Antibiotics and Antibiotic Resistance—Mur Ligases as an Antibacterial Target
Abstract
:1. Introduction
2. The Peptidoglycan Chain
3. MurC-F Ligases as New Antibiotic Targets
3.1. Inhibitors from “Medicinal Chemistry Approach”
3.1.1. Amino Acid Mimics of Mur Ligases
3.1.2. Heterocyclic Inhibitors
3.2. Inhibitors Mimicking the Natural Substrate UDP-MurNAc-(Peptide)
3.2.1. Phosphinic Inhibitors
3.2.2. Peptidic Inhibitors
3.2.3. Heterocyclic Inhibitors
3.3. Inhibitors Mimicking the Co-Substrate ATP
3.4. Natural Inhibitors
3.5. Multi-Target Synthetic Approaches
3.5.1. Mimicking the Amino Acid of Mur Ligases
3.5.2. Mimicking the Natural Substrate UDP-MurNAc(-Peptide)
Phosphonic Acid Inhibitors
Heterocyclic Inhibitors
3.5.3. Mimicking the Co-Substrate ATP
3.5.4. Natural Analogs
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Porter, J.R. Antony Van Leeuwenhoek: Tercentenary of his discovery of bacteria. Microbiol. Rev. 1976, 40, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Mazzarello, P. Bassi, Agostino; John Wiley & Sons, Ltd.: Chischester, UK, 2013. [Google Scholar]
- Pacini, F. Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico. In Memoria del Dott. Filippo Pacini: Lettra alla Societa Medico-Fisica di Firenze Nella Seduta Tip; Tipografia di Federigo Bencini; Medical-Physical Society of Florence: Florence, Italy, 1854; pp. 397–405. [Google Scholar]
- Jean, T. Casimir Davaine (1812–1882) and the therapeutics of anthrax and livestock septicemia. Rev. D’histoire Pharm. 1973, 61, 334–339. [Google Scholar]
- Koch, R. Berliner Klinische Wochen-Schrift. 1882, pp. 428–445. Available online: https://babel.hathitrust.org/cgi/pt?id=mdp.39015020075001&seq=7 (accessed on 8 November 2023).
- Pasteur, L. Oeuvres de Pasteur; Masson: Paris, France, 1922; Volume 2. [Google Scholar]
- Lloyd, N.C.; Morgan, H.W.; Nicholson, B.K.; Rominus, R.S. The composition of Ehrlich’s Salvarsan: Resolution of a century-old debate. Angew. Chem. Int. Ed. 2005, 44, 941–944. [Google Scholar] [CrossRef]
- Ligon, B.L. Penicillin: Its discovery and early development. Sem. Pediatr. Infect. Dis. 2004, 15, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, P. L’aventure des Sulfamides: Daniel Bovet, une chimie qui guérit. History of the discovery of sulfonamides. Rev. D’histoire Pharm. 1990, 78, 227–228. [Google Scholar]
- McDermott, W.; Rogers, D.E. Social ramifications of control of microbial disease. Johns Hopkins Med. J. 1982, 151, 302–312. [Google Scholar] [PubMed]
- Walsh, C.T.; Wright, G. Introduction: Antibiotic Resistance. Chem. Rev. 2005, 105, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic Resistance Crisis Part 1: Causes and threats. Pharm. Therapeut. 2015, 40, 277–283. [Google Scholar]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance; Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- WHO. Ranking of medically important antimicrobials of risks management of antimicrobial resistance due to non-human use. In Critically Important Antimicrobials for Human Medicine 5th Revision; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- FAO. The FAO Action Plan on Antimicrobial Resistance 2021–2025; FAO: Rome, Italy, 2021. [Google Scholar]
- Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-Hasen, K.A.; Davies, J.; Handelsman, J. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010, 8, 251–259. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm Bells are ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Shi, Q.-S.; Huang, X.-M.; Xie, X.-B. The three bacterial lines of defense against antimicrobial agents. Int. J. Mol. Sci. 2015, 16, 21711–21733. [Google Scholar] [CrossRef] [PubMed]
- Mah, T.-F.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Dis. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Vega, N.M.; Gore, J. Collective antibiotic resistance: Mechanisms and implications. Curr. Opin. Microbiol. 2014, 21, 28–34. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Ellabaan, M.M.H.; Charusanti, P.; Munck, C.; Blin, K.; Tong, Y.; Weber, T.; Sommer, M.O.A.; Lee, S.Y. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 2017, 8, 15784. [Google Scholar] [CrossRef]
- Obst, U.; Schwartz, T.; Volkmann, H. Antibiotic resistant pathogenic Bacteria and their resistance genes in bacterialbiofilms. Int. J. Artif. Org. 2006, 29, 387–394. [Google Scholar] [CrossRef]
- Vedithi, S.C.; Malhotra, S.; Das, M.; Daniel, S.; Kishore, N.; George, A.; Arumugam, S.; Rajan, L.; Ebenezer, M.; Asher, D.B.; et al. Structural Implications of Mutations Conferring Rifampin Resistance in Mycobacterium leprae. Sci. Rep. 2018, 8, 5016. [Google Scholar] [CrossRef]
