Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization
2.1.1. Qualitative and Quantitative Determination of Glucose and Fructose by 1H NMR Spectroscopy
2.1.2. Identification of Compounds by HPLC-DAD-ESIMS, HPLC-HRMS and NMR
2.1.3. Quantitative Analysis of Phenolic Compounds
2.2. Antioxidant Potential
2.3. Antimicrobial Activity
2.4. Cytotoxicity and Cell Cycle Alterations of Human Skin Fibroblasts and Human HepG2 Hepatocarcinoma Cells after Treatment with DRE and EAE
3. Materials and Methods
3.1. Rosa damascena Mill Sample
3.2. Extraction and Isolation of Individual Compounds
3.3. Qualitative and Quantitative NMR Analysis of Monosaccharides
3.4. HPLC-HRMS Analysis
3.5. Qualitative and Quantitative HPLC-DAD-ESI/MS Analysis
3.6. Determination of Total Phenolic and Total Flavonoid Content
3.7. Determination of Antioxidant Capacity
3.7.1. DPPH Radical Scavenging Activity
3.7.2. ABTS Radical-Ion Scavenging Activity
3.7.3. FRAP Activity
3.8. Antimicrobial Activity
3.9. Cytotoxicity Tests
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krasteva, I.; Kozhuharova, E.; Aneva, I.; Zdraveva, P.; Shkodrov, A. (Eds.) Encyclopedia of Medicinal Plants; Knigomainia: Sofia, Bulgaria, 2023; ISBN 9786191953561. [Google Scholar]
- Slavov, A.; Vasileva, I.; Stefanov, L.; Stoyanova, A. Valorization of Wastes from the Rose Oil Industry. Rev. Environ. Sci. Biotechnol. 2017, 16, 309–325. [Google Scholar] [CrossRef]
- Mahboubi, M. Rosa Damascena as Holy Ancient Herb with Novel Applications. J. Tradit. Complement. Med. 2016, 6, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Boskabady, M.H.; Shafei, M.N.; Saberi, Z.; Amini, S. Pharmacological Effects of Rosa Damascena. Iran. J. Basic Med. Sci. 2011, 14, 295–307. [Google Scholar] [PubMed]
- Gochev, V.; Wlcek, K.; Buchbauer, G.; Stoyanova, A.; Dobreva, A.; Schmidt, E.; Jirovetz, L. Comparative Evaluation of Antimicrobial Activity and Composition of Rose Oils from Various Geographic Origins, in Particular Bulgarian Rose Oil. Nat. Prod. Commun. 2008, 3, 1063–1068. [Google Scholar] [CrossRef]
- Talib, W.H.; Mahasneh, A.M. Antimicrobial, Cytotoxicity and Phytochemical Screening of Jordanian Plants Used in Traditional Medicine. Molecules 2010, 15, 1811–1824. [Google Scholar] [CrossRef]
- Denkova, Z.R.; Denkova-Kostova, R.S.; Vasileva, I.N.; Slavov, A.M. Antimicrobial Activity of Plant Extracts of Rose By-Products from the Essential Oil Industry against Saprophytic and Pathogenic Microorganisms. Bulg. Chem. Commun. 2022, 54, 95–101. [Google Scholar] [CrossRef]
- Basim, E.; Basim, H. Antibacterial Activity of Rosa Damascena Essential Oil. Fitoterapia 2003, 74, 394–396. [Google Scholar] [CrossRef]
- Ilieva, Y.; Dimitrova, L.; Georgieva, A.; Vilhelmova-Ilieva, N.; Zaharieva, M.M.; Kokanova-Nedialkova, Z.; Dobreva, A.; Nedialkov, P.; Kussovski, V.; Kroumov, A.D.; et al. In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses. Plants 2022, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, N.; Tansho-Nagakawa, S.; Miyazaki, C.; Shimomura, K.; Ono, Y.; Abe, S. Inhibition of Neutrophil Adhesion and Antimicrobial Activity by Diluted Hydrosol Prepared from Rosa Damascena. Biol. Pharm. Bull. 2017, 40, 161–168. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible Flowers as Sources of Phenolic Compounds with Bioactive Potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef]
