Quality Assurance Investigations and Impurity Characterization during Upscaling of [177Lu]Lu-PSMAI&T
Abstract
:1. Introduction
2. Results and Discussion
2.1. Investigation of the Production Process of [177Lu]Lu-PSMAI&T
2.2. HPLC Optimization Studies and HPLC Validation
2.3. Identification of the Radiolysis By-Products: Irradiation Experiments and Coelution
2.4. Economical Optimization
3. Methods
3.1. Chemicals
3.2. Chromatography
3.2.1. UPLC-MS Measurements
3.2.2. HPLC Measurements
3.3. Validation of HPLC Method 2
3.4. Radiosyntheses
3.5. Syntheses of natLu-PSMAI&T and natGd-PSMAI&T
3.6. Dose Calculations
3.7. Irradiations
3.8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pubchem Entry for [177Lu]Lu-PSMA-I&T. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Unii-G5B860B0G1#section=NCI-Thesaurus-Tree (accessed on 15 September 2023).
- Sadaghiani, M.S.; Sheikhbahaei, S.; Werner, R.A.; Pienta, K.J.; Pomper, M.G.; Solnes, L.B.; Gorin, M.A.; Wang, N.Y.; Rowe, S.P. A Systematic Review and Meta-analysis of the Effectiveness and Toxicities of Lutetium-177-labeled Prostate-specific Membrane Antigen-targeted Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer. Eur. Urol. 2021, 80, 82–94. [Google Scholar]
- Emmett, L.; Willowson, K.; Violet, J.; Shin, J.; Blanksby, A.; Lee, J. Lutetium (177) PSMA radionuclide therapy for men with prostate cancer: A review of the current literature and discussion of practical aspects of therapy. J. Med. Radiat. Sci. 2017, 64, 52–60. [Google Scholar] [CrossRef]
- European Medicines Agency. Pluvicto Entry European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/pluvicto (accessed on 30 May 2023).
- U.S. Food and Drug Administration. FDA Approves Pluvicto for Metastatic Castration-Resistant Prostate Cancer 2022. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pluvicto-metastatic-castration-resistant-prostate-cancer (accessed on 16 September 2023).
- Kratochwil, C.; Fendler, W.P.; Eiber, M.; Baum, R.; Bozkurt, M.F.; Czernin, J.; Delgado Bolton, R.C.; Ezziddin, S.; Forrer, F.; Hicks, R.J.; et al. EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT). Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2536–2544. [Google Scholar]
- Privé, B.M.; Peters, S.M.; Muselaers, C.H.; van Oort, I.M.; Janssen, M.J.; Sedelaar, J.M.; Konijnenberg, M.W.; Zámecnik, P.; Uijen, M.J.; Schilham, M.G.; et al. Lutetium-177-PSMA-617 in Low-Volume Hormone-Sensitive Metastatic Prostate Cancer: A Prospective Pilot Study. Clin. Cancer Res. 2021, 27, 3595–3601. [Google Scholar] [CrossRef]
- Golan, S.; Frumer, M.; Zohar, Y.; Rosenbaum, E.; Yakimov, M.; Kedar, D.; Margel, D.; Baniel, J.; Steinmetz, A.P.; Groshar, D.; et al. Neoadjuvant (177)Lu-PSMA-I&T Radionuclide Treatment in Patients with High-risk Prostate Cancer Before Radical Prostatectomy: A Single-arm Phase 1 Trial. Eur. Urol. Oncol. 2022, 6, 151–159. [Google Scholar]
- Wallace, K.L.; Landsteiner, A.; Bunner, S.H.; Engel-Nitz, N.M.; Luckenbaugh, A.N. Increasing prevalence of metastatic castration-resistant prostate cancer in a managed care population in the United States. Cancer Causes Control 2021, 32, 1365–1374. [Google Scholar] [CrossRef]
- Larenkov, A.; Mitrofanov, I.; Pavlenko, E.; Rakhimov, M. Radiolysis-Associated Decrease in Radiochemical Purity of 177Lu-Radiopharmaceuticals and Comparison of the Effectiveness of Selected Quenchers against This Process. Molecules 2023, 28, 1884. [Google Scholar] [CrossRef]