- Frère, J.-M. Beta-lactamases and bacterial resistance to antibiotics. Mol. Microbiol. 1995, 16, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J.M.; James, C.E.; Winterhalter, M. The porin and the permeating antibiotic: A selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 2008, 6, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 2007, 39, 162–176. [Google Scholar] [CrossRef]
- Nikaido, H. Prevention of drugs access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, D.; Payne, D.J.; Holmes, D.J.; Rosenberg, M. Novel targets for the future development of antibacterial agents. J. Appl. Microbiol. Symp.Supp. 2002, 92, 28S–34S. [Google Scholar] [CrossRef]
- Hards, K.; Cook, G.M. Targeting bacterial energetics to produce new antimicrobials. Drug Resist. Updates 2018, 36, 1–12. [Google Scholar] [CrossRef]
- Kingwell, K. New antibiotic hits Gram-negative bacteria. Nat. Rev. Drug Discov. 2018, 17, 785. [Google Scholar] [CrossRef]
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef]
- Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanisms of quinolone action and resistance. Biochemistry 2014, 53, 1565–1574. [Google Scholar] [CrossRef]
- Lewis, R.J.; Tsai, F.T.F.; Wigley, D.B. Molecular mechanisms of drug inhibition of DNA gyrase. Bioessays 1996, 18, 661–671. [Google Scholar] [CrossRef]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef]
- Andersson, M.I.; MacGowan, A.P. Development of the quinolones. J. Antimicrob. Chemother. 2003, 51, 1–11. [Google Scholar] [CrossRef]
- Chopra, L. Bacterial RNA polymerase: A promising target for the discovery of new antimicrobial agents. Curr. Opin. Investig. Drugs 2007, 8, 600–607. [Google Scholar]
- Bertacine Dias, M.V.; Santos, J.C.; Libreros-Zúñiga, G.A.; Ribeiro, J.A.; Chavez-Pacheco, S.M. Folate biosynthesis pathway: Mechanisms and insights into drug design for infectious diseases. Future Med. Chem. 2018, 10, 935–959. [Google Scholar] [CrossRef]
- Bourne, C.R. Utility of the biosynthetic folate pathway for targets in antimicrobial discovery. Antibiotics 2014, 3, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Berminghan, A.; Derrick, J.P. The folic acid biosynthesis pathway in bacteria: Evaluation of potential for antibacterial drug discovery. BioEssays 2002, 24, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Achari, A.A.; Somers, D.O.; Champness, J.N.; Bryant, P.K.; Rosemond, J.; Stammers, D.K. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struc. Biol. 1997, 4, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Chevrier, F. Synthesis of Nucleotide Analogues Targeting the Inhibition of Flavin-Dependent Thymidylate Synthase. Ph.D. Thesis, University of Orleans, Orleans, France, 2018. [Google Scholar]
- Dunkle, J.A.; Xiong, L.; Mankin, A.S.; Cate, J.H.D. Structure of Escherichia coli ribosome with antibiotics bond near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 2010, 107, 17152–17157. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistanc. Nat. Rev. Microbiol. 2014, 12, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhou, D.; Steitz, T.A.; Polikanov, Y.S.; Gagnon, M.G. Ribosome-targeting antibiotics: Modes of action, mechanism of resistance, and implications for drug design. Ann. Rev. Biochem. 2018, 87, 451–478. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural products as platforms to overcome antibiotic resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Seiple, I.B.; Zhang, Z.; Jakubec, P.; Langlois-Mercier, A.; Wright, P.M.; Hog, D.T.; Yabu, K.; Rao Allu, S.; Fukuzaki, T.; Carlsen, P.N.; et al. A platform for the discovery of new macrolide antibiotics. Nature 2016, 533, 338–345. [Google Scholar] [CrossRef]
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmocotherapy 2018, 38, 935–946. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- McKenna, M. Antibiotic resistance: The last resort. Nature 2013, 499, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.F.; Meroueh, S.O.; Mobashery, S. Bacterial resistance to β-lactam antibiotics: Compelling opportunism, compelling opportunity. Chem. Rev. 2005, 105, 395–424. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.M.; Martin, N.I. The calcium-dependent lipopeptide antibiotics: Structure, mechanism, & medicinal chemistry. Med. Chem. Commun. 2019, 10, 634–646. [Google Scholar]
