Insect α-Amylases and Their Application in Pest Management
Abstract
:1. Introduction
2. Sequences and Structure of Insect α-Amylases
3. Multigene Family of α-Amylase in Insects
4. Properties of Insect α-Amylases
5. The Regulation of Insect α-Amylases Expression and Activity
6. Insect α-Amylase Inhibitors
7. Insect α-Amylase as a Pesticide Target
8. Insect α-Amylases and Human Health
9. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003, 38, 1599–1616. [Google Scholar] [CrossRef]
- Akira, H.; Mitsuru, E.; Naohiro, T.; Takahiro, N.; Michio, O.; Takesada, M.; Kenichi, M. Primary structure of human pancreatic α-amylase gene: Its comparison with human salivary α-amylase gene. Gene 1987, 60, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Darnis, S.; Juge, N.; Guo, X.J.; Marchis-Mouren, G.; Puigserver, A.; Chaix, J.C. Molecular cloning and primary structure analysis of porcine pancreatic α-amylase. Biochim. Biophys. Acta 1999, 1430, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Benkel, B.F.; Nguyen, T.; Ahluwalia, N.; Benkel, K.I.; Hickey, D.A. Hickey Cloning and expression of a chicken α-amylase gene1. Gene 1997, 192, 261–270. [Google Scholar] [CrossRef]
- Sellos, D.; Moal, J.; Degremont, L.; Huvet, A.; Daniel, J.Y.; Nicoulaud, S.; Boudry, P.; Samain, J.F.; Van Wormhoudt, A. Structure of amylase genes in populations of Pacific Cupped oyster (Crassostrea gigas): Tissue expression and allelic polymorphism. Mar. Biotechnol. 2003, 5, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Amid, M.; Manap, Y.; Zohdi, N.K. Microencapsulation of purified amylase enzyme from pitaya (Hylocereus polyrhizus) peel in Arabic gum-chitosan using freeze drying. Molecules 2014, 19, 3731–3743. [Google Scholar] [CrossRef] [PubMed]
- Zaferanloo, B.; Bhattacharjee, S.; Ghorbani, M.M.; Mahon, P.J.; Palombo, E.A. Amylase production by Preussia minima, a fungus of endophytic origin: Optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Biochem. 2014, 14, 55. [Google Scholar] [CrossRef]
- Aguloglu Fincan, S.; Enez, B.; Ozdemir, S.; Matpan Bekler, F. Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus. Carbohydr. Polym. 2014, 102, 144–150. [Google Scholar] [CrossRef]
- Grossman, G.L.; Campos, Y.; Severson, D.W.; James, A.A. Evidence for two distinct members of the amylase gene family in the yellow fever mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 1997, 27, 769–781. [Google Scholar] [CrossRef]
- Da Lage, J.L.; Maisonhaute, C.; Maczkowiak, F.; Cariou, M.L. A nested alpha-amylase gene in Drosophila ananassae. J. Mol. Evol. 2003, 57, 355–362. [Google Scholar] [CrossRef]
- Saltzmann, K.D.; Saltzmann, K.A.; Neal, J.J.; Scharf, M.E.; Bennett, G.W. Characterization of BGTG-1, a tergal gland-secreted alpha-amylase, from the German cockroach, Blattella germanica (L.). Insect Mol. Biol. 2006, 15, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Bodlakova, K.; Jedlicka, P.; Kodrik, D. Adipokinetic hormones control amylase activity in the cockroach (Periplaneta americana) gut. Insect Sci. 2017, 24, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Janecek, S.; Svensson, B.; MacGregor, E.A. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 2014, 71, 1149–1170. [Google Scholar] [CrossRef] [PubMed]
- Bhide, A.J.; Channale, S.M.; Yadav, Y.; Bhattacharjee, K.; Pawar, P.K.; Maheshwari, V.L.; Gupta, V.S.; Ramasamy, S.; Giri, A.P. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. Plant Mol. Biol. 2017, 94, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Lomate, P.R.; Joshi, R.S.; Punekar, S.A.; Gupta, V.S.; Giri, A.P. Ecological turmoil in evolutionary dynamics of plant-insect interactions: Defense to offence. Planta 2015, 242, 761–771. [Google Scholar] [CrossRef]
- Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-De-Sa, M.F. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur. J. Biochem. 2002, 269, 397–412. [Google Scholar] [CrossRef]
- Da Lage, J.L. The Amylases of Insects. Int. J. Insect Sci. 2018, 10, 1179543318804783. [Google Scholar] [CrossRef]
- Jing, D.; Prabu, S.; Zhang, T.; Bai, S.; He, K.; Zhang, Y.; Wang, Z. Revealing the difference of α-amylase and CYP6AE76 gene between polyphagous Conogethes punctiferalis and oligophagous C. pinicolalis by multiple-omics and molecular biological technique. BMC Genom. 2022, 23, 521. [Google Scholar] [CrossRef]