- Özkan, G.; Saǧdiç, O.; Baydar, N.G.; Baydar, H. Note: Antioxidant and Antibacterial Activities of Rosa Damascena Flower Extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Hoseinpour, H.; Peel, S.A.F.; Rakhshandeh, H.; Forouzanfar, A.; Taheri, M.; Rajabi, O.; Saljoghinejad, M.; Sohrabi, K. Evaluation of Rosa Damascena Mouthwash in the Treatment of Recurrent Aphthous Stomatitis: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Quintessence Int. 2011, 42, 483–491. [Google Scholar] [PubMed]
- Antonova, D.V.; Medarska, Y.N.; Stoyanova, A.S.; Nenov, N.S.; Slavov, A.M.; Antonov, L.M. Chemical Profile and Sensory Evaluation of Bulgarian Rose (Rosa Damascena Mill.) Aroma Products, Isolated by Different Techniques. J. Essent. Oil Res. 2021, 33, 171–181. [Google Scholar] [CrossRef]
- Baydar, N.G.; Baydar, H. Phenolic Compounds, Antiradical Activity and Antioxidant Capacity of Oil-Bearing Rose (Rosa Damascena Mill.) Extracts. Ind. Crops Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Schieber, A.; Carle, R.; Berardini, N.; Mihalev, K.; Mollov, P. Flavonol Glycosides from Distilled Petals of Rosa Damascena Mill. Z. Naturforsch. Sect. C J. Biosci. 2005, 60, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, E.-S. Total Phenolics and Antioxidant Activity of Defatted Fresh Taif Rose, Saudi Arabia. Br. J. Pharm. Res. 2012, 2, 129–140. [Google Scholar] [CrossRef]
- Slavov, A.; Denev, P.; Panchev, I.; Shikov, V.; Nenov, N.; Yantcheva, N.; Vasileva, I. Combined Recovery of Polysaccharides and Polyphenols from Rosa Damascena Wastes. Ind. Crops Prod. 2017, 100, 85–94. [Google Scholar] [CrossRef]
- Dragoev, S.; Vlahova-Vangelova, D.; Balev, D.; Bozhilov, D.; Dagnon, S. Valorization of Waste By-Products of Rose Oil Production as Feedstuff Phytonutrients. Bulg. J. Agric. Sci. 2021, 27, 209–219. [Google Scholar] [CrossRef]
- Georgieva, A.; Ilieva, Y.; Kokanova-Nedialkova, Z.; Zaharieva, M.M.; Nedialkov, P.; Dobreva, A.; Kroumov, A.; Najdenski, H.; Mileva, M. Redox-Modulating Capacity and Antineoplastic Activity of Wastewater Obtained from the Distillation of the Essential Oils of Four Bulgarian Oil-Bearing Roses. Antioxidants 2021, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Nayeshiro, K.; Eugster, C.H. Notiz Über Ellagitannine Und Flavonol-Glycoside Aus Rosenblüten. Helv. Chim. Acta 1989, 72, 985–992. [Google Scholar] [CrossRef]
- Ginova, A.; Mihalev, K.; Kondakova, V. Antioxidant Capacity of Petals and Leaves from Different Rose (Rosa Damascena Mill.) Plantations in Bulgaria. Int. J. Pure App. Biosci. 2013, 1, 38–43. [Google Scholar]
- Wang, Z.F.; You, Y.L.; Li, F.F.; Kong, W.R.; Wang, S.Q. Research Progress of Nmr in Natural Product Quantification. Molecules 2021, 26, 6308. [Google Scholar] [CrossRef] [PubMed]
- Capitani, D.; Mannina, L.; Proietti, N.; Sobolev, A.P.; Tomassini, A.; Miccheli, A.; Di Cocco, M.E.; Capuani, G.; De Salvador, R.; Delfini, M. Monitoring of Metabolic Profiling and Water Status of Hayward Kiwifruits by Nuclear Magnetic Resonance. Talanta 2010, 82, 1826–1838. [Google Scholar] [CrossRef] [PubMed]