- Baltz, R.H.; Miao, V.; Wrigley, S.K. Natural products to drugs: Daptomycin and related lipopeptide antibiotics. Nat. Prod. Rep. 2005, 22, 717–741. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.; Hansford, K.A.; Butler, M.S.; Jia, Z.J.; Mark, A.E.; Cooper, M.A. Developments in glycopeptide antibiotics. ACS Infect. Dis. 2018, 4, 715–735. [Google Scholar] [CrossRef]
- Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2011, 10, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W.; Blanot, D.; De Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 2001, 18, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev. 2019, 43, 548–575. [Google Scholar] [CrossRef]
- Ruiz, N. Lipid flippases for bacterial peptidoglycan biosynthesis. Lipid Insights 2015, 8, 21–31. [Google Scholar] [CrossRef]
- Skarzynski, T.; Mistry, A.; Wonacott, A.; Hutchinson, S.E.; Kelly, V.A.; Duncan, K. Structure of UDP-N-AcGlc enolpyruvyltransferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-AcGlc and the drug fosfomycin. Structure 1996, 4, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Skarzynski, T.; Kim, D.H.; Lees, W.J.; Walsh, C.T.; Duncan, K. Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analog of the reaction tetrahedral intermediate bound to the active site of the C115A mutant of MurA. Biochemistry 1998, 37, 2572–2577. [Google Scholar] [CrossRef]
- Castañeda-Garcia, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef]
- Hrast, M.; Sosič, I.; Šink, R.; Gobec, S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg. Chem. 2014, 55, 2–15. [Google Scholar] [CrossRef]
- Chang, C.-M.; Chern, J.; Chen, M.-Y.; Huang, K.-F.; Chen, C.-H.; Yang, Y.-L.; Wu, S.-H. Avenaciolides: Potencial MurA targeted inhibitors against peptidoglycan biosynthesis in methicillin-resistant Staphylococcus aureus (MRSA). J. Am. Chem. Soc. 2015, 137, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Hrast, M.; Rožman, K.; Jukič, M.; Patin, D.; Gobec, S.; Sova, M. Synthesis and structure-activity relationship study of novel quinazolinone-based inhibitors of MurA. Bioorg. Med. Chem. Lett. 2017, 27, 3529–3533. [Google Scholar] [CrossRef]
- Farmer, B.T., II; Constantine, K.L.; Goldfarb, V.; Friedrichs, M.S.; Wittekind, M.; Yanchunas, J., Jr.; Robertson, J.G.; Mueller, L. Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat. Struc. Biol. 1996, 3, 995–997. [Google Scholar] [CrossRef] [PubMed]
- Benson, T.E.; Marquardt, J.L.; Marquardt, A.C.; Etzkorn, F.A.; Walsh, C.T. Overexpression, purification, and mechanism study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 1993, 32, 2024–2030. [Google Scholar] [CrossRef]
- Benson, T.E.; Walsh, C.T.; Hogle, J.M. The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure 1996, 4, 47–54. [Google Scholar] [CrossRef]
- Dhalla, A.M.; Yanchunas, J., Jr.; Ho, H.T.; Falk, P.J.; Villafranca, J.J.; Robertson, J.G. Steady-state kinetic mechanism of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 1995, 34, 5390–5402. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Kurokawa, K.; Matsuo, M.; Sakamoto, K.; Ueno, K.; Kita, K.; Sekimizu, K. Identification and characterization of amino acid residues essential for the active site of UDP-N-acetyl-enolpyruvylglucosamine reductase (MurB) from S. aureus. J. Biol. Chem. 2006, 281, 1714–1724. [Google Scholar] [CrossRef] [PubMed]
- Bronson, J.J.; DenBleyker, K.L.; Falk, P.J.; Mate, R.A.; Ho, H.-T.; Pucci, M.J.; Snyder, L.B. Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorg. Med. Chem. Lett. 2003, 13, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.M.; Failli, A.; Shumsky, J.; Yang, Y.; Severin, A.; Singh, G.; Hu, W.; Keeney, D.; Petersen, P.J.; Katz, A.H. Pyrazolidine-3,5-dione and 5-hydroxy-1H-pyrazol-3-(2H)-ones, inhibitors of UDP-N-acetylenolpyruvyl glucosamine reductase. J. Med. Chem. 2006, 49, 6027–6036. [Google Scholar] [CrossRef]
- Francisco, G.D.; Li, Z.; Donald Albright, J.; Eudy, N.H.; Katz, A.H.; Peterson, P.J.; Labthavikul, P.; Singh, G.; Yang, Y.; Rasmussen, B.A.; et al. Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg. Med. Chem. Lett. 2004, 14, 235–238. [Google Scholar] [CrossRef]
- El Zoeiby, A.; Sanschagrin, F.; Levesque, R.C. Structure and function of the Mur enzymes: Development of novel inhibitors. Mol. Microbiol. 2003, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kouidmi, I.; Levesque, R.C.; Paradis-Bleau, C. The biology of Mur ligases as an antibacterial target. Mol. Microbiol. 2014, 94, 242–253. [Google Scholar] [CrossRef]