- Nahoum, V.; Farisei, F.; Le-Berre-Anton, V.; Egloff, M.P.; Rouge, P.; Poerio, E.; Payan, F. A plant-seed inhibitor of two classes of α-amylases: X-ray analysis of Tenebrio molitor larvae α-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr. D Biol. Crystallogr. 1999, 55 Pt 1, 360–362. [Google Scholar] [CrossRef]
- Strobl, S.; Maskos, K.; Betz, M.; Wiegand, G.; Huber, R.; Gomis-RuÈth, F.X.; Glockshuber, R. Xavier Gomis-Rüth, Rudi Glockshuber, Crystal Structure of Yellow Meal Worm α-Amylase at 1.64 Å Resolution. J. Mol. Biol. 1998, 278, 617628. [Google Scholar] [CrossRef]
- Pytelkova, J.; Hubert, J.; Lepsik, M.; Sobotnik, J.; Sindelka, R.; Krizkova, I.; Horn, M.; Mares, M. Digestive alpha-amylases of the flour moth Ephestia kuehniella-adaptation to alkaline environment and plant inhibitors. FEBS J. 2009, 276, 3531–3546. [Google Scholar] [CrossRef] [PubMed]
- Rhimi, M.; Da Lage, J.L.; Haser, R.; Feller, G.; Aghajari, N. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Molecules 2023, 28, 5327. [Google Scholar] [CrossRef] [PubMed]
- da Costa-Latge, S.G.; Bates, P.; Dillon, R.; Genta, F.A. Characterization of Glycoside Hydrolase Families 13 and 31 Reveals Expansion and Diversification of α-Amylase Genes in the Phlebotomine Lutzomyia longipalpis and Modulation of Sandfly Glycosidase Activities by Leishmania Infection. Front. Physiol. 2021, 12, 635633. [Google Scholar] [CrossRef] [PubMed]
- Janecek, S. alpha-Amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol. 1997, 67, 67–97. [Google Scholar] [CrossRef]
- Cipolla, A.; Delbrassine, F.; Da Lage, J.L.; Feller, G. Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent alpha-amylases. Biochimie 2012, 94, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Hamori, C.; Remenyik, J.; Kandra, L.; Gyemant, G. Colorado potato beetle alpha-amylase: Purification, action pattern and subsite mapping for exploration of active centre. Int. J. Biol. Macromol. 2021, 168, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Feller, G.; Bonneau, M.; Da Lage, J.L. Amyrel, a novel glucose-forming α-amylase from Drosophila with 4-α-glucanotransferase activity by disproportionation and hydrolysis of maltooligosaccharides. Glycobiology 2021, 31, 1134–1144. [Google Scholar] [CrossRef]
- Sappl, P.G.; Heazlewood, J.L.; Millar, A.H. Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry 2004, 65, 1517–1530. [Google Scholar] [CrossRef]
- Hickey, D.A.; Bally-Cuif, L.; Abukashawa, S.; Payant, V.; Benkel, B.F. Concerted evolution of duplicated protein-coding genes in Drosophila. Proc. Natl. Acad. Sci. USA 1991, 88, 1611–1615. [Google Scholar] [CrossRef]
- Gabrisko, M.; Janecek, S. Characterization of maltase clusters in the genus Drosophila. J. Mol. Evol. 2011, 72, 104–118. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, H.; Liu, Y.; Wang, C.; Ma, B.; Zhang, M.; Zhang, Y.; Liu, Y.; Yang, B.; Wang, S.; et al. Chromosome-level genomes of two armyworms, Mythimna separata and Mythimna loreyi, provide insights into the biosynthesis and reception of sex pheromones. Mol. Ecol. Resour. 2023, 23, 1423–1441. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Cao, X.; Jiang, H. Digestion-related proteins in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 2020, 126, 103457. [Google Scholar] [CrossRef] [PubMed]
- Dojnov, B.; Loncar, N.; Bozic, N.; Nenadovic, V.; Ivanovic, J.; Vujcic, Z. Comparison of α-amylase isoforms from the midgut of Cerambyx cerdo L. (Coleoptera: Cerambycidae) larvae developed in the wild and on an artificial diet. Arch. Biol. Sci. 2010, 62, 575–584. [Google Scholar] [CrossRef]
- Mehrabadi, M.; Bandani, A.R.; Dastranj, M. Salivary digestive enzymes of the wheat bug, Eurygaster integriceps (Insecta: Hemiptera: Scutelleridae). C R. Biol. 2014, 337, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, N.; Gupta, A.K. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Pestic. Biochem. Physiol. 2014, 116, 83–93. [Google Scholar] [CrossRef]
- Ohashi, K.; Natori, S.; Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 1999, 265, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, Z.G.; Lin, Z.G.; Yin, L.; Gao, F.C.; Chen, G.H.; Ji, T. Epigenetic Modifications May Regulate the Activation of the Hypopharyngeal Gland of Honeybees (Apis Mellifera) During Winter. Front. Genet. 2020, 11, 46. [Google Scholar] [CrossRef]