- Kraihammer, M.; Garnuszek, P.; Bauman, A.; Maurin, M.; Alejandre Lafont, M.; Haubner, R.; von Guggenberg, E.; Gabriel, M.; Decristoforo, C. Improved Quality Control of [177Lu]Lu-PSMA I&T. EJNMMI Radiopharm. Chem. 2023, 8, 1–3. [Google Scholar]
- Di Iorio, V.; Boschi, S.; Cuni, C.; Monti, M.; Severi, S.; Paganelli, G.; Masini, C. Production and Quality Control of [(177)Lu]Lu-PSMA-I&T: Development of an Investigational Medicinal Product Dossier for Clinical Trials. Molecules 2022, 27, 4143. [Google Scholar]
- Joshi, R.; Gangabhagirathi, R.; Venu, S.; Adhikari, S.; Mukherjee, T. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radic. Res. 2012, 46, 11–20. [Google Scholar] [CrossRef]
- Martin, S.; Tonnesmann, R.; Hierlmeier, I.; Maus, S.; Rosar, F.; Ruf, J.; Holland, J.P.; Ezziddin, S.; Bartholoma, M.D. Identification, Characterization, and Suppression of Side Products Formed during the Synthesis of [(177)Lu]Lu-PSMA-617. J. Med. Chem. 2021, 64, 4960–4971. [Google Scholar] [CrossRef]
- Hooijman, E.L.; Ntihabose, C.M.; Reuvers, T.G.; Nonnekens, J.; Aalbersberg, E.A.; van de Merbel, J.R.; Huijmans, J.E.; Koolen, S.L.; Hendrikx, J.J.; de Blois, E. Radiolabeling and quality control of therapeutic radiopharmaceuticals: Optimization, clinical implementation and comparison of radio-TLC/HPLC analysis, demonstrated by [(177)Lu]Lu-PSMA. EJNMMI Radiopharm. Chem. 2022, 7, 29. [Google Scholar] [CrossRef]
- Das, T.N.; Priyadarsini, K.I. Characterization of Transients Produced in Aqueous Medium by Pulse Radiolytic Oxidation of 3,5-Diiodotyrosine. J. Phys. Chem. 1994, 98, 5272–5278. [Google Scholar] [CrossRef]
- Gillings, N.; Todde, S.; Behe, M.; Decristoforo, C.; Elsinga, P.; Ferrari, V.; Hjelstuen, O.; Peitl, P.K.; Koziorowski, J.; Laverman, P.; et al. EANM guideline on the validation of analytical methods for radiopharmaceuticals. EJNMMI Radiopharm. Chem. 2020, 5, 7. [Google Scholar] [CrossRef]
- ICH Guideline Q2(R2) on Validation of Analytical Procedures Step 2b European Medicines Agency. 2022. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r2-validation-analytical-procedures-step-2b_en.pdf (accessed on 15 January 2023).
- Kondev, F.G. Nuclear Data Sheets for A=177☆. Nuclear Data Sheet 2019, 159, 1–412. [Google Scholar]
- Raitanen, J.; Barta, B.; Hacker, M.; Georg, D.; Balber, T.; Mitterhauser, M. Comparison of Radiation Response between 2D and 3D Cell Culture Models of Different Human Cancer Cell Lines. Cells 2023, 12, 360. [Google Scholar]
Radiodetector | ||||
---|---|---|---|---|
Parameter | Radiochemical Identity | Radiochemical Purity | Acceptance Criteria | Results |
Precision (repeatability) | CV% ≤ 5% | complies | ||
Specificity (radiolysis product) | Rs ≥ 1.5 | complies | ||
Linearity | R2 ≥ 0.99 | complies | ||
UV detector | ||||
Parameter | Acceptance Criteria | Results | ||
Precision (repeatability) | CV% ≤ 5% | complies | ||
LOD ([natLu]Lu-PSMAI&T) | Based on calibration curve | 0.0361 µg/µL | ||
LOD (PSMAI&T) | Based on calibration curve | 0.0149 µg/µL | ||
LOQ ([natLu]Lu-PSMAI&T) | Based on calibration curve | 0.1269 µg/µL | ||
LOQ (PSMAI&T) | Based on calibration curve | 0.0531 µg/µL | ||
Linearity [natLu]Lu-PSMAI&T | R2 ≥ 0.99 | complies | ||
Linearity PSMA I&T | R2 ≥ 0.99 | complies |
Patients */Batch | SA Original Method [GBq] | SA Adapted Method [GBq] | av. RCY [%] | av. Absolute Yield [GBq] | Minimum Final Activity [GBq] |
---|---|---|---|---|---|
5 | 40 | - | 97.7 ± 0.5 | 41.5 ± 0.2 | 37.0 |
4 | 36 | 32 | 96.3 ± 1.2 | 36.8 ± 0.8 | 29.6 |