- Ha, S.; Gross, B.; Walker, S.E. coli MurG: A paradigm for a superfamily of glycosyltransferase. Curr. Drug Targ. Infect. Disord. 2001, 1, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Chang, E.; Lo, M.-C.; Men, H.; Park, P.; Ge, M.; Walker, S. The kinetic characterization of Escherichia coli MurG using synthetic substrate analogues. J. Am. Chem. Soc. 1999, 121, 8415–8426. [Google Scholar] [CrossRef]
- Ha, S.; Walker, D.; Shi, Y.; Walker, S. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Prot. Sci. 2000, 9, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, L.; Ha, S.; Gross, B.; Falcone, B.; Walker, D.; Mokhtarzadeh, M.; Walker, S. Crystal structure of the MurG: UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl. Acad. Sci. USA 2003, 100, 845–849. [Google Scholar] [CrossRef]
- Mohammadi, T.; Karczmarek, A.; Crouvoisier, M.; Bouhss, A.; Mengin-Lecreulx, D.; Den Blaauwen, T. The essential peptidoglycan glycosyltransferase MurG forms a complex with proteins involved the lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol. Microbiol. 2007, 65, 1106–1121. [Google Scholar] [CrossRef]
- Laddomada, F.; Miyachiro, M.M.; Jessop, M.; Patin, D.; Job, V.; Megin-Lecreulx, D.; Le Roy, A.; Ebel, C.; Breyton, C.; Gutsche, I.; et al. The MurG glycosyltransferase provides an oligomeric scaffold for the cytoplasmic steps of peptidoglycan biosynthesis in the human pathogen Bordetella pertussis. Sci. Rep. 2019, 9, 4656. [Google Scholar] [CrossRef]
- Mann, P.A.; Müller, A.; Xiao, L.; Pereira, P.M.; Yang, C.; Ho Lee, S.; Wang, H.; Trzeciak, J.; Schneeweis, J.; Moreira dos Santos, M.; et al. Murgocil is a highly bioactive Staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem. Biol. 2013, 8, 2442–2451. [Google Scholar] [CrossRef]
- Helm, J.S.; Hu, Y.; Chen, L.; Gross, B.; Walker, S. Identification of active-site inhibitors of MurG using a generalizable, high-throughput glycosyltransferase screen. J. Am. Chem. Soc. 2003, 125, 11168–11169. [Google Scholar] [CrossRef]
- Hu, Y.; Helm, J.S.; Chen, L.; Ginsberg, C.; Gross, B.; Kraybill, B.; Tiyanont, K.; Fang, X.; Wu, T.; Walker, S. Identification of selective inhibitors for the glycosyltransferase MurG via highthroughput screening. Chem. Biol. 2004, 11, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Mravljak, J.; Monasson, O.; Al-Dabbagh, B.; Crouvoisier, M.; Bouhss, A.; Gravier-Pelletier, C.; Le Merrer, Y. Synthesis and biological evaluation of a diazepanone-based library of liposidomycin analogs as MraY inhibitors. Eur. J. Med. Chem. 2011, 46, 1582–1592. [Google Scholar] [CrossRef]
- Belete, T.M. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Hum. Microbiome J. 2019, 11, 100052. [Google Scholar] [CrossRef]
- Das, D.; Hervé, M.; Feuerhelm, J.; Farr, C.L.; Chiu, H.-J.; Elsliger, M.-A.; Knuth, M.W.; Klock, H.E.; Miller, M.D.; Godzik, A.; et al. Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein. PLoS ONE 2011, 6, e17624. [Google Scholar] [CrossRef]
- Smith, C.A. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J. Mol. Biol. 2006, 362, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.A.; Auger, G.; Fanchon, E.; Martin, L.; Blanot, D.; Van Heijenoort, J.; Dideberg, O. Crystal structure of UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase from Escherichia coli. EMBO J. 1997, 16, 3416–3425. [Google Scholar] [CrossRef] [PubMed]
- Patin, D.; Boniface, A.; Kovač, A.; Hervé, M.; Dementin, S.; Barreteau, H.; Mengin-Lecreulx, D.; Blanot, D. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus. Biochemistry 2010, 92, 1793–1800. [Google Scholar] [CrossRef]
- Munshi, T.; Gupta, A.; Evangelopoulos, D.; David Guzman, J.; Gibbons, S.; Keep, N.H.; Bhakta, S. Characterization of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis. PLoS ONE 2013, 8, e60143. [Google Scholar] [CrossRef] [PubMed]
- Perdih, A.; Hodoscek, M.; Solmajer, T. MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method. Proteins 2009, 74, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Deva, T.; Baker, E.N.; Squire, C.J.; Smith, C.A. Structure of Escherichia coli UDP-N-acetylmuramoyl:L-alanine (MurC). Acta Cryst. D 2006, 62, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.A.; Auger, G.; Martin, L.; Fanchon, E.; Blanot, D.; Le Beller, D.; Van Heijenoort, J.; Dideberg, O. Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J. Mol. Biol. 1999, 289, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Gordon, E.; Flouret, B.; Chantalat, L.; Van Heijenoort, J.; Mengin-Lecreulx, D.; Dideberg, O. Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: Meso-diaminopimelate ligase from Escherichia coli. J. Biol. Chem. 2001, 276, 10999–11006. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Munshi, S.; Leiting, B.; Anderson, M.S.; Chrzas, J.; Chen, Z. Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. J. Mol. Biol. 2000, 304, 435–445. [Google Scholar] [CrossRef]
