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction. Nano Lett. 2021, 21, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tian, H.; Huang, B.; Cai, G.; Yuan, C.; Zhang, Y.; Li, Y.; Li, G.; Xu, H.; Li, M. Boosting oxygen evolution reaction by enhanced intrinsic activity in Ruddlesden-Popper iridate oxides. Chem. Eng. J. 2021, 423, 130185. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, P.; Li, L.; Yuan, T.; Gao, H.; Zhang, G.; Wang, T.; Zhao, Z.-J.; Gong, J. SrO-layer insertion in Ruddlesden–Popper Sn-based perovskite enables efficient CO2 electroreduction towards formate. Chem. Sci. 2022, 13, 8829–8833. [Google Scholar] [CrossRef]
- Chen, M.; Chang, K.; Zhang, Y.; Zhang, Z.; Dong, Y.; Qiu, X.; Jiang, H.; Zhu, Y.; Zhu, J. Cation-radius-controlled Sn−O bond length boosting CO2 electroreduction over Sn-based perovskite oxides. Angew. Chem. Int. Ed. 2023, 62, e202305530. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, B.; Daiyan, R.; Subhash, B.; Tsounis, C.; Ma, Z.; Han, C.; Zhao, Y.; Effendi, L.H.; Gallington, L.C.; et al. Defective Sn-Zn perovskites through bio-directed routes for modulating CO2RR. Nano Energy 2022, 101, 107593. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, S.; Zhang, J.; Ding, X.; Pan, B.; Wang, L.; Lu, J.; Cao, M.; Li, Y. Perovskite-derived bismuth with I− and Cs+ dual modification for high-efficiency CO2-to-formate electrosynthesis and Al-CO2 batteries. Adv. Mater. 2023, 35, 2303297. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zhang, B.; Gao, M.-R.; Sui, P.-F.; Xu, C.; Gong, L.; Zeng, H.; Shankar, K.; Bergens, S.; Luo, J. Electrochemically reconstructed perovskite with cooperative catalytic sites for CO2-to-formate conversion. Appl. Catal. B Environ. 2022, 306, 121101. [Google Scholar] [CrossRef]
- Chen, S.; Su, Y.; Deng, P.; Qi, R.; Zhu, J.; Chen, J.; Wang, Z.; Zhou, L.; Guo, X.; Xia, B.Y. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production. ACS Catal. 2020, 10, 4640–4646. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Wei, Y.; Wei, F.; Kong, L.; Feng, J.; Lu, J.; Zhou, X.; Yang, F. Efficient and selective electroreduction of CO2 to HCOOH over bismuth-based bromide perovskites in acidic electrolytes. Chem.—A Eur. J. 2022, 28, e202201832. [Google Scholar] [CrossRef] [PubMed]
- Hoang, M.T.; Han, C.; Ma, Z.; Mao, X.; Yang, Y.; Madani, S.S.; Shaw, P.; Yang, Y.; Peng, L.; Toe, C.Y.; et al. Efficient CO2 reduction to formate on CsPbI3 nanocrystals wrapped with reduced graphene oxide. Nano-Micro Lett. 2023, 15, 161. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yin, J.; Zheng, X.; Ait Ahsaine, H.; Zhou, Y.; Dong, C.; Mohammed, O.F.; Takanabe, K.; Bakr, O.M. Compositionally screened eutectic catalytic coatings on halide perovskite photocathodes for photoassisted selective CO2 reduction. ACS Energy Lett. 2019, 4, 1279–1286. [Google Scholar] [CrossRef]
- Zhang, N.; Long, R.; Gao, C.; Xiong, Y. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 2018, 61, 771–805. [Google Scholar] [CrossRef]
