Tunable Reflection through Size Polydispersity of Chiral-Nematic Liquid Crystal Polymer Particles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of N* LC Polymer Particles
2.2. Mesogenic Alignment in N* LC Polymer Particles
2.3. Reflection Properties of N* LC Polymer Particles
2.4. Circular Polarization Selectivity of Photonic Cross-Communication
2.5. Mixing N* LC Polymer Particles with Different Reflection Colors
3. Materials and Methods
3.1. Materials
3.2. Preparation of N* LC Particles
3.3. Characterization of N* LC Particles
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Liu, Y.; Chen, Z.; Sun, L.; Zhao, Y. Anisotropic Structural Color Particles from Colloidal Phase Separation. Sci. Adv. 2020, 6, eaay1438. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Rojas, O.J.; Wei, B.; Zussman, E. Responsive Chiral Photonic Cellulose Nanocrystal Materials. Adv. Opt. Mater. 2022, 10, 2201201. [Google Scholar] [CrossRef]
- Yue, Y.; Kurokawa, T.; Haque, M.A.; Nakajima, T.; Nonoyama, T.; Li, X.; Kajiwara, I.; Gong, J.P. Mechano-Actuated Ultrafast Full-Colour Switching in Layered Photonic Hydrogels. Nat. Commun. 2014, 5, 4659. [Google Scholar] [CrossRef] [PubMed]
- Humar, M.; Muševič, I. 3D Microlasers from Self-Assembled Cholesteric Liquid-Crystal Microdroplets. Opt. Express 2010, 18, 26995–27003. [Google Scholar] [CrossRef] [PubMed]
- Mitov, M. Cholesteric Liquid Crystals with a Broad Light Reflection Band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- Ryabchun, A.; Bobrovsky, A. Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics. Adv. Opt. Mater. 2018, 6, 1800335. [Google Scholar] [CrossRef]
- Belmonte, A.; Bus, T.; Broer, D.J.; Schenning, A.P.H.J. Patterned Full-Color Reflective Coatings Based on Photonic Cholesteric Liquid-Crystalline Particles. ACS Appl. Mater. Interfaces 2019, 11, 14376–14382. [Google Scholar] [CrossRef]
- Kobashi, J.; Yoshida, H.; Ozaki, M. Planar Optics with Patterned Chiral Liquid Crystals. Nat. Photonics 2016, 10, 389–392. [Google Scholar] [CrossRef]
- Kim, D.Y.; Nah, C.; Kang, S.W.; Lee, S.H.; Lee, K.M.; White, T.J.; Jeong, K.U. Free-Standing and Circular-Polarizing Chirophotonic Crystal Reflectors: Photopolymerization of Helical Nanostructures. ACS Nano 2016, 10, 9570–9576. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Bisoyi, H.K.; Zola, R.S.; Yang, D.; Bunning, T.J.; Weitz, D.A.; Li, Q. Light-Directing Omnidirectional Circularly Polarized Reflection from Liquid-Crystal Droplets. Angew. Chem. Int. Ed. 2015, 54, 2160–2164. [Google Scholar] [CrossRef]
- Geng, Y.; Noh, J.H.; Drevensek-Olenik, I.; Rupp, R.; Lagerwall, J. Elucidating the Fine Details of Cholesteric Liquid Crystal Shell Reflection Patterns. Liq. Cryst. 2017, 44, 1948–1959. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, J.B.; Kim, Y.H.; Kim, S.-H. Wavelength-Tunable and Shape-Reconfigurable Photonic Capsule Resonators Containing Cholesteric Liquid Crystals. Sci. Adv. 2018, 4, eaat8276. [Google Scholar] [CrossRef] [PubMed]
- Myung, D.-B.; Park, S.-Y. Optical Properties and Applications of Photonic Shells. ACS Appl. Mater. Interfaces 2019, 11, 20350–20359. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.S.; Kim, S. Photonic Multishells Composed of Cholesteric Liquid Crystals Designed by Controlled Phase Separation in Emulsion Drops. Adv. Mater. 2020, 32, 2002166. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, B.; Ruan, J.; Zhao, P.; Chen, L.; Chen, D.; Ye, F. 3D-Printed Biomimetic Systems with Synergetic Color and Shape Responses Based on Oblate Cholesteric Liquid Crystal Droplets. Adv. Mater. 2021, 33, 2006361. [Google Scholar] [CrossRef]