- Wang, C.; Xu, P.; Zhang, L.; Huang, J.; Zhu, K.; Luo, C. Current strategies and applications for precision drug design. Front. Pharmacol. 2018, 9, 787. [Google Scholar] [CrossRef] [PubMed]
- Hishinuma, F.; Izaki, K.; Takahashi, H. Inhibition of l-alanine adding enzyme by glycine. Agric. Biol. Chem. 1971, 35, 2050–2058. [Google Scholar] [CrossRef]
- Liger, D.; Masson, A.; Blanot, D.; Van Heijenoort, J.; Parquet, C. Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate:l-alanine ligase from Escherichia coli. Eur. J. Biochem. 1995, 230, 80–87. [Google Scholar]
- Emanuele, J.J.; Jin, H.; Jacobson, B.L.; Chang, C.Y.; Einspahr, H.M.; VillaFranca, J.J. Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate:l-alanine ligase. Prot. Sci. 1996, 5, 2566–2574. [Google Scholar] [CrossRef]
- Pratviel-Sosa, F.; Acher, F.; Trigalo, F.; Blanot, D.; Azerad, R.; Van Heijenoort, J. Effect of various analogues of d-glutamic acid on the d-glutamate-adding enzyme from Escherichia coli. FEMS Microbiol. Lett. 1994, 115, 223–228. [Google Scholar]
- Auger, G.; Van Heijenoort, J.; Vederas, J.C.; Blanot, D. Effect of analogues of diaminopimelic acid on the meso-diaminopimelate-adding enzyme from Escherichia coli. FEBS Lett. 1996, 391, 171–174. [Google Scholar] [CrossRef]
- Gobec, S.; Urleb, U.; Auger, G.; Blanot, D. Synthesis and biochemical evaluation of some novel N-acyl phosphono and phosphinoalanine derivatives as potential inhibitors of the d-glutamic acid-adding enzyme. Pharmazie 2001, 56, 295–297. [Google Scholar] [CrossRef]
- Kotnik, M.; Humljan, J.; Contreras-Martel, C.; Oblak, M.; Kristan, K.; Hervé, M.; Blanot, D.; Urleb, U.; Gobec, S.; Dessen, A.; et al. Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J. Mol. Biol. 2007, 370, 107–115. [Google Scholar] [CrossRef]
- Humljan, J.; Kotnik, M.; Contreras-Martel, C.; Blanot, D.; Urleb, U.; Dessen, A.; Solmajer, T.; Gobec, S. Novel naphthalene-N-sulfonyl-d-glutamic acid derivatives as inhibitors of MurD, a key peptidoglycan biosynthesis enzyme. J. Med. Chem. 2008, 51, 7486–7494. [Google Scholar] [CrossRef] [PubMed]
- Zidar, N.; Tomašić, T.; Šink, R.; Rupnik, V.; Kovač, A.; Turk, S.; Patin, D.; Blanot, D.; Contreras-Martel, C.; Dessen, A.; et al. Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J. Med. Chem. 2010, 53, 6584–6594. [Google Scholar] [CrossRef]
- Tomašić, T.; Zidar, N.; Šink, R.; Kovač, A.; Blanot, D.; Contreras-Martel, C.; Dessen, A.; Müller Premru, M.; Zega, A.; Gobec, S.; et al. Structure-based design of a new series of d-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-l-alanine:d-glutamate ligase (MurD). J. Med. Chem. 2011, 54, 4600–4610. [Google Scholar] [CrossRef] [PubMed]
- Tomašić, T.; Kovač, A.; Simčič, M.; Blanot, D.; Golič Grdadolnik, S.; Gobec, S.; Kikelj, D.; Pertelin Mašić, L. Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting d-glu and diphosphate-binding sites. Eur. J. Med. Chem. 2011, 46, 3964–3975. [Google Scholar] [CrossRef]
- Baell, J.; Walters, M.A. Chemical con artists foil drug discovery. Nature 2014, 513, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.M.; Ng, S.B.; Buss, A.D.; Crasta, S.C.; Goh, K.L.; Lee, S.K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/l-Alanine ligase. Bioorg. Med. Chem. Lett. 2002, 12, 697–699. [Google Scholar] [CrossRef] [PubMed]
- Humljan, J.; Kotnik, M.; Boniface, A.; Šolmajer, T.; Urleb, U.; Blanot, D.; Gobec, S. A new approach towardspeptidosulfonamides: Synthesis of potential inhibitors of bacterial peptidoglycan biosynthesis enzymes MurD and MurE. Tetrahedron 2006, 62, 10980–10988. [Google Scholar] [CrossRef]
- Sosič, I.; Barreteau, H.; Simčič, M.; Šink, R.; Cesar, J.; Zega, A.; Golič Grdadolnik, S.; Contreras-Martel, C.; Dessen, A.; Amoroso, A.; et al. Second-generation sulfonamide inhibitors of d-glutamic acid-adding enzyme: Activity optimization with conformationnally rigid analogues of d-glutamic acid. Eur. J. Med. Chem. 2011, 46, 2880–2894. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.T.; Wu, Z. Phosphinate analogs of d-, d-dipeptides: Slow-binding inhibition and proteolysis protection of VanX, a d-, d-dipeptidase required for vancomycin resistance in Enterococcus faecium. Proc. Natl. Acad. Sci. USA 1995, 92, 11603–11607. [Google Scholar]