3 | 27 | 24 | 96.5 ± 2.6 | 27.4 ± 2.0 | 22.2 |
2 | 18 | 16 | 93.6 ± 5.3 | 17.6 ± 1.3 | 14.8 |
Time [min] | A (%) | B (%) |
---|---|---|
1 | 90 | 10 |
2 | 88 | 12 |
3 | 84 | 16 |
5 | 80 | 20 |
7 | 76 | 24 |
8 | 74 | 26 |
9 | 72 | 28 |
10 | 71 | 29 |
11 | 70.5 | 29.5 |
12 | 70 | 30 |
14 | 69.5 | 30.5 |
17 | 5 | 95 |
18 | 95 | 5 |
20 | 95 | 5 |
# | Step |
---|---|
1 | Conditioning of the Sep-Pak® C18 Plus cartridge with water/ethanol (50/50 mixture) followed by the formulation buffer |
2 | Transfer of radioactivity to reactor and rinsing of the activity vial with 1.4 mL of reaction buffer |
3 | Radiosynthesis |
4 | Transfer of the reaction mixture to the Sep-Pak® C18 Plus Cartridge |
5 | Elution of the product with EtOH/H2O (2.5 mL, 50/50 mixture) |
6 | Formulation of the product to a final volume of 20 mL with formulation buffer |
Parameter | Original Method | Adapted Method |
---|---|---|
Product vial preparation | Sterile filtration of 0.15 mL (=30 mg DTPA) Ditripentat-Heyl® (200 mg/mL) solution into product vial | Sterile filtration of 0.15 mL (=30 mg DTPA) Ditripentat-Heyl® (200 mg/mL) solution and 1.4 mL reaction buffer into product vial |
Reaction buffer | 35.7 mg/mL L (+)-ascorbic acid, 11.1 mg/mL NaOH (commercial buffer kit, Polatom®) in 1.4 mL Trace Select® water | 92.1 mg/mL L (+)-ascorbic acid, 111.4 mg/mL sodium acetate trihydrate, 34 mg/mL gentisic acid in 1.4 mL water for injection, adjusted to pH 5.2 with 2 N NaOH |
Precursor amount | 125 µg/~9 GBq n.c.a. Lutetium-177 | |
EtOH present during synthesis | 200 µL+ 0.5 µL per µg precursor | 0.5 µL per µg precursor |
T [°C] | 90 | 95 |
t [min] labelling reaction | 10 | 30 |
Formulation buffer | 16 mL phys NaCl 0.9% | 24 mg/mL sodium ascorbate + 2.4 mg/mL L (+)-ascorbic acid in 16 mL phys NaCl 0.9% |
Total volume EOS [mL] | 18.6 | 20.0 |
Sample Number Gd-PSMAI&T | Sample Number Gd-PSMAI&T + EtOH | Dose [Gy] | Activity Equivalent for 45 min Storage Time [GBq] |
---|---|---|---|
1.1 | 2.1 | 22.8 | 7 |
1.2 | 2.2 | 58.6 | 18 |
1.3 | 2.3 | 117.1 | 36 |
1.4 | 2.4 | 130 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitl, S.; Raitanen, J.; Witoszynskyj, S.; Patronas, E.-M.; Nics, L.; Ozenil, M.; Weissenböck, V.; Mindt, T.L.; Hacker, M.; Wadsak, W.; et al. Quality Assurance Investigations and Impurity Characterization during Upscaling of [177Lu]Lu-PSMAI&T. Molecules 2023, 28, 7696. https://doi.org/10.3390/molecules28237696
Schmitl S, Raitanen J, Witoszynskyj S, Patronas E-M, Nics L, Ozenil M, Weissenböck V, Mindt TL, Hacker M, Wadsak W, et al. Quality Assurance Investigations and Impurity Characterization during Upscaling of [177Lu]Lu-PSMAI&T. Molecules. 2023; 28(23):7696. https://doi.org/10.3390/molecules28237696
Chicago/Turabian StyleSchmitl, Stefan, Julia Raitanen, Stephan Witoszynskyj, Eva-Maria Patronas, Lukas Nics, Marius Ozenil, Victoria Weissenböck, Thomas L. Mindt, Marcus Hacker, Wolfgang Wadsak, and et al. 2023. "Quality Assurance Investigations and Impurity Characterization during Upscaling of [177Lu]Lu-PSMAI&T" Molecules 28, no. 23: 7696. https://doi.org/10.3390/molecules28237696
APA StyleSchmitl, S., Raitanen, J., Witoszynskyj, S., Patronas, E. -M., Nics, L., Ozenil, M., Weissenböck, V., Mindt, T. L., Hacker, M., Wadsak, W., Brandt, M. R., & Mitterhauser, M. (2023). Quality Assurance Investigations and Impurity Characterization during Upscaling of [177Lu]Lu-PSMAI&T. Molecules, 28(23), 7696. https://doi.org/10.3390/molecules28237696