- Pan, A.; Ma, X.; Huang, S.; Wu, Y.; Jia, M.; Shi, Y.; Liu, Y.; Wangyang, P.; He, L.; Liu, Y. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 2019, 10, 6590–6597. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Liu, X.; Chen, G.; Wang, Y.; Bao, J.; Xu, X.; Liu, X.; Zhang, Q.; Yu, K.; et al. Heterostructural CsPbX3-PbS (X = Cl, Br, I) quantum dots with tunable Vis-NIR dual emission. J. Am. Chem. Soc. 2020, 142, 4464–4471. [Google Scholar] [CrossRef]
- Luo, B.; Li, F.; Xu, K.; Guo, Y.; Liu, Y.; Xia, Z.; Zhang, J.Z. B-site doped lead halide perovskites: Synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 2019, 7, 2781–2808. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, R.; Sun, H.; Yang, W.; Liang, W.; Li, F.; Zheng, R.; Huang, J. Synergistically interface-engineered inorganic halide perovskite photocathodes for photoelectrochemical CO2 reduction. Energy Fuels 2023, 37, 18163–18172. [Google Scholar] [CrossRef]
- Wu, X.; Xu, R.; Li, X.; Zeng, R.; Luo, B. Amino acid-assisted preparation of homogeneous PbS/CsPbBr3 nanocomposites for enhanced photoelectrocatalytic CO2 reduction. J. Phys. Chem. C 2022, 126, 15744–15751. [Google Scholar] [CrossRef]
- Makani, N.H.; Singh, M.; Paul, T.; Sahoo, A.; Nama, J.; Sharma, S.; Banerjee, R. Photoelectrocatalytic CO2 reduction using stable lead-free bimetallic CsAgBr2 halide perovskite nanocrystals. J. Electroanal. Chem. 2022, 920, 116583. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, C.; Luo, G.; Yang, S.; Yu, P.; Yan, S.; Shakouri, M.; Wang, Z.; Sham, T.-K.; Zheng, G. High-rate CO2-to-CH4 electrosynthesis by undercoordinated Cu sites in alkaline-earth-metal perovskites with strong basicity. Adv. Energy Mater. 2023, 13, 2204417. [Google Scholar] [CrossRef]
- Chen, K.; Qi, K.; Zhou, T.; Yang, T.; Zhang, Y.; Guo, Z.; Lim, C.-K.; Zhang, J.; Žutic, I.; Zhang, H.; et al. Water-dispersible CsPbBr3 perovskite nanocrystals with ultra-stability and its application in electrochemical CO2 reduction. Nano-Micro Lett. 2021, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Akkiraju, K.; Corchado-García, J.; Shao-Horn, Y. A perovskite electronic structure descriptor for electrochemical CO2 reduction and the competing H2 evolution reaction. J. Phys. Chem. C 2019, 123, 24469–24476. [Google Scholar] [CrossRef]
- Chang, B.; Pang, H.; Raziq, F.; Wang, S.; Huang, K.-W.; Ye, J.; Zhang, H. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives. Energy Environ. Sci. 2023, 16, 4714–4758. [Google Scholar] [CrossRef]
- Fan, L.; Liu, C.-Y.; Zhu, P.; Xia, C.; Zhang, X.; Wu, Z.-Y.; Lu, Y.; Senftle, T.P.; Wang, H. Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule 2022, 6, 205–220. [Google Scholar] [CrossRef]
- Schwartz, M.; Cook, R.L.; Kehoe, V.M.; MacDuff, R.C.; Patel, J.; Sammells, A.F. Carbon dioxide reduction to alcohols using perovskite-type electrocatalysts. J. Electrochem. Soc. 1993, 140, 614. [Google Scholar] [CrossRef]
- Singh, R.P.; Arora, P.; Nellaiappan, S.; Shivakumara, C.; Irusta, S.; Paliwal, M.; Sharma, S. Electrochemical insights into layered La2CuO4 perovskite: Active ionic copper for selective CO2 electroreduction at low overpotential. Electrochim. Acta 2019, 326, 134952. [Google Scholar] [CrossRef]