- Wang, C.; Gong, C.; Zhang, Y.; Qiao, Z.; Yuan, Z.; Gong, Y.; Chang, G.E.; Tu, W.C.; Chen, Y.C. Programmable Rainbow-Colored Optofluidic Fiber Laser Encoded with Topologically Structured Chiral Droplets. ACS Nano 2021, 15, 11126–11136. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Suen, J.J.-Y.; Prince, E.; Larin, E.M.; Klinkova, A.; Thérien-Aubin, H.; Zhu, S.; Yang, B.; Helmy, A.S.; Lavrentovich, O.D.; et al. Colloidal Cholesteric Liquid Crystal in Spherical Confinement. Nat. Commun. 2016, 7, 12520. [Google Scholar] [CrossRef]
- Schwartz, M.; Lenzini, G.; Geng, Y.; Rønne, P.B.; Ryan, P.Y.A.; Lagerwall, J.P.F. Cholesteric Liquid Crystal Shells as Enabling Material for Information-Rich Design and Architecture. Adv. Mater. 2018, 30, 1707382. [Google Scholar] [CrossRef]
- Honaker, L.W.; Chen, C.; Dautzenberg, F.M.H.; Brugman, S.; Deshpande, S. Designing Biological Microsensors with Chiral Nematic Liquid Crystal Droplets. ACS Appl. Mater. Interfaces 2022, 14, 37316–37329. [Google Scholar] [CrossRef]
- Paterson, D.A.; Du, X.; Bao, P.; Parry, A.A.; Peyman, S.A.; Sandoe, J.A.T.; Evans, S.D.; Luo, D.; Bushby, R.J.; Jones, J.C.; et al. Chiral nematic liquid crystal droplets as a basis for sensor systems. Mol. Syst. Des. Eng. 2022, 7, 607–621. [Google Scholar] [CrossRef]
- Hernández, R.J.; Provenzano, C.; Mazzulla, A.; Pagliusi, P.; Viola, M.; Cipparrone, G. Cholesteric solid spherical microparticles: Chiral optomechanics and microphotonics. Liq. Cryst. Rev. 2016, 4, 59–79. [Google Scholar] [CrossRef]
- Oki, O.; Kulkarni, C.; Yamagishi, H.; Meskers, S.C.J.; Lin, Z.H.; Huang, J.S.; Meijer, E.W.; Yamamoto, Y. Robust Angular Anisotropy of Circularly Polarized Luminescence from a Single Twisted-Bipolar Polymeric Microsphere. J. Am. Chem. Soc. 2021, 143, 8772–8779. [Google Scholar] [CrossRef] [PubMed]
- Seč, D.; Porenta, T.; Ravnik, M.; Žumer, S. Geometrical Frustration of Chiral Ordering in Cholesteric Droplets. Soft Matter 2012, 8, 11982–11988. [Google Scholar] [CrossRef]
- Liu, X.; Debije, M.G.; Heuts, J.P.A.; Schenning, A.P.H.J. Liquid-Crystalline Polymer Particles Prepared by Classical Polymerization Techniques. Chem.-A Eur. J. 2021, 27, 14168–14178. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Gracia, E.; Parri, O.L. A New Twist on Cholesteric Films by Using Reactive Mesogen Particles. J Mater. Chem. C 2015, 3, 11335–11340. [Google Scholar] [CrossRef]
- Belmonte, A.; da Cunha, M.P.; Nickmans, K.; Schenning, A.P.H.J. Brush-Paintable, Temperature and Light Responsive Triple Shape-Memory Photonic Coatings Based on Micrometer-Sized Cholesteric Liquid Crystal Polymer Particles. Adv. Opt. Mater. 2020, 8, 2000054. [Google Scholar] [CrossRef]
- Belmonte, A.; Ussembayev, Y.Y.; Bus, T.; Nys, I.; Neyts, K.; Schenning, A.P.H.J. Dual Light and Temperature Responsive Micrometer-Sized Structural Color Actuators. Small 2020, 16, 1905219. [Google Scholar] [CrossRef]
- Noh, J.; Liang, H.-L.; Drevensek-Olenik, I.; Lagerwall, J.P.F. Tuneable Multicoloured Patterns from Photonic Cross-Communication between Cholesteric Liquid Crystal Droplets. J. Mater. Chem. C 2014, 2, 806–810. [Google Scholar] [CrossRef]
- Shigeyama, T.; Hisano, K.; Tsutsumi, O. Control of Helical-Axis Orientation of Chiral Liquid Crystals in Monodispersed Polymer Particles. In Proceedings of the SPIE Organic Photonics + Electronics, San Diego, CA, USA, 1–5 August 2021; Volume 11807, p. 118070F. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Ito, K. Dispersion Polymerization. In Polymer Particles; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 175, pp. 299–328. [Google Scholar] [CrossRef]