- Myers, A.J.; Gondhalekar, A.D.; Fardisi, M.; Pluchar, K.D.; Saltzmann, K.D.; Bennett, G.W.; Scharf, M.E. RNA interference and functional characterization of a tergal gland alpha amylase in the German cockroach, Blattella germanica L. Insect Mol. Biol. 2017, 27, 143–153. [Google Scholar] [CrossRef]
- Jasso-Martinez, J.M.; Donath, A.; Schulten, D.; Zaldivar-Riveron, A.; Sann, M. Midgut transcriptome assessment of the cockroach-hunting wasp Ampulex compressa (Apoidea: Ampulicidae). PLoS ONE 2021, 16, e0252221. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Y.; Liu, M.; Yang, L.; Stanley, D.W.; Fang, Q.; Ye, G. A digestive tract expressing α-amylase influences the adult lifespan of Pteromalus puparum revealed through RNAi and rescue analyses. Pest. Manag. Sci. 2019, 75, 3346–3355. [Google Scholar] [CrossRef]
- Wang, B.; Ren, C.; Yang, L.; Fang, Q.; Song, Q.; Ye, G. Venom α-amylase of the endoparasitic wasp Pteromalus puparum influences host metabolism. Pest. Manag. Sci. 2020, 76, 2180–2189. [Google Scholar] [CrossRef] [PubMed]
- Bichang’a, G.; Da Lage, J.L.; Capdevielle-Dulac, C.; Zivy, M.; Balliau, T.; Sambai, K.; Le Ru, B.; Kaiser, L.; Juma, G.; Maina, E.N.M.; et al. α-Amylase Mediates Host Acceptance in the Braconid Parasitoid Cotesia flavipes. J. Chem. Ecol. 2018, 44, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Gupta, A.K.; Taggar, G.K. Characterisation and inhibition studies of Helicoverpa armigera (Hubner) gut α-amylase. Pest. Manag. Sci. 2015, 71, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Kluh, I.; Horn, M.; Hyblova, J.; Hubert, J.; Doleckova-Maresova, L.; Voburka, Z.; Kudlikova, I.; Kocourek, F.; Mares, M. Inhibitory specificity and insecticidal selectivity of alpha-amylase inhibitor from Phaseolus vulgaris. Phytochemistry 2005, 66, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Celinska, E.; Bialas, W.; Borkowska, M.; Grajek, W. Cloning, expression, and purification of insect (Sitophilus oryzae) alpha-amylase, able to digest granular starch, in Yarrowia lipolytica host. Appl. Microbiol. Biotechnol. 2015, 99, 2727–2739. [Google Scholar] [CrossRef] [PubMed]
- Zibaee, A.; Hoda, H.; Fazeli-Dinan, M. Purification and biochemical properties of a salivary α-amylase in Andrallus spinidens Fabricius (Hemiptera Pentatomidae). Invertebr. Surviv. J. 2012, 9, 48–57. [Google Scholar]
- Cruz, W.O.; Sinhori, G.G.C.; de Lima, C.A.R.; Pontes, E.G. Biochemical Properties of α-Amylase from Midgut of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) Larvae. Neotrop. Entomol. 2018, 47, 698–708. [Google Scholar] [CrossRef]
- Dojnov, B.; Bozic, N.; Nenadovic, V.; Ivanovic, J.; Vujcic, Z. Purification and properties of midgut alpha-amylase isolated from Morimus funereus (Coleoptera: Cerambycidae) larvae. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 153–160. [Google Scholar] [CrossRef]
- Pimentel, A.C.; Barroso, I.G.; Ferreira, J.M.J.; Dias, R.O.; Ferreira, C.; Terra, W.R. Molecular machinery of starch digestion and glucose absorption along the midgut of Musca domestica. J. Insect Physiol. 2018, 109, 11–20. [Google Scholar] [CrossRef]
- Abraham, I.; Doane, W.W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1978, 75, 4446–4450. [Google Scholar] [CrossRef]
- Hickey, D.A. Regulation of amylase activity in Drosophila melanogaster: Variation in the number of enzyme molecules produced by different amylase genotypes. Biochem. Genet. 1981, 19, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Song, Y.; Jiang, X.; He, L.; Wei, L.; Zhao, Z. Synergism of Feeding and Digestion Regulated by the Neuropeptide F System in Ostrinia furnacalis Larvae. Cells 2023, 12, 194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Li, T.; Yuan, L.; Tan, M.; Jiang, D.; Yan, S. Digestive Characteristics of Hyphantria cunea Larvae on Different Host Plants. Insects 2023, 14, 463. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.B.; Zhou, D.; Li, D.Y.; Zhi, J.R.; Fang, X.L.; Qiu, X.Y. Multigenerational variation in the nutrients and digestion of western flower thrips (Frankliniella occidentalis) depends on the nutritive quality of different foods. J. Insect Sci. 2023, 23, 12. [Google Scholar] [CrossRef]