- Trendafilova, A.; Ivanova, V.; Trusheva, B.; Kamenova-Nacheva, M.; Tabakov, S.; Simova, S. Chemical Composition and Antioxidant Capacity of the Fruits of European Plum Cultivar “Čačanska Lepotica” Influenced by Different Rootstocks. Foods 2022, 11, 2844. [Google Scholar] [CrossRef] [PubMed]
- Barclay, T.; Ginic-Markovic, M.; Johnston, M.R.; Cooper, P.; Petrovsky, N. Observation of the Keto Tautomer of D-Fructose in D2O Using 1H NMR Spectroscopy. Carbohydr. Res. 2012, 347, 136–141. [Google Scholar] [CrossRef]
- Chochkov, R.; Denkova, R.; Denkova, Z.; Denev, P.; Vasileva, I.; Dessev, T.; Simitchiev, A.; Nenov, V.; Slavov, A. Utilization of Industrial Rosa Damascena Mill. By-Products and Cocoa Pod Husks as Natural Preservatives in Muffins. Period. Polytech. Chem. Eng. 2022, 66, 157–166. [Google Scholar] [CrossRef]
- Tarone, A.G.; Goupy, P.; Ginies, C.; Marostica, M.R.; Dufour, C. Advanced Characterization of Polyphenols from Myrciaria Jaboticaba Peel and Lipid Protection in in Vitro Gastrointestinal Digestion. Food Chem. 2021, 359, 129959. [Google Scholar] [CrossRef]
- Dinkova, R.; Vardakas, A.; Dimitrova, E.; Weber, F.; Passon, M.; Shikov, V.; Schieber, A.; Mihalev, K. Valorization of Rose (Rosa Damascena Mill.) by-Product: Polyphenolic Characterization and Potential Food Application. Eur. Food Res. Technol. 2022, 248, 2351–2358. [Google Scholar] [CrossRef]
- Rummun, N.; Serag, A.; Rondeau, P.; Ramsaha, S.; Bourdon, E.; Bahorun, T.; Farag, M.A.; Neergheen, V.S. Antiproliferative Activity of Syzygium Coriaceum, an Endemic Plant of Mauritius, with Its UPLC-MS Metabolite Fingerprint: A Mechanistic Study. PLoS ONE 2021, 16, e0252276. [Google Scholar] [CrossRef]
- Vukics, V.; Guttman, A. Structural Characterization of Flavonoid Glycosides by Multi-Stage Mass Spectrometry. Mass Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef]
- Geng, P.; Zhang, R.; Aisa, H.A.; He, J.; Qu, K.; Zhu, H.; Abliz, Z. Fast Profiling of the Integral Metabolism of Flavonols in the Active Fraction of Gossypium Herbaceam L. Using Liquid Chromatography/Multi-Stage Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 1877–1888. [Google Scholar] [CrossRef]
- Zhou, C.; Luo, Y.; Lei, Z.; Wei, G. UHPLC-ESI-MS Analysis of Purified Flavonoids Fraction from Stem of Dendrobium Denneaum Paxt. and Its Preliminary Study in Inducing Apoptosis of HepG2 Cells. Evid. Based Complement Altern. Med. 2018, 2018, 8936307. [Google Scholar] [CrossRef]
- Abad-García, B.; Berrueta, L.A.; Garmón-Lobato, S.; Gallo, B.; Vicente, F. A General Analytical Strategy for the Characterization of Phenolic Compounds in Fruit Juices by High-Performance Liquid Chromatography with Diode Array Detection Coupled to Electrospray Ionization and Triple Quadrupole Mass Spectrometry. J. Chromatogr. A 2009, 1216, 5398–5415. [Google Scholar] [CrossRef] [PubMed]
- Larrazábal-Fuentes, M.J.; Fernández-Galleguillos, C.; Palma-Ramírez, J.; Romero-Parra, J.; Sepúlveda, K.; Galetovic, A.; González, J.; Paredes, A.; Bórquez, J.; Simirgiotis, M.J.; et al. Chemical Profiling, Antioxidant, Anticholinesterase, and Antiprotozoal Potentials of Artemisia Copa Phil. (Asteraceae). Front. Pharmacol. 2020, 11, 594174. [Google Scholar] [CrossRef] [PubMed]
