Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. NIRS-Based Analysis of Colored Fabric
2.2. Spectroscopic Analysis of Dyes
2.3. Raman-Based Analysis of Colored Menil Fabric
2.4. Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brosseau, C.L.; Gambardella, A.; Casadio, F.; Grzywacz, C.M.; Wouters, J.; Van Duyne, R.P. Ad-hoc Surface-Enhanced Raman Spectroscopy Methodologies for the Detection of Artist Dyestuffs: Thin Layer Chromatography-Surface Enhanced Raman Spectroscopy and in Situ On the Fiber Analysis. Anal. Chem. 2009, 81, 3056–3062. [Google Scholar] [CrossRef]
- Bruni, S.; De Luca, E.; Guglielmi, V.; Pozzi, F. Identification of Natural Dyes on Laboratory-Dyed Wool and Ancient Wool, Silk, and Cotton Fibers Using Attenuated Total Reflection (ATR) Fourier Transform Infrared (FT-IR) Spectroscopy and Fourier Transform Raman Spectroscopy. Appl. Spectrosc. 2011, 65, 1017–1023. [Google Scholar] [CrossRef]
- Bueno, J.; Sikirzhytski, V.; Lednev, I.K. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation. Anal. Chem. 2012, 84, 4334–4339. [Google Scholar] [CrossRef]
- Cardona, M.; Guntherodt, G. Light-Scattering in Solids II: Basic Concepts and Instrumentation—Introduction. Top. Appl. Phys. 1982, 50, 1–18. [Google Scholar]
- Casadio, F.; Daher, C.; Bellot-Gurlet, L. Raman Spectroscopy of cultural heritage Materials: Overview of Applications and New Frontiers in Instrumentation, Sampling Modalities, and Data Processing. Top. Curr. Chem. 2016, 374, 161–211. [Google Scholar] [CrossRef]
- Casadio, F.; Leona, M.; Lombardi, J.R.; Van Duyne, R. Identification of Organic Colorants in Fibers, Paints, and Glazes by Surface Enhanced Raman Spectroscopy. Acc. Chem. Res. 2010, 43, 782–791. [Google Scholar] [CrossRef]
- Deadman, H.A. Fiber Evidence and the Wayne William Trial (Conclusion). FBI Law Enforc. Bull. 1984, 53, 10. [Google Scholar]
- Deadman, H.A. Fiber evidence and the Wayne Williams trial (part I). FBI Law Enforc. Bull. 1984, 53, 13. [Google Scholar]
- Doty, K.C.; Lednev, I.K. Differentiation of human blood from animal blood using Raman spectroscopy: A survey of forensically relevant species. Forensic Sci. Int. 2018, 282, 204–210. [Google Scholar] [CrossRef]
- Dou, T.; Sanchez, L.; Irigoyen, S.; Goff, N.; Niraula, P.; Mandadi, K.; Kurouski, D. Biochemical Origin of Raman-Based Diagnostics of Huanglongbing in Grapefruit Trees. Front. Plant Sci. 2021, 12, 680991. [Google Scholar] [CrossRef]
- Edwards, H.G.M.; Farwell, D.W.; Williams, A.C. FT-Raman spectrum of cotton: A polymeric biomolecular analysis. Spectrochim. Acta A Mol. Spectrosc. 1994, 50, 807–811. [Google Scholar] [CrossRef]
- Eliasson, C.; Macleod, N.; Matousek, P. Non-invasive detection of cocaine dissolved in beverages using displaced Raman spectroscopy. Anal. Chim. Acta 2008, 607, 50–53. [Google Scholar] [CrossRef]
- Enejder, A.M.; Koo, T.-W.; Oh, J.; Hunter, M.; Sasic, S.; Feld, M.S.; Horowitz, G.L. Blood analysis by Raman spectroscopy. Opt. Lett. 2002, 27, 2004–2006. [Google Scholar] [CrossRef]
- Esparza, I.; Wang, R.; Kurouski, D. Surface-Enhanced Raman Analysis of Underlaying Colorants on Redyed Hair. Anal. Chem. 2019, 91, 7313–7318. [Google Scholar] [CrossRef]
- Furst-Consultant, S. Microfluidic System for Automated Dye Molecule Extraction and Detection for Forensic Fiber Identification 2011-DN-BX-K561; Precision Engineering Consortium—NC State University: Raleigh, NC, USA, 2014. [Google Scholar]