- Ellsworth, B.A.; Tom, N.J.; Bartlett, P.A. Synthesis and evaluation of inhibition of bacterial d-alanine:d-alanine ligases. Chem. Biol. 1996, 3, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Reck, F.; Marmor, S.; Fisher, S.; Wuonola, M.A. Inhibitors of the cell wall biosynthesis enzyme MurC. Bioorg. Med. Chem. Lett. 2001, 11, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Marmor, S.; Peterson, C.P.; Reck, F.; Yang, W.; Gao, N.; Fisher, S.L. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC. Biochemistry 2001, 40, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.E.; Vaganay, S.; Van Heijenoort, J.; Blanot, D. Phosphinate inhibitors of the d-glutamic acid-adding enzyme of peptidoglycan biosynthesis. J. Org. Chem. 1996, 61, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
- Gegnas, L.D.; Waddell, S.T.; Chabin, R.M.; Reddy, S.; Wong, K.K. Inhibitors of the bacterial cell wall biosynthesis enzyme Mur D. Bioorg. Med. Chem. Lett. 1998, 8, 1643–1648. [Google Scholar] [CrossRef]
- Štrancar, K.; Blanot, D.; Gobec, S. Design, synthesis and structure-activity relationship of new phosphinate inhibitors of MurD. Bioorg. Med. Chem. Lett. 2006, 16, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Wong, K.K.; Pompliano, D.L.; Reddy, S.; Tanner, M.E. A phophinate inhibitor of the meso-diaminopimelic acid-adding enzyme (MurE) of peptidoglycan biosynthesis. J. Org. Chem. 1998, 63, 10081–10086. [Google Scholar] [CrossRef]
- Štrancar, K.; Boniface, A.; Blanot, D.; Gobec, S. Phosphinate inhibitors of UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: L-lysine ligase (MurE). Arch. Pharm. Int. J. Pharm. Med. Chem. 2007, 340, 127–134. [Google Scholar] [CrossRef]
- Blanot, D.; Auger, G.; Liger, D.; Van Heijenoort, J. Synthesis of α and β anomers of UDP-N-acetylmuramic acid. Carb. Res. 1994, 252, 107–115. [Google Scholar] [CrossRef]
- Hitchcock, S.A.; Eid, C.N.; Aikins, J.A.; Zia-Ebrahimi, M.; Blaszczak, L.C. The first total synthesis of bacterial cell wall precursor UDP-N-acetylmuramyl-pentapeptide (Park nucleotide). J. Am. Chem. Soc. 1998, 120, 1916–1917. [Google Scholar] [CrossRef]
- Liu, H.; Sadamoto, R.; Sears, P.S.; Wong, C.-H. An efficient chemoenzymatic strategy for the synthesis of wild-type and vancomycin-resitant bacterial cell-wall precursors: UDP-N-acetylmuramyl-peptides. J. Am. Chem. Soc. 2001, 123, 9916–9917. [Google Scholar] [CrossRef] [PubMed]
- Lioux, T.; Busson, R.; Rozenski, J.; Nguyen-Distèche, M.; Frère, J.-M.; Herdewijn, P. Synthesis of peptidoglycan units with UDP at the anomeric position. Collect. Czech. Chem. Commun. 2005, 70, 1615–1641. [Google Scholar] [CrossRef]
- Humljan, J.; Starčević, Š.; Car, V.; Anderluth, Š.; Kocjan, D.; Jenko, B.; Urleb, U. Optimization of UDP-N-acetylmuramic acid synthesis. Pharmazie 2008, 2, 102–106. [Google Scholar]
- Horton, J.R.; Bostock, J.M.; Chopra, I.; Hesse, L.; Phillips, S.E.V.; Adams, D.J.; Peter Johnson, A.; Fishwick, C.W.G. Macrocyclic inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg. Med. Chem. Lett. 2003, 13, 1557–1560. [Google Scholar] [CrossRef] [PubMed]
- Frlan, R.; Perdith, F.; Cirkvenčič, N.; Pečar, S.; Obreza, A. Design an d synthesis of novel UDP-Mur-NAc, UDP-Mur-NAc-l-Ala and UDP-Mur-NAc-l-Ala-d-Glu mimetics. Acta Chim. Slov. 2009, 56, 580–590. [Google Scholar]
- Zivec, M.; Turk, S.; Blanot, D.; Gobec, S. Design and synthesis of new peptidomimetics as potencial inhibitors of MurE. Acta Chim. Slov. 2011, 58, 95–109. [Google Scholar]
- El Zoeiby, A.; Sanschagrin, F.; Darveau, A.; Brisson, J.-R.; Levesque, R.C. Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide librairies. J. Antimicrob. Chemother. 2003, 51, 531–543. [Google Scholar] [CrossRef]
- Paradis-Bleau, C.; Beaumont, M.; Boudreault, L.; Lloyd, A.; Sanschagrin, F.; Bugg, T.D.H.; Levesque, R.C. Selection of peptide inhibitors against the Pseudomonas aeruginosa MurC cell wall enzyme. Peptides 2006, 27, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Paradis-Bleau, C.; Lloyd, A.; Sanschagrin, F.; Maaroufi, H.; Clarke, T.; Blewett, A.; Dowson, C.; Roper, D.I.; Bug, T.D.; Levesque, R.C. Pseudomonas aeruginosa MurE amide ligase: Enzyme kinetics and peptide inhibitor. Biochem. J. 2009, 421, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Bratkovič, T.; Lunder, M.; Urleb, U.; Štrukelj, B. Peptide inhibitors of MurD and MurE, essential enzymes of bacterial cell wall biosynthesis. J. Bas. Microbiol. 2008, 48, 202–206. [Google Scholar] [CrossRef]