- Mignard, D.; Barik, R.C.; Bharadwaj, A.S.; Pritchard, C.L.; Ragnoli, M.; Cecconi, F.; Miller, H.; Yellowlees, L.J. Revisiting strontium-doped lanthanum cuprate perovskite for the electrochemical reduction of CO2. J. CO2 Util. 2014, 5, 53–59. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Zhi, A.; Chen, Z.; Shi, L.; Zhang, Z.; Zhang, Y.; Zhu, Y.; Qiu, X.; Tian, X.; et al. Cation-deficiency-dependent CO2 electroreduction over copper-based Ruddlesden-Popper perovskite oxides. Angew. Chem. Int. Ed. 2022, 61, e202111670. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Li, J.; Wang, Z.; Tan, C.S.; Hsieh, P.-L.; Zhuang, T.; Liang, Z.; Zou, C.; Wang, X.; De Luna, P.; et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2019, 2, 251–258. [Google Scholar] [CrossRef]
- Dinh, C.; Burdyny, T.; Kibria, M.G.; Seifitokaldani, A.; Gabardo, C.M.; García de Arquer, F.P.; Kiani, A.; Edwards, J.P.; De Luna, P.; Bushuyev, O.S.; et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Chi, L.; Wu, Z.; Yang, P.; Fan, M.; Gao, M. CO2-assisted formation of grain boundaries for efficient CO-CO coupling on a derived Cu catalyst. Natl. Sci. Open 2023, 2, 20220044. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Chen, Z.; Shi, L.; Zhang, Z.; Gong, Y.; Zhang, Y.; Tian, X.; Zhang, Y.; Qiu, X.; et al. Perovskite-socketed sub-3 nm copper for enhanced CO2 electroreduction to C2+. Adv. Mater. 2022, 34, 2206002. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Hou, P.; Pan, H.; Shi, H.; Kang, P. Selective electrocatalytic reduction of carbon dioxide to oxalate by lead tin oxides with low overpotential. Appl. Catal. B Environ. 2020, 272, 118954. [Google Scholar] [CrossRef]
- Chung, M.W.; Cha, I.Y.; Ha, M.G.; Na, Y.; Hwang, J.; Ham, H.C.; Kim, H.-J.; Henkensmeier, D.; Yoo, S.J.; Kim, J.Y.; et al. Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Appl. Catal. B Environ. 2018, 237, 673–680. [Google Scholar] [CrossRef]
- Hall, A.S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 2015, 137, 14834–14837. [Google Scholar] [CrossRef]
- Jeong, H.-Y.; Balamurugan, M.; Choutipalli, V.S.K.; Jeong, E.-S.; Subramanian, V.; Sim, U.; Nam, K.T. Achieving highly efficient CO2 to CO electroreduction exceeding 300 mA cm−2 with single-atom nickel electrocatalysts. J. Mater. Chem. A 2019, 7, 10651–10661. [Google Scholar] [CrossRef]
- Wen, C.F.; Mao, F.; Liu, Y.; Zhang, X.Y.; Fu, H.Q.; Zheng, L.R.; Liu, P.F.; Yang, H.G. Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis. ACS Catal. 2020, 10, 1086–1093. [Google Scholar] [CrossRef]
- Li, D.; Wu, J.; Liu, T.; Liu, J.; Yan, Z.; Zhen, L.; Feng, Y. Tuning the pore structure of porous tin foam electrodes for enhanced electrochemical reduction of carbon dioxide to formate. Chem. Eng. J. 2019, 375, 122024. [Google Scholar] [CrossRef]
- Fan, M.; Garbarino, S.; Botton, G.A.; Tavares, A.C.; Guay, D. Selective electroreduction of CO2 to formate on 3D [100] Pb dendrites with nanometer-sized needle-like tips. J. Mater. Chem. A 2017, 5, 20747–20756. [Google Scholar] [CrossRef]
- Gong, Y.; He, T. Gaining deep understanding of electrochemical CO2RR with in situ/operando techniques. Small Methods 2023, 7, 2300702. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, S. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Sun, M.; Ren, J.; Ju, M.; Long, X.; Huang, B.; Yang, S. Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials. Chem. Sci. 2021, 12, 15382–15388. [Google Scholar] [CrossRef]