- Haes, A.J.; Haynes, C.; McFarland, A.D.; Schatz, G.C.; Van Duyne, R.P.; Zou, S. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull. 2005, 30, 368–375. [Google Scholar] [CrossRef]
- Hager, E.; Farber, C.; Kurouski, D. Forensic Identification of Urine on Cotton and Polyester Fabric with a Hand-held Raman Spectrometer. Forensic Chem. 2018, 9, 44–49. [Google Scholar] [CrossRef]
- Higgins, S.; Kurouski, D. Surface-enhanced Raman spectroscopy enables highly accurate identification of different brands, types and colors of hair dyes. Talanta 2022, 251, 123762. [Google Scholar] [CrossRef]
- Holman, A.; Kurouski, D. The effects of sun exposure on colorant identification of permanently and semi-permanently dyed hair. Sci. Rep. 2023, 13, 2168. [Google Scholar] [CrossRef]
- Holman, A.P.; Kurouski, D. Role of Race/Ethnicity, Sex, and Age in Surface-Enhanced Raman Spectroscopy- and Infrared Spectroscopy-Based Analysis of Artificial Colorants on Hair. ACS Omega 2023, 8, 20675–20683. [Google Scholar] [CrossRef]
- Holman, A.P.; Kurouski, D. Surface-enhanced Raman spectroscopy enables confirmatory detection of dyes on hair submerged in hypolimnion water for up to twelve weeks. J. Forensic Sci. 2023, 68, 2163–2168. [Google Scholar] [CrossRef]
- Houck, M.M.; Siegel, J.A. Fundamentals of Forensic Science; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Hummelen, I.; Sillé, D.; Zijlmans, M. Modern art: Who cares. In An Interdisciplinary Research Project and International Symposium on the Conservation of Modern and Contemporary Art; Netherlands Institute for Cultural Heritage: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Idone, A.; Gulmini, M.; Henry, A.-I.; Casadio, F.; Chang, L.; Appolonia, L.; Van Duyne, R.P.; Shah, N.C. Silver colloidal pastes for dye analysis of reference and historical textile fibers using direct, extractionless, non-hydrolysis surface-enhanced Raman spectroscopy. Analyst 2013, 138, 5895–5903. [Google Scholar] [CrossRef]
- Juarez, I.; Kurouski, D. Effects of crime scene contaminants on surface-enhanced Raman analysis of hair. J. Forensic Sci. 2022, 68, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Juarez, I.; Kurouski, D. Surface-Enhanced Raman Spectroscopy Hair Analysis after Household Contamination. Anal. Methods 2023, 15, 4996–5001. [Google Scholar] [CrossRef]
- King, F.W.; Van Duyne, R.P.; Schatz, G.C. Theory of Raman scattering by molecules adsorbed on electrode surfaces. J. Chem. Phys. 1978, 69, 4472–4481. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Sharma, B.; Blaber, M.G.; Henry, A.-I.; Valley, N.; Freeman, R.G.; Natan, M.J.; Schatz, G.C.; Van Duyne, R.P. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. J. Am. Chem. Soc. 2012, 135, 301–308. [Google Scholar] [CrossRef]
- Kurouski, D.; Van Duyne, R.P. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal. Chem. 2015, 87, 2901–2906. [Google Scholar] [CrossRef]
- Levinson, M. Forensic Fiber Evidence—Is It Enough To Convict? Police Mag. 1981, 4, 6. [Google Scholar]
- Long, D.A. Raman Spectroscopy; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Matousek, P.; Clark, I.P.; Draper, E.R.C.; Morris, M.D.; Goodship, A.E.; Everall, N.; Towrie, M.; Finney, W.F.; Parker, A.W. Subsurface Probing in Diffusely Scattering Media Using Spatially Offset Raman Spectroscopy. Appl. Spectrosc. 2005, 59, 393–400. [Google Scholar] [CrossRef]
- McLaughlin, G.; Doty, K.C.; Lednev, I.K. Raman Spectroscopy of Blood for Species Identification. Anal. Chem. 2014, 86, 11628–11633. [Google Scholar] [CrossRef]