- Dina, E.; Sklirou, A.D.; Chatzigeorgiou, S.; Manola, M.S.; Cheilari, A.; Louka, X.P.; Argyropoulou, A.; Xynos, N.; Skaltsounis, A.L.; Aligiannis, N.; et al. An Enriched Polyphenolic Extract Obtained from the By-Product of Rosa Damascena Hydrodistillation Activates Antioxidant and Proteostatic Modules. Phytomedicine 2021, 93, 153757. [Google Scholar] [CrossRef] [PubMed]
- Rusanov, K.; Garo, E.; Rusanova, M.; Fertig, O.; Hamburger, M.; Atanassov, I.; Butterweck, V. Recovery of Polyphenols from Rose Oil Distillation Wastewater Using Adsorption Resins—A Pilot Study. Planta Med. 2014, 80, 1657–1664. [Google Scholar] [CrossRef]
- Shikov, V.; Kammerer, D.R.; Mihalev, K.; Mollov, P.; Carle, R. Heat Stability of Strawberry Anthocyanins in Model Solutions Containing Natural Copigments Extracted from Rose (Rosa Damascena Mill.) Petals. J. Agric. Food Chem. 2008, 56, 8521–8526. [Google Scholar] [CrossRef]
- Androutsopoulou, C.; Christopoulou, S.D.; Hahalis, P.; Kotsalou, C.; Lamari, F.N.; Vantarakis, A. Evaluation of Essential Oils and Extracts of Rose Geranium and Rose Petals as Natural Preservatives in Terms of Toxicity, Antimicrobial, and Antiviral Activity. Pathogens 2021, 10, 494. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant Properties of Selected Flavonoids in Binary Mixtures—Considerations on Myricetin, Kaempferol and Quercetin. Int. J. Mol. Sci. 2023, 24, 10070. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.R.; Sharma, P.K. Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid-Flavonoid Interaction and Its Effect on Their Antioxidant Activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Golus, J.; Sawicki, R.; Widelski, J.; Ginalska, G. The Agar Microdilution Method—A New Method for Antimicrobial Susceptibility Testing for Essential Oils and Plant Extracts. J. Appl. Microbiol. 2016, 121, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial Activity of Flavonoids and Their Structure–Activity Relationship: An Update Review. Phyther. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Ekambaram, S.P.; Perumal, S.S.; Balakrishnan, A. Scope of Hydrolysable Tannins as Possible Antimicrobial Agent. Phyther. Res. 2016, 30, 1035–1045. [Google Scholar] [CrossRef]
- Hamza, R.Z.; Al-Yasi, H.M.; Ali, E.F.; Fawzy, M.A.; Abdelkader, T.G.; Galal, T.M. Chemical Characterization of Taif Rose (Rosa Damascena Mill Var. Trigentipetala) Waste Methanolic Extract and Its Hepatoprotective and Antioxidant Effects against Cadmium Chloride (CdCl2)-Induced Hepatotoxicity and Potential Anticancer Activities Against. Crystals 2022, 12, 460. [Google Scholar] [CrossRef]
- Darwish, H.; Alharthi, S.; Mehanna, R.A.; Ibrahim, S.S.; Fawzy, M.A.; Alotaibi, S.S.; Albogami, S.M.; Albogami, B.; Hassan, S.H.A.; Noureldeen, A. Evaluation of the Anti-Cancer Potential of Rosa Damascena Mill. Callus Extracts against the Human Colorectal Adenocarcinoma Cell Line. Molecules 2022, 27, 6241. [Google Scholar] [CrossRef]
- Artun, F.T.; Karagoz, A.; Ozcan, G.; Melikoglu, G.; Anil, S.; Kultur, S.; Sutlupinar, N. In Vitro Anticancer and Cytotoxic Activities of Some Plant Extracts on HeLa and Vero Cell Lines. J. BUON 2016, 21, 720–725. [Google Scholar]