- Shu, Q.; Wang, Y.; Gu, H.; Zhu, Q.; Liu, W.; Dai, Y.; Li, F.; Li, B. Effects of artificial diet breeding on intestinal microbial populations at the young stage of silkworm (Bombyx mori). Arch. Insect Biochem. Physiol. 2023, 113, e22019. [Google Scholar] [CrossRef]
- Yan, H.; Wen, F.; Xiang, H.; Wen, Y.; Shang, D.; Liu, A.; Niu, Y.; Xia, Q.; Wang, G. Biochemical characterization and overexpression of an α-amylase (BmAmy) in silkworm, Bombyx mori. Insect Mol. Biol. 2022, 31, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liu, Q.; Wen, F.; Bai, B.; Wen, Y.; Chen, W.; Lu, W.; Lin, Y.; Xia, Q.; Wang, G. Characterization and potential application of an α-amylase (BmAmy1) selected during silkworm domestication. Int. J. Biol. Macromol. 2021, 167, 1102–1112. [Google Scholar] [CrossRef]
- Borzoui, E.; Bandani, A.R.; Goldansaz, S.H.; Talaei-Hassanlouei, R. Dietary protein and carbohydrate levels affect performance and digestive physiology of Plodia interpunctella (Lepidoptera: Pyralidae). J. Econ. Entomol. 2018, 111, 942–949. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Borzoui, E.; Izadi, H. Physiological and Biochemical Differences in Diapausing and Nondiapausing Larvae of Eurytoma plotnikovi (Hymenoptera: Eurytomidae). Env. Entomol. 2017, 46, 1424–1431. [Google Scholar] [CrossRef]
- Dmochowska, K.; Giejdasz, K.; Fliszkiewicz, M.; Zółtowska, K. Prolonged postdiapause Influence on some indicators of carbohydrate and lipid metabolism of the red mason bee, Osmia rufa. J. Insect Sci. 2013, 13, 1–12. [Google Scholar] [CrossRef]
- Hasanvand, H.; Izadi, H.; Mohammadzadeh, M. Overwintering Physiology and Cold Tolerance of the Sunn Pest, Eurygaster integriceps, an Emphasis on the Role of Cryoprotectants. Front. Physiol. 2020, 11, 321. [Google Scholar] [CrossRef]
- Kocyigit, E.; Kocaadam-Bozkurt, B.; Bozkurt, O.; Agagunduz, D.; Capasso, R. Plant Toxic Proteins: Their Biological Activities, Mechanism of Action and Removal Strategies. Toxins 2023, 15, 356. [Google Scholar] [CrossRef]
- Ajitha, T.; Gayathri, R.V.A.; Evans, D.A. Antixenosis by a resistant Musa cultivar to stem borer Odoiporus longicollis attack and expression of microsomal α-amylase by the pest. J. Biosci. 2023, 48, 6. [Google Scholar] [CrossRef]
- Hilda, K.; Bhuvaragavan, S.; Kamatchi, R.; Meenakumari, M.; Janarthanan, S. Cloning, expression and characterization of arcelin and its impact on digestive enzymes of the stored product insect pest, Callosobruchus maculatus (F.). Pestic. Biochem. Physiol. 2022, 180, 104982. [Google Scholar] [CrossRef]
- Pereira, P.J.; Lozanov, V.; Patthy, A.; Huber, R.; Bode, W.; Pongor, S.; Strobl, S. Specific inhibition of insect α-amylases yellow meal worm α-amylase in complex with the Amaranth α-amylase inhibitor at 2.0 Å resolution. Structure 1999, 7, 1079–1088. [Google Scholar] [CrossRef]
- Dang, L.; Van Damme, E.J.M. Toxic proteins in plants. Phytochemistry 2015, 117, 51–64. [Google Scholar] [CrossRef]
- Ashouri, S.; Farshbaf Pourabad, R. Regulation of gene expression encoding the digestive α-amylase in the larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) in response to plant protein extracts. Gene 2021, 766, 145159. [Google Scholar] [CrossRef]
- Dastranj, M.; Borzoui, E.; Bandani, A.R.; Franco, O.L. Inhibitory effects of an extract from non-host plants on physiological characteristics of two major cabbage pests. Bull. Entomol. Res. 2018, 108, 370–379. [Google Scholar] [CrossRef]
- Prado, G.S.; Bamogo, P.K.A.; de Abreu, J.A.C.; Gillet, F.X.; Dos Santos, V.O.; Silva, M.C.M.; Brizard, J.P.; Bemquerer, M.P.; Bangratz, M.; Brugidou, C.; et al. Nicotiana benthamiana is a suitable transient system for high-level expression of an active inhibitor of cotton boll weevil α-amylase. BMC Biotechnol. 2019, 19, 15. [Google Scholar] [CrossRef]
- Juhasz, J.; Gaspari, Z.; Pongor, S. Structure and Oxidative Folding of AAI, the Major Alfa-Amylase Inhibitor From Amaranth Seeds. Front. Chem. 2020, 8, 180. [Google Scholar] [CrossRef] [PubMed]
- Rane, A.S.; Venkatesh, V.; Joshi, R.S.; Giri, A.P. Molecular investigation of Coleopteran specific α-Amylase inhibitors from Amaranthaceae members. Int. J. Biol. Macromol. 2020, 163, 1444–1450. [Google Scholar] [CrossRef]