- Meleiro, P.P.; García-Ruiz, C. Spectroscopic techniques for the forensic analysis of textile fibers. Appl. Spectrosc. Rev. 2016, 51, 278–301. [Google Scholar] [CrossRef]
- Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 1978, 69, 4159–4161. [Google Scholar] [CrossRef]
- Muro, C.K.; Doty, K.C.; Bueno, J.; Halámková, L.; Lednev, I.K. Vibrational Spectroscopy: Recent Developments to Revolutionize Forensic Science. Anal. Chem. 2014, 87, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Ringe, E.; McMahon, J.M.; Sohn, K.; Cobley, C.; Xia, Y.; Huang, J.; Schatz, G.C.; Marks, L.D.; Van Duyne, R.P. Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. J. Phys. Chem. C 2010, 114, 12511–12516. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Lioubashevski, O.; Willner, I. Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite. J. Am. Chem. Soc. 2009, 131, 7368–7378. [Google Scholar] [CrossRef]
- Saunders, R. The Circuit Courts’ Application of Daubert v. Merrell Dow Pharmaceuticals, Inc. Drake Law Rev. 1997, 46, 407. [Google Scholar]
- Sikirzhytskaya, A.; Sikirzhytski, V.; McLaughlin, G.; Lednev, I.K. Forensic Identification of Blood in the Presence of Contaminations Using Raman Microspectroscopy Coupled with Advanced Statistics: Effect of Sand, Dust, and Soil. J. Forensic Sci. 2013, 58, 1141–1148. [Google Scholar] [CrossRef]
- Sikirzhytski, V.; Sikirzhytskaya, A.; Lednev, I.K. Multidimensional Raman spectroscopic signature of sweat and its potential application to forensic body fluid identification. Anal. Chim. Acta 2012, 718, 78–83. [Google Scholar] [CrossRef]
- Steczkowski, M.; Kurouski, D. Elucidation of the effect of heat exposure on hair colored by permanent and semipermanent colorants using surface-enhanced Raman spectroscopy. J. Forensic Sci. 2023, 68, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Stoney, D.A.; Bowen, A.M.; Stoney, P.L. Loss and replacement of small particles on the contact surfaces of footwear during successive exposures. Forensic Sci. Int. 2016, 269, 78–88. [Google Scholar] [CrossRef]
- Stoney, D.A.; Neumann, C.; Mooney, K.E.; Wyatt, J.M.; Stoney, P.L. Exploitation of very small particles to enhance the probative value of carpet fibers. Forensic Sci. Int. 2015, 252, 52–68. [Google Scholar] [CrossRef]
- Stoney, D.A.; Stoney, P.L. Critical review of forensic trace evidence analysis and the need for a new approach. Forensic Sci. Int. 2015, 251, 159–170. [Google Scholar] [CrossRef]
- Stroh, H. Preserving Fine Art from the Ravages of Art Restoration. Alb. Law J. Sci. Tech. 2006, 16, 239. [Google Scholar]
- Sylvia, J.M.; Janni, J.A.; Klein, J.D.; Spencer, K.M. Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines. Anal. Chem. 2000, 72, 5834–5840. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Blood Species Identification for Forensic Purposes Using Raman Spectroscopy Combined with Advanced Analytical Statistics. Anal. Chem. 2009, 81, 7773–7777. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic Sci. Int. 2009, 193, 56–62. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Raman spectroscopic signature of blood and its potential application to forensic body fluid identification. Anal. Bioanal. Chem. 2010, 396, 525–534. [Google Scholar] [CrossRef]
- Warner Chilcott Labs. Ireland Ltd. v. Impax Labs., Inc. United States District Court for the District of New Jersey. 2012. Available online: https://casetext.com/case/warner-chilcott-laboratories-ireland-ltd-v-impax-labs (accessed on 7 November 2023).