- Mansouri, E.; Hardani, A.; Afzalzadeh, M.R.; Zargar, A.A.; Meamar, Z. Combined Effects of Retinoic Acid and Hydro-Alcoholic Extract of Rosa Damascena Mill on Wound in Diabetic Rats. Iran. J. Pharm. Res. 2016, 15, 583. [Google Scholar]
- Ma, T.; Sun, Y.; Wang, L.; Wang, J.; Wu, B.; Yan, T.; Jia, Y. An Investigation of the Anti-Depressive Properties of Phenylpropanoids and Flavonoids in Hemerocallis Citrina Baroni. Molecules 2022, 27, 5809. [Google Scholar] [CrossRef] [PubMed]
- Utari, F.; Itam, A.; Syafrizayanti, S.; Putri, W.H.; Ninomiya, M.; Koketsu, M.; Tanaka, K.; Efdi, M. Isolation of Flavonol Rhamnosides from Pometia Pinnata Leaves and Investigation of α-Glucosidase Inhibitory Activity of Flavonol Derivatives. J. Appl. Pharm. Sci. 2019, 9, 53–65. [Google Scholar] [CrossRef]
- Elkhateeb, A.; Matsuura, H.; Yamasaki, M.; Maede, Y.; Katakura, K.; Nabeta, K. Anti-Babesial Compounds from Rosa Damascena Mill. Nat. Prod. Commun. 2007, 2, 765–769. [Google Scholar] [CrossRef]
- Devi, S.; Kumar, V. Comprehensive Structural Analysis of Cis- and Trans-Tiliroside and Quercetrin from Malvastrum Coromandelianum and Their Antioxidant Activities. Arab. J. Chem. 2020, 13, 1720–1730. [Google Scholar] [CrossRef]
- Da Silva Sa, F.A.; De Paula, J.A.M.; Dos Santos, P.A.; Oliveira, L.D.A.R.; Oliveira, G.D.A.R.; Liao, L.M.; De Paula, J.R.; Silva, M.D.R.R. Phytochemical Analysis and Antimicrobial Activity of Myrcia Tomentosa (Aubl.) DC. Leaves. Molecules 2017, 22, 1100. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative Antioxidant and Cytoprotective Activities of Common Herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Devaki, M. The Ferric Reducing/Antioxidant Power (FRAP) Assay for Non-Enzymatic Antioxidant Capacity: Concepts, Procedures, Limitations and Applications. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 77–106. ISBN 9781119135388. [Google Scholar]
- Feoktistova, M.; Geserick, P.; Leverkus, M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb. Protoc. 2016, 2016, 343–346. [Google Scholar] [CrossRef]
No | Rt a (min) | Rt b (min) | Compound | UV a, λmax, nm | [M − H]− b m/z | Δ b, ppm | Formula b | MS/MS Fragments b | DRE c | EAE c |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.94 | 3.56 | Qunic acid | - | 191.0552 | 1.08 | C7H11O6 | 191, 127, 85 | nq | nq |
2 | 0.98 | - | Galloyl hexose | - | 331.0674 | 1.00 | C13H15O10 | 331, 271, 169, 125 | nq | nd/nq |
3 | 1.01 | 10.56 | HHDP galloyl hexose | 285.6 | 633.0737 | 0.63 | C27H21O18 | 633, 463, 301, 275, 249, 231, 169 | 0.867 ± 0.002 | 2.051 ± 0.002 |
4 | 1.46 | 8.84 | Digalloyl hexose | 276.8 | 483.0783 | 0.46 | C20H19O14 | 483, 331, 169, 125 | 2.847 ± 0.095 | 4.633 ± 0.006 |
5 * | 1.47 | 7.63 | Gallic acid | 271.8 | 169.0132 | 0.29 | C7H5O5 | 169, 125 | 13.402 ± 0.025 | 54.318 ± 0.092 |
6 | 1.92 | 10.06 | Digalloyl hexose | 281.8 | 483.0784 | 0.83 | C20H19O14 | 483, 331, 169, 125 | 1.217 ± 0 | 2.537 ± 0.004 |
7 | 2.58 | 11.2 | Protocatechunic acid | 259.2, 294.4 | 153.0182 | −0.11 | C7H5O4 | 153, 109 | 1.006 ± 0.015 | 4.069 ± 0.051 |
8 | 4.45 | 12.12 | HHDP digalloyl hexose | 270.5 | 785.0849 | −0.73 | C34H25O22 | 785, 483, 301, 275, 249, 169, 125 | 4.907 ± 0.006 | 11.884 ± 0.042 |