- Cai, R.; Sun, M.; Yang, F.; Ju, M.; Chen, Y.; Gu, M.D.; Huang, B.; Yang, S. Engineering Cu(I)/Cu(0) interfaces for efficient ethanol production from CO2 electroreduction. Chem 2023. [Google Scholar] [CrossRef]
Electrolyte Conditions | Reactions | E0/(V vs. RHE) | Products |
---|---|---|---|
/ | 2H + + 2e− → H2 | 0 | hydrogen evolution reaction (HER) |
/ | xCO2 + nH + + ne− → product + yH2O | / | CO2RR |
Alkaline (pH: 8~14) | CO2 + 2H + + 2e− → H + + HCOO– | −0.12 | formate |
CO2 + 2H + + 2e− → CO (g) + H2O | −0.10 | carbon monoxide | |
CO2 + 6H + + 6e → CH3OH (aq) + H2O | 0.03 | methanol | |
CO2 + 4H + + 4e− → C (s) + 2H2O | 0.21 | carbon | |
CO2 + 8H + + 8e− → CH4 (g) + 2H2O | 0.17 | methane | |
2CO2 + 8H + + 8e− → H + + CH3COO– + 2H2O | 0.11 | acetate | |
2CO2 + 10H + + 10e− → CH3CHO (aq) + 3H2O | 0.06 | acetaldehyde | |
2CO2 + 12H + + 12e− → C2H5OH (aq) + 3H2O | 0.09 | ethanol | |
2CO2 + 2H + + 12e− → C2H4 (g) + 4H2O | 0.08 | ethylene | |
2CO2 + 14H + + 14e− → C2H6 (g) + 4H2O | 0.14 | ethane | |
3CO2 + 18H + + 18e− → C3H7OH (aq) + 5H2O | 0.10 | propanol | |
Acidic (pH: 0~7) | CO2 + 2H + + 2e− → HCOOH (aq) | −0.12 | formic acid |
2CO2 + 8H + + 8e− → CH3COOH (aq) + 2H2O | 0.11 | acetic acid |
Perovskite Catalyst | Major Products | FE of Main Products | Reference |
---|---|---|---|
Cs3Bi2Br9/carbon black | formic acid | 92% | [78] |
SrSnO3 nanowires | formate | ~80% | [66] |
Sr2SnO4 | formate | 83.7% | [71] |
SnaZnbOy | formate | ~70% | [73] |
BaBiO3 | formate | 98.7% | [76] |
Ba1−xSrxSnO3 | formate | 90.9% | [96] |
CsPbI3/rGO | formate | >92% | [79] |
Cs3Bi2I9 | formate | 98.2% | [75] |
La2CuO4 | methane | 56.3% | [77] |
Ca2CuO3 | methane | 51.7% | [88] |
La1.8Sr0.2CuO4 | methane and ethylene | Not mentioned | [95] |
Cu-SrSnO3 | CO and formate | 89% (formate) over 0.5 wt% Cu-SrSnO3; 49% (CO) over 1 wt% Cu-SrSnO3 | [64] |
CsPbBr3 | methane and CO | 32% for methane, 40% for CO | [89] |
La0.5Ba0.5CoO3 | CO | 85% | [56] |
A1.8A0.2CuO4 (A = La, Pr, and Gd; A’ = Sr and Th) | alcohols | ~40% | [93] |
La2CuO4 | ethylene | 40.3% | [94] |
La2CuO4 nanobamboos | ethylene | 60% | [69] |
reduced La0.4Sr0.4Ti0.9O3−δ-Cu | C2+ products | 54.9% | [100] |
La2–xCuO4-δ | C2+ products | 41.5% | [96] |
La2CuO4 derived-Cu | C2+ products | 80.3% | [99] |
PbSnO3/C | oxalate | 85.1% | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Zhang, L.; Zhan, Y.; Dong, Y.; Tan, Z.; Zhou, B.; Wei, F.; Zhang, D.; Long, X. Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction. Molecules 2023, 28, 8154. https://doi.org/10.3390/molecules28248154
Wu T, Zhang L, Zhan Y, Dong Y, Tan Z, Zhou B, Wei F, Zhang D, Long X. Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction. Molecules. 2023; 28(24):8154. https://doi.org/10.3390/molecules28248154
Chicago/Turabian StyleWu, Tong, Lihua Zhang, Yinbo Zhan, Yilin Dong, Zheng Tan, Bowei Zhou, Fei Wei, Dongliang Zhang, and Xia Long. 2023. "Recent Progress on Perovskite-Based Electrocatalysts for Efficient CO2 Reduction" Molecules 28, no. 24: 8154. https://doi.org/10.3390/molecules28248154