- Wei, W.Y.; White, I.M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138, 1020–1025. [Google Scholar]
- Wustholz, K.L.; Henry, A.-I.; McMahon, J.M.; Freeman, R.G.; Valley, N.; Piotti, M.E.; Natan, M.J.; Schatz, G.C.; Van Duyne, R.P. Structure—Activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2010, 132, 10903–10910. [Google Scholar] [CrossRef] [PubMed]
Samples | Vibration Bands (cm−1) |
---|---|
Red | 379, 437, 494, 519, 567, 611, 648 **, 720, 828 **, 902, 969, 995, 1095, 1119, 1150, 1227 **, 1278 **, 1331 **, 1353 **, 1377, 1413 **, 1469 **, 1579 *, 1611 ** |
Orange | 380, 438, 454, 496, 520, 567, 611, 652 **, 723, 777 *, 829 **, 902, 969, 998, 1096, 1120, 1150, 1256 **, 1293, 1335, 1379, 1415 **, 1470, 1565 **, 1611 ** |
Yellow | 380, 438, 455 *, 495, 519, 567, 610, 661 *, 724, 901, 969, 995, 1096, 1119, 1150, 1202 *, 1238, 1290, 1337, 1378, 1409 **, 1476, 1602 |
Green | 379, 437, 454 *, 497, 518, 566, 606, 662 *, 724, 749 **, 815 *, 901, 966, 994, 1096, 1119, 1150, 1181 **, 1265 **, 1291, 1337, 1378, 1407 **, 1475, 1541 **, 1602 |
Blue | 379, 437, 453 *,517, 566, 602 **, 662 *, 723, 749 **, 820 **, 900, 961 *, 993, 1032 *, 1095, 1119, 1183 **, 1263 **, 1292, 1337, 1377, 1406 **, 1455 *, 1474, 1540 **, 1601 |
Purple | 380, 438, 455 *, 492, 518, 565, 701 **, 764 **, 833 **, 904, 969, 1000, 1033 **, 1097, 1123, 1148, 1243 **, 1291, 1341, 1379, 1407 **, 1500 **, 1590 ** |
Undyed | 379, 437, 494, 518, 566, 610, 723, 900, 968, 995, 1095, 1118, 1149, 1237, 1289, 1336, 1378, 1475 and 1602 |
Actual Class | Accuracy | Red | Orange | Yellow | Green | Blue | Purple | White | |
---|---|---|---|---|---|---|---|---|---|
Predicted Class | Red | 100% | 25 | 0 | 0 | 0 | 0 | 0 | 0 |
Orange | 100% | 0 | 25 | 0 | 0 | 0 | 0 | 0 | |
Yellow | 96% | 0 | 0 | 24 | 0 | 0 | 0 | 1 | |
Green | 100% | 0 | 0 | 0 | 25 | 0 | 0 | 0 | |
Blue | 100% | 0 | 0 | 0 | 0 | 25 | 0 | 0 | |
Purple | 100% | 0 | 0 | 0 | 0 | 0 | 25 | 0 | |
Plain Cotton | 84% | 0 | 0 | 4 | 0 | 0 | 0 | 21 |
Actual Class | Accuracy | Yellow | White | |
---|---|---|---|---|
Predicted Class | Yellow | 100% | 25 | 0 |
White | 100% | 0 | 25 |
Dye | Vibration Bands (cm−1) |
---|---|
Red | 447, 536, 649, 830, 908, 981, 1063, 1156, 1222, 1281, 1328, 1354, 1417, 1469, 1573 and 1613 |
Orange | 379, 437, 454, 494, 519, 567, 611, 654, 722, 828, 901, 974, 995, 1096, 1119, 1150, 1236, 1255, 1292, 1336, 1378, 1414, 1470, 1565 and 1608 |
Yellow | 447, 488, 616, 980, 1065, 1164, 1224, 1346, 1407 and 1609 |
Green | 448, 496, 723, 749, 821, 981, 1064, 1158, 1183, 1265, 1340, 1406, 1448, 1543 and 1607 |
Blue | 447, 501, 567, 605, 653, 727, 750, 821, 981, 1064, 1097, 1157, 1186, 1266, 1339, 1406, 1448, 1542 and 1604 |
Purple | 406, 444, 491, 633, 702, 762, 833, 907, 981, 1011, 1132, 1181, 1209, 1244, 1291, 1356, 1407, 1500 and 1589 |
Actual Class | Accuracy | Red | Orange | Yellow | Green | Blue | Purple | |
---|---|---|---|---|---|---|---|---|
Red | 100% | 25 | 0 | 0 | 0 | 0 | 0 | |
Predicted Class | Orange | 100% | 0 | 25 | 0 | 0 | 0 | 0 |
Yellow | 100% | 0 | 0 | 25 | 0 | 0 | 0 | |
Green | 100% | 0 | 0 | 0 | 25 | 0 | 0 | |
Blue | 100% | 0 | 0 | 0 | 0 | 25 | 0 | |
Purple | 100% | 0 | 0 | 0 | 0 | 0 | 25 |
Samples | Vibration Bands (cm−1) |
---|---|