- Moller, M.S.; Svensson, B. Structure, Function and Protein Engineering of Cereal-Type Inhibitors Acting on Amylolytic Enzymes. Front. Mol. Biosci. 2022, 9, 868568. [Google Scholar] [CrossRef]
- Capocchi, A.; Athanassiou, C.G.; Benelli, G.; Muccilli, V.; Kavallieratos, N.G.; Cunsolo, V.; Saletti, R.; Fontanini, D. A new monomeric α-amylase inhibitor from the tetraploid emmer wheat is mostly active against stored product pests. J. Pest. Sci. 2021, 95, 1401–1412. [Google Scholar] [CrossRef]
- Sagu, S.T.; Landgraber, E.; Henkel, I.M.; Huschek, G.; Homann, T.; Bussler, S.; Schluter, O.K.; Rawel, H. Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.). Insects 2021, 12, 454. [Google Scholar] [CrossRef]
- Nemati-Kalkhoran, M.; Razmjou, J.; Borzoui, E.; Naseri, B. Comparison of Life Table Parameters and Digestive Physiology of Rhyzopertha dominica (Coleoptera: Bostrichidae) Fed on Various Barley Cultivars. J. Insect Sci. 2018, 18, 31. [Google Scholar] [CrossRef]
- Blanco-Labra, A.; Iturbe-ChiÑAs, F.A. Purification and characterization of an α-amylase inhibitor from maize (Zea mays). J. Food Biochem. 1981, 5, 1–17. [Google Scholar] [CrossRef]
- Schimoler-O’Rourke, R.; Richardson, M.; Selitrennikoff, C.P. Zeamatin inhibits trypsin and alpha-amylase activities. Appl. Env. Microbiol. 2001, 67, 2365–2366. [Google Scholar] [CrossRef]
- Bloch, C., Jr.; Richardson, M. A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett. 1991, 279, 101–104. [Google Scholar] [CrossRef]
- Szilagyi, E.; Hamori, C.; Biro-Molnar, P.; Kandra, L.; Remenyik, J.; Gyemant, G. Cooperation of enzymes involved in carbohydrate digestion of Colorado potato beetle (Leptinotarsa decemlineata, Say). Bull. Entomol. Res. 2019, 109, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Taha, M.; Qureshi, F.; Ullah, N.; Selvaraj, M.; Shahzad, S.; Chigurupati, S.; Waheed, A.; Almutairi, F.A. Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives. BMC Chem. 2020, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Gachomo, E.W.; Jimenez-Lopez, J.C.; Kayode, A.P.; Baba-Moussa, L.; Kotchoni, S.O. Structural characterization of plant defensin protein superfamily. Mol. Biol. Rep. 2012, 39, 4461–4469. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, V.; Bukhteeva, I.; Kit, O.Y.; Nesmelova, I.V. Plant Defensins from a Structural Perspective. Int. J. Mol. Sci. 2020, 21, 5307. [Google Scholar] [CrossRef] [PubMed]
- Lay, F.T.; Anderson, M.A. Defensins-components of the innate immune system in plants. Curr. Protein Pept. Sci. 2005, 6, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Bukhteeva, I.; Hrunyk, N.I.; Yusypovych, Y.M.; Shalovylo, Y.I.; Kovaleva, V.; Nesmelova, I.V. Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure 2022, 30, 753–762.e5. [Google Scholar] [CrossRef] [PubMed]
- Khairutdinov, B.I.; Ermakova, E.A.; Yusypovych, Y.M.; Bessolicina, E.K.; Tarasova, N.B.; Toporkova, Y.Y.; Kovaleva, V.; Zuev, Y.F.; Nesmelova, I.V. NMR structure, conformational dynamics, and biological activity of PsDef1 defensin from Pinus sylvestris. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ogunsuyi, O.B.; Adegbola, D.O.; Ademiluyi, A.O.; Oladun, F.L. Influence of gallic and tannic acid on therapeutic properties of acarbose in vitro and in vivo in Drosophila melanogaster. Biomed. J. 2019, 42, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, V.; Kalia, V.K.; Ghosh, A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res. 2023, 32, 351–381. [Google Scholar] [CrossRef]
- Giri, P.A.; Bhide, A.; Gupta., S.V.; Ramasamy, S. An Insecticidal Composition. WO2016098125, 11 August 2016. [Google Scholar]
- de Sa, M.F.G.; da Silva, M.C.M.; Del Sarto, R.P.; Rocha, T.L. Mutants of Alpha-Amylase Inhibitors Isolated from Phaseolus Vulgaris Capable of Controlling Insect Pests, Compositions Containing These Mutants and Method of Using The Same. US2014366217, 11 December 2014. [Google Scholar]
- Rane, A.S.; Joshi, R.S.; Giri, A.P. Molecular determinant for specificity: Differential interaction of α-amylases with their proteinaceous inhibitors. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129703. [Google Scholar] [CrossRef]