- Paine, A.J.; Luymes, W.; McNulty, J. Dispersion Polymerization of Styrene in Polar Solvents. 6. Influence of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-Vinylpyrrolidone)-Stabilized Reactions. Macromolecules 1990, 23, 3104–3109. [Google Scholar] [CrossRef]
- He, J.; Liu, S.; Gao, G.; Sakai, M.; Hara, M.; Nakamura, Y.; Kishida, H.; Seki, T.; Takeoka, Y. Particle Size Controlled Chiral Structural Color of Monodisperse Cholesteric Liquid Crystals Particles. Adv. Opt. Mater. 2023, 11, 2300296. [Google Scholar] [CrossRef]
- Marzotko, D.; Demus, D. Calorimetric investigation of liquid crystals. Pramana Suppl. 1975, 1, 189–213. [Google Scholar]
- Shin, S.; Park, M.; Cho, J.K.; Char, J.; Gong, M.; Jeong, K.U. Tuning Helical Twisting Power of Isosorbide-Based Chiral Dopants by Chemical Modifications. Mol. Cryst. Liq. Cryst. 2011, 534, 19–31. [Google Scholar] [CrossRef]
- Tondiglia, V.P.; Rumi, M.; Idehenre, I.U.; Lee, K.M.; Binzer, J.F.; Banerjee, P.P.; Evans, D.R.; McConney, M.E.; Bunning, T.J.; White, T.J. Electrical Control of Unpolarized Reflectivity in Polymer-Stabilized Cholesteric Liquid Crystals at Oblique Incidence. Adv. Opt. Mater. 2018, 6, 1800957. [Google Scholar] [CrossRef]
- Tomikawa, N.; Itoh, T.; Okazaki, Y.; Adachi, M.; Tokita, M.; Watanabe, J. Molecular Weight Dependence of Phase Behavior in Side-Chain Liquid Crystalline Polymer Which Exhibits Reentrant Nematic Phase. Jpn. J. Appl. Phys. 2005, 44, L381–L384. [Google Scholar] [CrossRef]
- Ku, K.; Hisano, K.; Kimura, S.; Shigeyama, T.; Akamatsu, N.; Shishido, A.; Tsutsumi, O. Environmentally Stable Chiral-nematic Liquid-crystal Elastomers with Mechano-optical Properties. Appl. Sci. 2021, 11, 5037. [Google Scholar] [CrossRef]
- Rasband, W.S. ImageJ; U.S. National Institutes of Health: Bethesda, MD, USA, 2011.
Particle | LCM 1,2 | CM 1,2 | PVP 1 | AIBN 1 | Solvents (vol/vol) | Conversion (%) | Mn (Mw/Mn) | |
---|---|---|---|---|---|---|---|---|
DMF | MeOH | |||||||
P1a | 97.6 | 2.4 | 130 | 4.0 | 50 | 50 | 53 | 15,000 (2.6) |
P1b | 96.2 | 3.8 | 51 | 15,000 (2.6) | ||||
P2a | 97.6 | 2.4 | 57 | 43 | 45 | 13,000 (2.1) | ||
P2b | 96.2 | 3.8 | 49 | 13,000 (2.1) |
Particle | Diameter (µm) | CV | λ (nm) |
---|---|---|---|
P1a | 2.5 | 0.04 | 700 |
P1b | 2.6 | 0.04 | 420 |
P2a | 5.3 | 0.3 | 590 |
P2b | 5.3 | 0.3 | 440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shigeyama, T.; Matsumoto, K.; Hisano, K.; Tsutsumi, O. Tunable Reflection through Size Polydispersity of Chiral-Nematic Liquid Crystal Polymer Particles. Molecules 2023, 28, 7779. https://doi.org/10.3390/molecules28237779
Shigeyama T, Matsumoto K, Hisano K, Tsutsumi O. Tunable Reflection through Size Polydispersity of Chiral-Nematic Liquid Crystal Polymer Particles. Molecules. 2023; 28(23):7779. https://doi.org/10.3390/molecules28237779
Chicago/Turabian StyleShigeyama, Tomoki, Kohsuke Matsumoto, Kyohei Hisano, and Osamu Tsutsumi. 2023. "Tunable Reflection through Size Polydispersity of Chiral-Nematic Liquid Crystal Polymer Particles" Molecules 28, no. 23: 7779. https://doi.org/10.3390/molecules28237779
APA StyleShigeyama, T., Matsumoto, K., Hisano, K., & Tsutsumi, O. (2023). Tunable Reflection through Size Polydispersity of Chiral-Nematic Liquid Crystal Polymer Particles. Molecules, 28(23), 7779. https://doi.org/10.3390/molecules28237779