- Paradis-Bleau, C.; Lloyd, A.; Sanschagrin, F.; Clarke, T.; Blewett, A.; Bugg, T.D.; Levesque, R.C. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC Biochem. 2008, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, D.E.; Demeritt, J.E.; Hull, K.G.; Fisher, S.L. Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase. Biochim. Biophy. Acta 2004, 1698, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Frlan, R.; Kovač, A.; Blanot, D.; Gobec, S.; Pečar, S.; Obreza, A. Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents. Molecules 2008, 13, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Frlan, R.; Kovač, A.; Blanot, D.; Gobec, S.; Pečar, S.; Obreza, A. Design, synthesis and in vitro biochemical activity of novel amino acid sulfonohydrazideinhibitors of MurC. Acta Chim. Slov. 2011, 58, 295–310. [Google Scholar]
- Turk, S.; Kovač, A.; Boniface, A.; Bostock, J.M.; Chopra, I.; Blanot, D.; Gobec, S. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg. Med. Chem. 2009, 17, 1884–1889. [Google Scholar] [CrossRef]
- Gui Gu, Y.; Florjancic, A.S.; Clark, R.F.; Zhang, T.; Cooper, C.S.; Anderson, D.D.; Lerner, C.G.; Owen McCall, J.; Cai, Y.; Black-Schaefer, C.L.; et al. Structure-activity relationships of novel potent MurF inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Comess, K.M.; Schurdak, M.E.; Voorbach, M.J.; Coen, M.; Trumbull, J.D.; Yang, H.; Gao, L.; Tang, H.; Cheng, X.; Lerner, C.G.; et al. An ultraefficient affinity-based high-throughout screening process: Application to bacterial cell wall biosynthesis enzyme MurF. J. Biomol. Screen. 2006, 11, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Longenecker, K.L.; Stamper, G.F.; Hajduk, P.J.; Fry, E.H.; Jakob, C.G.; Harlan, J.E.; Edalji, R.; Bartley, D.M.; Walter, K.A.; Solomon, L.R.; et al. Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor interdomain closure. Prot. Sci. 2005, 14, 3039–3047. [Google Scholar] [CrossRef] [PubMed]
- Stamper, G.F.; Longenecker, K.L.; Fry, E.H.; Jacok, C.G.; Florjancic, A.S.; Gui Gu, Y.; Anderson, D.D.; Cooper, C.S.; Zhang, T.; Clark, R.F.; et al. Structure-based optimization of MuF inhibitors. Chem. Biol. Drug Des. 2005, 67, 58–65. [Google Scholar] [CrossRef]
- Hrast, M.; Turk, S.; Sosič, I.; Knez, D.; Randall, C.P.; Barreteau, H.; Contreras-Martel, C.; Dessen, A.; O’Neil, A.J.; Mengin-Lecreulx, D.; et al. Structure-activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur. J. Med. Chem. 2013, 66, 32–45. [Google Scholar] [CrossRef]
- Hrast, M.; Anderluth, M.; Knez, D.; Randall, C.P.; Barreteau, H.; O’Neil, A.J.; Blanot, D.; Gobec, S. Design, synthesis and evaluation of second generation MurF inhibitors based on cyanothiophene scaffold. Eur. J. Med. Chem. 2014, 73, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Turk, S.; Hrast, M.; Sosič, I.; Barreteau, H.; Mengin-Lecreulx, D.; Blanot, D.; Gobec, S. Biochemical characterization of MurF from Streptococcus pneumoniae and the identification of a new MurF inhibitor through ligand-based virtual screening. Acta Chim. Slov. 2013, 60, 294–299. [Google Scholar] [PubMed]
- Sosič, I.; Štefane, B.; Kovač, A.; Turk, S.; Blanot, D.; Gobec, S. The synthesis of novel 2,4,6-trisubstituted 1,3,5-triazines: A search for potential MurF enzyme inhibitors. Heterocycles 2010, 81, 91–115. [Google Scholar]
- Baum, E.Z.; Crespo-Carbone, S.M.; Abbanat, D.; Foleno, B.; Maden, A.; Goldschmidt, R.; Bush, K. Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob. Agents Chemother. 2006, 50, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Baum, E.Z.; Crespo-Carbone, S.M.; Klinger, A.; Foleno, B.D.; Turchi, I.; Macielag, M.; Bush, K. A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob. Agents Chemother. 2007, 51, 4420–4426. [Google Scholar] [PubMed]
- Baum, E.Z.; Crespo-Carbone, S.M.; Foleno, B.D.; Simon, L.D.; Guillemont, J.; Macielag, M.; Bush, K. MurF inhibitors with antibacterial activity: Effect on muropeptide levels. Antimicrob. Agents Chemother. 2009, 53, 3240–3247. [Google Scholar] [CrossRef]
- Zawadzke, L.E.; Norcia, M.; Desbonnet, C.R.; Wang, H.; Freeman-Cook, K.; Dougherty, T.J. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway. Assay Drug. Dev. Technol. 2008, 6, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.D.; Gupta, A.; Evangelopoulos, D.; Basavannacharya, C.; Pabon, L.C.; Plazas, E.A.; Muñoz, D.R.; Delgado, W.A.; Cuca, L.E.; Ribon, W.; et al. Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2010, 65, 2101–2107. [Google Scholar] [CrossRef]
- Shiu, W.K.P.; Malkinson, J.P.; Mukhlesur Rahman, M.; Curry, J.; Stapleton, P.; Gunaratnam, M.; Neidle, S.; Mushtaq, S.; Warner, M.; Livermore, D.M.; et al. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int. J. Antimicrob. Agents 2013, 42, 513–518. [Google Scholar] [CrossRef]