- Luiz de Oliveira, J.; Ramos Campos, E.V.; Fraceto, L.F. Recent Developments and Challenges for Nanoscale Formulation of Botanical Pesticides for Use in Sustainable Agriculture. J. Agric. Food Chem. 2018, 66, 8898–8913. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, S.; Lv, S.; Wang, Y.; Lu, S.; Liu, M. Nanomaterials for Targeted Delivery of Agrochemicals by an All-in-One Combination Strategy and Deep Learning. ACS Appl. Mater. Interfaces 2021, 13, 43374–43386. [Google Scholar] [CrossRef]
- Zhang, X.; He, Y.; Yuan, Z.; Shen, G.; Zhang, Z.; Niu, J.; He, L.; Wang, J.; Qian, K. A pH- and enzymatic-responsive nanopesticide to control pea aphids and reduce toxicity for earthworms. Sci. Total Env. 2023, 861, 160610. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kaziem, A.E.; Lin, Y.; Li, C.; Tan, Y.; Huang, S.; Cheng, D.; Xu, H.; Zhang, Z. Carboxylated beta-cyclodextrin anchored hollow mesoporous silica enhances insecticidal activity and reduces the toxicity of indoxacarb. Carbohydr. Polym. 2021, 266, 118150. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gao, Y.; Wang, W.; Dong, H.; Tang, R.; Yang, J.; Niu, J.; Zhou, Z.; Jiang, N.; Cao, Y. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery. J. Hazard. Mater. 2020, 389, 122075. [Google Scholar] [CrossRef] [PubMed]
- Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Thangaraj, M.P. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J. Photochem. Photobiol. B 2017, 174, 306–314. [Google Scholar] [CrossRef]
- Sandal, S.; Singh, S.; Bansal, G.; Kaur, R.; Mogilicherla, K.; Pandher, S.; Roy, A.; Kaur, G.; Rathore, P.; Kalia, A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int. J. Mol. Sci. 2023, 24, 9161. [Google Scholar] [CrossRef]
- Muhammad, A.; He, J.; Yu, T.; Sun, C.; Shi, D.; Jiang, Y.; Xianyu, Y.; Shao, Y. Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. Sci. Total Env. 2022, 813, 152608. [Google Scholar] [CrossRef]
- Ye, S.; Zhao, L.; Qi, Y.; Yang, H.; Hu, Z.; Hao, N.; Li, Y.; Tian, X. Identification of azukisapogenol triterpenoid saponins from Oxytropis hirta Bunge and their aphicidal activities against pea aphid Acyrthosiphon pisum Harris. Pest. Manag. Sci. 2023, 79, 55–67. [Google Scholar] [CrossRef]
- Hussein, H.S.; Salem, M.Z.M.; Soliman, A.M.; Eldesouky, S.E. Comparative study of three plant-derived extracts as new management strategies against Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Sci. Rep. 2023, 13, 3542. [Google Scholar] [CrossRef]
- Khoobdel, M.; Rahimi, V.; Ebadollahi, A.; Krutmuang, P. Evaluation of the Potential of a Lectin Extracted from Polygonum persicaria L. as a Biorational Agent against Sitophilus oryzae L. Molecules 2022, 27, 793. [Google Scholar] [CrossRef]
- Morais, F.S.; Canuto, K.M.; Ribeiro, P.R.V.; Silva, A.B.; Pessoa, O.D.L.; Freitas, C.D.T.; Bezerra, E.A.; Goncalves, J.F.C.; Souza, D.P.; Sousa, B.F.; et al. Insecticidal Compound from Himatanthus drasticus Latex against Cowpea Infestation by Callosobruchus maculatus (Coleoptera: Chrysomelidae). J. Agric. Food Chem. 2021, 69, 5049–5058. [Google Scholar] [CrossRef]
- de Lira Pimentel, C.S.; Albuquerque, B.N.L.; da Rocha, S.K.L.; da Silva, A.S.; da Silva, A.B.V.; Bellon, R.; Agra-Neto, A.C.; de Aguiar, J.; Paiva, P.M.G.; Princival, J.L.; et al. Insecticidal activity of the essential oil of Piper corcovadensis leaves and its major compound (1-butyl-3,4-methylenedioxybenzene) against the maize weevil, Sitophilus zeamais. Pest. Manag. Sci. 2022, 78, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Oftadeh, M.; Sendi, J.J.; Ebadollahi, A. Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). Pestic. Biochem. Physiol. 2020, 170, 104702. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.Q.; He, B.; Zeng, D.Q.; Tang, W.W. Effects of botanical pesticide itol A against the tobacco cutworm, Spodoptera litura (Fab.). Env. Sci. Pollut. Res. Int. 2020, 27, 12181–12191. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Wang, Y.; Zou, H.; Ding, N.; Geng, N.; Cao, C.; Zhang, G. Sanguinarine in Chelidonium majus induced antifeeding and larval lethality by suppressing food intake and digestive enzymes in Lymantria dispar. Pestic. Biochem. Physiol. 2019, 153, 9–16. [Google Scholar] [CrossRef]