Brazilwood | 380, 439, 519, 568, 610, 711 *, 848 *, 902, 970, 993, 1030 *, 1098, 1116, 1150 *, 1206 *, 1235, 1288, 1332, 1377, 1417, 1475, 1512 *, 1565 * and 1786 |
Buckthorn | 381, 440, 519, 568, 609, 651 *, 739 *, 808 *, 853 *, 902, 970, 992, 1026 *, 1098, 1116, 1202 *, 1238, 1285, 1336, 1472, 1552 *, 1603 *, 1716 *, 1875 and 1914 |
Clutch | 380, 442, 518, 567, 610, 677 *, 711 *, 748 *, 816 *, 858 *, 897, 969, 991, 1026 *, 1098, 1115, 1150 *, 1204 *, 1239, 1287, 1337, 1375, 1476, 1517 *, 1556 *, 1603 *, 1721 *, 1785, 1820 *, 1851 *, 1877 *, 1909 *, 1942 * and 1965 * cm−1 |
Cochineal | 380, 439, 518, 567, 610, 663 *, 722, 760 *, 901, 968, 996, 1033 *, 1097, 1116, 1238, 1300 *, 1327 *, 1378, 1471, 1714 *, 1788 and 1913 * cm−1 |
Lac | 381, 436, 504 *, 576 *, 659 *, 763 *, 813 *, 904, 977 *, 1102, 1160 *, 1237, 1275 *, 1382, 1471, 1567 *, 1658 * and 1721 * cm−1 |
Logwood | 379, 439, 516, 569, 607, 644 *, 736 *, 777 *, 804 *, 851 *, 898, 971, 1033 *, 1096, 1116, 1151 *, 1200 *, 1236, 1292, 1337, 1379, 1481 *, 1564 *, 1613 *, 1714 *, 1780, 1880 *, 1915 * and 1964 * cm−1 |
Madder | 380, 440, 518, 567, 616 *, 654 *, 803 *, 848 *, 901, 971, 992, 1098, 1116, 1236, 1287, 1335, 1378, 1414, 1475, 1601 * and 1787 cm−1 |
Pomegranate | 380, 440, 518, 571, 607, 751 *, 806 *, 902, 971, 994, 1098, 1115, 1204 *, 1237, 1290, 1336, 1377, 1414, 1474, 1587 *, 1716 *, 1785 and 1914 cm−1 |
Weld | 380, 440, 517, 565, 607, 650 *, 743 *, 798 *, 899, 971, 991, 1099, 1115, 1205 *, 1293, 1336, 1376, 1475 and 1580 * cm−1 |
Plain Cotton (Background) | 378, 439, 518, 566, 609, 722, 901, 969, 994, 1097, 1116, 1238, 1288, 1336, 1378, 1413, 1474 and 1784 cm−1 |
Actual Class | Accuracy | Cotton (Undyed) | Eastern Brazilwood | Buckthorn | Clutch | Cochineal | Lac | Logwood | Madder | Pomegranate | Weld | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Class | Cotton (Undyed) | 92% | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
Brazilwood | 72% | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | |
Buckthorn | 84% | 0 | 3 | 21 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
Clutch | 100% | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | |
Cochineal | 100% | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | |
Lac | 100% | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | |
Logwood | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | |
Madder | 84% | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | |
Pomegranate | 96% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 1 | |
Weld | 96% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peterson, M.; Kurouski, D. Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy. Molecules 2023, 28, 7864. https://doi.org/10.3390/molecules28237864
Peterson M, Kurouski D. Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy. Molecules. 2023; 28(23):7864. https://doi.org/10.3390/molecules28237864
Chicago/Turabian StylePeterson, Mackenzi, and Dmitry Kurouski. 2023. "Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy" Molecules 28, no. 23: 7864. https://doi.org/10.3390/molecules28237864
APA StylePeterson, M., & Kurouski, D. (2023). Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy. Molecules, 28(23), 7864. https://doi.org/10.3390/molecules28237864