- Guzman, J.D.; Pesnot, T.; Barrera, D.A.; Davies, H.M.; MacMahon, E.; Evangelopoulos, D.; Mortazavi, P.N.; Munshi, T.; Maitra, A.; Lamming, E.D.; et al. Tetrahydroisoquinolines affect the whole-cell phenotype of Mycobacterium tuberculosis by inhibiting the ATP-dependent MurE ligase. J. Antimicrob. Chemother. 2015, 70, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Tomašić, T.; Šink, R.; Zidar, N.; Fic, A.; Contreras-Martel, C.; Dessen, A.; Patin, D.; Blanot, D.; Müller-Premru, M.; Gobec, S.; et al. Dual inhibitor of MurD and MurE ligases from Escherichia coli and Straphylococcus aureus. ACS Med. Chem. Lett. 2012, 3, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Perdih, A.; Kovač, A.; Wolber, G.; Blanot, D.; Gobec, S.; Solmajer, T. Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg. Med. Chem. Lett. 2009, 19, 2668–2673. [Google Scholar] [CrossRef]
- Perdih, A.; Hrast, M.; Barreteau, H.; Gobec, S.; Wolber, G.; Solmajer, T. Benzene 1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF). Bioorg. Med. Chem. 2014, 22, 4124–4134. [Google Scholar] [CrossRef]
- Sova, M.; Kovač, A.; Turk, S.; Hrast, M.; Blanot, D.; Gobec, S. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg. Chem. 2009, 37, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Šink, R.; Kovač, A.; Tomašić, T.; Rupnik, V.; Boniface, A.; Bostock, J.; Chopra, I.; Blanot, D.; Peterlin Mašič, L.; Gobec, S.; et al. Synthesis and biological evaluation of N-acylhydrazones as inhibitors of MurC and MurD ligases. ChemMedChem 2008, 3, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Frlan, R.; Vobovnik, N.; Kovač, A.; Blanot, D.; Pečar, S.; Gobec, S. New Arylsulfonohydrazide Inhibitors of Enzymes MurC and MurD. Patent EP1845083 A2 2006-04-13 11 April 2017. [Google Scholar]
- Antane, S.; Caufield, C.E.; Hu, W.; Keeney, D.; Labthavikul, P.; Morris, K.; Naughton, S.M.; Peterson, P.J.; Rasmussen, B.A.; Singh, G.; et al. Pulvinones as bacterial cell wall biosynthesis inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Francisco, G.D.; Hu, W.; Labthavikul, P.; Peterson, P.J.; Severin, A.; Singh, G.; Yang, Y.; Rasmussen, B.A.; Lin, Y.-I.; et al. 2-phenyl-5,6-dihydro-2H-thieno [3,2-c]pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg. Med. Chem. Lett. 2003, 13, 2591–2594. [Google Scholar] [CrossRef] [PubMed]
- Mansour, T.S.; Caufield, C.E.; Rasmussen, B.A.; Chopra, R.; Krishnamurthy, G.; Morris, K.M.; Svenson, K.; Bard, J.; Smeltzer, C.; Naughton, S.; et al. Naphthyl tetronic acid as multi-target inhibitors of bacterial peptidoglycan biosynthesis. ChemMedChem 2007, 2, 1414–1417. [Google Scholar] [CrossRef]
- Hrast, M.; Rožman, K.; Ogris, I.; Škedelj, V.; Patin, D.; Sova, M.; Barreteau, H.; Gobec, S.; Golič Grdadolnik, S.; Zega, A. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzym. Inhib. Med. Chem. 2019, 34, 1010–1017. [Google Scholar] [CrossRef]
- Raush, S.; Hänchen, A.; Denisiuk, A.; Löhken, M.; Schneider, T.; Süssmuth, R.D. Feglymycin is an inhibitor of the enzyme MurA and MurC of the peptidoglycan biosynthesis pathway. ChemBioChem 2011, 12, 1171–1173. [Google Scholar] [CrossRef]
- Tomašič, T.; Kovač, A.; Klebe, G.; Blanot, D.; Gobec, S.; Kikelj, D.; Peterlin Mašič, L. Virtual screening for potential inhibitors of bacterial MurC and MurD ligases. J. Mol. Model. 2012, 18, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Chakkyarath, V.; Natarajan, J. Identification of ideal multi-targeting bioactive compounds against Mur ligases of Enterobacter aerogenes and its bonding mechanism in comparison with chemical inhibitors. Interdiscip. Sci. Comput. Life Sci. 2019, 11, 135–144. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hervin, V.; Roy, V.; Agrofoglio, L.A. Antibiotics and Antibiotic Resistance—Mur Ligases as an Antibacterial Target. Molecules 2023, 28, 8076. https://doi.org/10.3390/molecules28248076
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance—Mur Ligases as an Antibacterial Target. Molecules. 2023; 28(24):8076. https://doi.org/10.3390/molecules28248076
Chicago/Turabian StyleHervin, Vincent, Vincent Roy, and Luigi A. Agrofoglio. 2023. "Antibiotics and Antibiotic Resistance—Mur Ligases as an Antibacterial Target" Molecules 28, no. 24: 8076. https://doi.org/10.3390/molecules28248076
APA StyleHervin, V., Roy, V., & Agrofoglio, L. A. (2023). Antibiotics and Antibiotic Resistance—Mur Ligases as an Antibacterial Target. Molecules, 28(24), 8076. https://doi.org/10.3390/molecules28248076