- Maazoun, A.M.; Hamdi, S.H.; Belhadj, F.; Jemaa, J.M.B.; Messaoud, C.; Marzouki, M.N. Phytochemical profile and insecticidal activity of Agave americana leaf extract towards Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Env. Sci. Pollut. Res. Int. 2019, 26, 19468–19480. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Lan, H.; He, C.; Wei, Y.; Lu, Q.; Cai, K.; Yu, D.; Yin, X.; Li, Y.; Lv, J. Toxicological effects of trace amounts of pyriproxyfen on the midgut of non-target insect silkworm. Pestic. Biochem. Physiol. 2022, 188, 105266. [Google Scholar] [CrossRef]
- Li, F.; Hu, J.; Tian, J.; Xu, K.; Ni, M.; Wang, B.; Shen, W.; Li, B. Effects of phoxim on nutrient metabolism and insulin signaling pathway in silkworm midgut. Chemosphere 2016, 146, 478–485. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Ma, T.; Li, C.; Ma, Z.; Zhang, X. Acting target of toosendanin locates in the midgut epithelium cells of Mythimna separate Walker larvae (lepidoptera: Noctuidae). Ecotoxicol. Env. Saf. 2020, 201, 110828. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, M.; Pandher, S.; Kaur, G.; Goel, N.; Rathore, P. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Sci. Rep. 2019, 9, 13710. [Google Scholar] [CrossRef]
- Salvador, R.; Niz, J.M.; Nakaya, P.A.; Pedarros, A.; Hopp, H.E. Midgut Genes Knockdown by Oral dsRNA Administration Produces a Lethal Effect on Cotton Boll Weevil. Neotrop. Entomol. 2021, 50, 121–128. [Google Scholar] [CrossRef]
- Vatanparast, M.; Kazzazi, M.; Mirzaie-Asl, A.; Hosseininaveh, V. RNA interference-mediated knockdown of some genes involved in digestion and development of Helicoverpa armigera. Bull. Entomol. Res. 2017, 107, 777–790. [Google Scholar] [CrossRef]
- Tang, Q.H.; Li, W.L.; Wang, J.P.; Li, X.J.; Li, D.; Cao, Z.; Huang, Q.; Li, J.L.; Zhang, J.; Wang, Z.W.; et al. Effects of spinetoram and glyphosate on physiological biomarkers and gut microbes in Bombus terrestris. Front. Physiol. 2022, 13, 1054742. [Google Scholar] [CrossRef]
- Ajaha, A.; Bouayad, N.; Aarab, A.; Rharrabe, K. Effect of 20-Hydroxyecdysone, a Phytoecdysteroid, on Development, Digestive, and Detoxification Enzyme Activities of Tribolium castaneum (Coleoptera: Tenebrionidae). J. Insect Sci. 2019, 19, 18. [Google Scholar] [CrossRef]
- Christen, V.; Schirrmann, M.; Frey, J.E.; Fent, K. Global Transcriptomic Effects of Environmentally Relevant Concentrations of the Neonicotinoids Clothianidin, Imidacloprid, and Thiamethoxam in the Brain of Honey Bees (Apis mellifera). Env. Sci. Technol. 2018, 52, 7534–7544. [Google Scholar] [CrossRef]
- Malaikozhundan, B.; Vinodhini, J. Biological control of the Pulse beetle, Callosobruchus maculatus in stored grains using the entomopathogenic bacteria, Bacillus thuringiensis. Microb. Pathog. 2018, 114, 139–146. [Google Scholar] [CrossRef]
- Khaliq, B.; Abdalla, M.; Mehmood, S.; Saeed, A.; Munawar, A.; Saeed, M.Q.; Saeed, Q.; Ibrahim, M.; Ali, Z.; Hussain, S.; et al. Comprehensive Structural and Functional Characterization of a Seed gamma-thionin as a Potent Bioactive Molecule Against Fungal Pathogens and Insect Pests. Curr. Med. Chem. 2022, 29, 6446–6462. [Google Scholar] [CrossRef] [PubMed]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. J. Med. Phys. 2016, 5, 1–8. [Google Scholar]
- Funke, I.; Melzig, M.F. Traditionally used plants in diabetes therapy-Phytotherapeutics as inhibitors of α-amylase activity. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2006, 16, 1–5. [Google Scholar] [CrossRef]
- Bakour, M.; Laaroussi, H.; Ferreira-Santos, P.; Genisheva, Z.; Ousaaid, D.; Teixeira, J.A.; Lyoussi, B. Exploring the Palynological, Chemical, and Bioactive Properties of Non-Studied Bee Pollen and Honey from Morocco. Molecules 2022, 27, 5777. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Long, C.; Bai, X.; Liu, W.; Rong, M.; Lai, R.; An, S. Two new types of allergens from the cockroach, Periplaneta americana. Allergy 2015, 70, 1674–1678. [Google Scholar] [CrossRef] [PubMed]
- Ganseman, E.; Goossens, J.; Blanter, M.; Jonckheere, A.C.; Bergmans, N.; Vanbrabant, L.; Gouwy, M.; Ronsmans, S.; Vandenbroeck, S.; Dupont, L.J.; et al. Frequent allergic sensitization to farmed edible insects in exposed employees. J. Allergy Clin. Immunol. Pr. 2023. [Google Scholar] [CrossRef] [PubMed]
- Ganseman, E.; Ieven, T.; Frans, G.; Coorevits, L.; Portner, N.; Martens, E.; Bullens, D.M.; Schrijvers, R.; Breynaert, C.; Proost, P. Alpha-amylase as the culprit in an occupational mealworm allergy case. Front. Allergy 2022, 3, 992195. [Google Scholar] [CrossRef] [PubMed]
- Premrov Bajuk, B.; Zrimsek, P.; Kotnik, T.; Leonardi, A.; Krizaj, I.; Jakovac Strajn, B. Insect Protein-Based Diet as Potential Risk of Allergy in Dogs. Animals 2021, 11, 1942. [Google Scholar] [CrossRef]
- Pacheco-Soares, T.; de Oliveira Carvalho, A.; da Silva Araujo, J.; de Souza, G.D.S.; Machado, O.L.T. A modified, hypoallergenic variant of the Ricinus communis Ric c1 protein retains biological activity. Biosci. Rep. 2018, 38, BSR20171245. [Google Scholar] [CrossRef]
- Celinska, E.; Borkowska, M.; Bialas, W. Evaluation of a recombinant insect-derived amylase performance in simultaneous saccharification and fermentation process with industrial yeasts. Appl. Microbiol. Biotechnol. 2016, 100, 2693–2707. [Google Scholar] [CrossRef]
Species | Location | Function | Reference |
---|---|---|---|
Apis mellifera | Hypopharyngeal gland | Converts nectar into honey | [35] |
Blattella germanica | Tergal gland | Nuptial feeding stimulant | [11,38] |
Pteromalus puparum | Muscle | Energy metabolism in muscle | [40,41] |
Pteromalus puparum | Venom gland | Supports the development of offspring | [40,41] |
Cotesia flavipes | Oral | Mediates host acceptance for oviposition | [42] |
Class | Sources | Target Insects | α-Amylase Activity | Non-Target Organism | α-Amylase Activity | References |
---|---|---|---|---|---|---|
Plant-derived extracts | Azukisapogenol triterpenoid saponins | Acyrthosiphon pisum | Decrease | -1 | - | [99] |
Magnolia grandiflora (Magnoliaceae), Schinus terebinthifolius (Anacardiaceae), Salix babylonica (Salicaceae) | Spodoptera littoralis | Decrease | - | - | [100] | |
Lectin extracted from Polygonum persicaria L. (PPA) | Sitophilus oryzae | Decrease | - | - | [101] | |
Plumieride from Himatanthus drasticus | Callosobruchus maculatus | Decrease | - | - | [102] | |
Piper corcovadensis leaf essential oil (PcLEO) | Sitophilus zeamais | Decrease | - | - | [103] | |
Artemisia annua essential oil | Glyphodes pyloalis | Decrease | - | - | [104] | |
Isoryanodane diterpenoid derived from Itoa orientalis (Ttol A) | Spodoptera litura | Decrease | - | - | [105] | |
Sanguinarine in Chelidonium majus | Lymantria dispar | Decrease | - | - | [106] | |
Agave americana leaf extract | Sitophilus oryzae | Decrease | - | - | [107] | |
Toosendanin (TSN) | Mythimna separata | Invariability | - | - | [110] | |
Hormonal pesticide | Pyriproxyfen | Musca domestica, citrus psyllids, etc. | Decrease | Bombyx mori | Increase | [108] |
20-hydroxyecdysone | Tribolium castaneum | Decrease | - | - | [115] | |
Chemical pesticide | Phoxim | Lepidoptera, Hemiptera, etc. | Bombyx mori | Increase | [109] | |
Spinetoram | - | - | Bombus terrestris | Decrease | [114] | |
Glyphosate | - | - | Bombus terrestris | Decrease | [114] | |
Neonicotinoids | - | - | Apis mellifera | Decrease | [116] | |
Antimicrobial peptides (AMPs) | γ-Thionin (BoT) | Sitophilus oryzae Tribolium castaneum | Decrease | - | - | [118] |
RNAi | dsRNA | Phenacoccus solenopsis | Decrease | - | - | [111] |
dsRNA | Anthonomus grandis | Decrease | - | - | [112] | |
dsRNA | Helicoverpa armigera | Decrease | - | - | [113] | |
Bactericide | Bacillus thuringiensis | Callosobruchus maculatus | Decrease | - | - | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Huang, D.; Cao, C.; Gong, Y. Insect α-Amylases and Their Application in Pest Management. Molecules 2023, 28, 7888. https://doi.org/10.3390/molecules28237888
Wang B, Huang D, Cao C, Gong Y. Insect α-Amylases and Their Application in Pest Management. Molecules. 2023; 28(23):7888. https://doi.org/10.3390/molecules28237888
Chicago/Turabian StyleWang, Beibei, Daye Huang, Chunxia Cao, and Yan Gong. 2023. "Insect α-Amylases and Their Application in Pest Management" Molecules 28, no. 23: 7888. https://doi.org/10.3390/molecules28237888
APA StyleWang, B., Huang, D., Cao, C., & Gong, Y. (2023). Insect α-Amylases and Their Application in Pest Management. Molecules, 28(23), 7888. https://doi.org/10.3390/molecules28237888