9 | 4.52 | 14.82 | Methyl gallate | 271.8 | 183.0290 | 1.13 | C8H7O5 | 183, 168, 137, 124 | 1.660 ± 0.006 | 7.907 ± 0.010 |
10 | 5.08 | 12.56 | Trigalloyl hexose | 278.0 | 635.0899 | 1.54 | C27H23O18 | 635, 465, 412, 313, 169, 125 | 1.962 ± 0.034 | 7.744 ± 0.030 |
11 | 6.37 | 13.54 | HHDP digalloyl hexose | 13.54 | 785.0853 | 1.32 | C34H25O22 | 785, 483, 301, 275, 249, 169, 125 | 3.277 ± 0.015 | 11.454 ± 0.264 |
12 | 7.09 | 15.76 | Flavogallonic acid | 255.4, 363.6 | 469.0053 | 0.93 | C21H9O13 | 425, 301, 300, 271 | 2.810 ± 0.008 | 6.891 ± 0.028 |
13 | 8.31 | 13.98 | HHDP digalloyl hexose | 273.0 | 785.0855 | 1.55 | C34H25O22 | 483, 301, 275, 249, 169, 125 | 5.603 ± 0.028 | 17.333 ± 0.065 |
14 | 10.21 | 21.04 | Quercetin 3-O-galloyl hexoside | 260.5, 359.8 | 615.0997 | 1.82 | C28H23O16 | 615, 463, 301, 300, 271, 255, 169, 151 | 1.337 ± 0.014 | 6.161 ± 0.015 |
15 | 10.37 | 19.3 | HHDP trigalloyl hexose | 279.3 | 937.0963 | 1.11 | C41H29O26 | 937, 465, 301, 275, 169, 153 | 2.337 ± 0.012 | 13.165 ± 0.018 |
16 | 10.81 | 21.85 | Quercetin 3-O-galloyl hexoside | 260.5, 359.8 | 615.0998 | 1.92 | C28H23O16 | 615, 463, 301, 300, 271, 255, 169, 151 | tr | 3.105 ± 0.008 |
17 | 10.98 | 23.05 | Ellagic acid | 252.9, 367.4 | 300.9991 | 2.24 | C14H5O8 | 301, 257 | 6.591 ± 0.068 | 67.784 ± 0.035 |
18 ** | 11.44 | 23.98 | Quercetin-3-O-β-d-galactopyranoside (Hyperoside) | 255.4, 353.6 | 463.0882 | 2.43 | C21H19O12 | 463, 301, 300, 271, 255 | 11.952 ± 0.029 | 48.01 ± 0.094 |
19 | 11.84 | 24.71 | Kaempferol 3-O-galloyl hexoside | - | 599.1057 | 2.54 | C28H23O15 | 599, 447, 313, 285, 284, 255, 227, 169, 151 | tr | tr |
20 ** | 11.86 | 24.69 | Quercetin-3-O-β-d-glucopyranoside (Isoquercetrin) | 256.7, 353.6 | 463.0885 | 3.02 | C21H19O12 | 463, 301, 300, 271, 255 | 10.573 ± 0.008 | 42.169 ± 0.074 |
21 | 12.47 | 26.44 | Quercetin 3-O-pentoside | 254.2, 353.7 | 433.0779 | 0.71 | C20H17O11 | 433, 301, 300, 271, 255 | 1.585 ± 0.011 | 6.558 ± 0.027 |
22 | 12.55 | 25.34 | Quercetin galloyl hexoside | 254.8, 357.0 | 615.0982 | −0.65 | C28H23O16 | 615, 301, 179, 169, 151 | 0.966 ± 0.001 | 4.876 ± 0.011 |
23 ** | 13.02 | 27.15 | Kaempferol-3-O-β-d-galactopyranoside | 265.5, 346.0 | 447.0935 | 0.49 | C21H19O11 | 447, 285, 284, 255, 227 | 7.124 ± 0.141 | 29.525 ± 0.040 |
24 | 13.29 | 27.09 | Kaempferol 3-O-galloyl hexoside | - | 599.1059 | 2.76 | C28H23O15 | 599, 447, 313, 285, 284, 255, 227, 169, 151 | tr | tr |
25 | 13.38 | 26.86 | Kaempferol-3-O-rutinoside | 266.7, 350.0 | 593.1520 | 1.32 | C27H29O15 | 593, 285, 284, 227 | 2.917 ± 0.023 | 6.036 ± 0.060 |
26 ** | 13.41 | 27.57 | Quercetin 3-O-α-l-arabinofuranoside (Avicularin) | 256.7, 351.0 | 433.0777 | 0.07 | C20H17O11 | 433, 301, 300, 271 | 4.150 ± 0.011 | 16.843 ± 0.055 |
27 * | 13.58 | 22.92 | Quercetin-3-O-β-rutinoside (Rutin) | 254.2, 365.0 | 609.1461 | 0.92 | C27H29O16 | 609, 301, 300, 271, 255, 151 | 1.441 ± 0.004 | tr |
28 ** | 13.93 | 27.96 | Kaempferol-3-O-β-d-glucopyranoside | 266.8, 344.8 | 447.0927 | −0.86 | C21H19O11 | 447, 285, 284, 255, 227 | 24.746 ± 0.002 | 109.772 ± 0.31 |
29 ** | 13.98 | 28.18 | Quercetin-3-O-α-rhamnopyranoside | 256.7, 348.5 | 447.0935 | 0.49 | C21H19O12 | 447, 301, 300, 271, 255 | 4.346 ± 0.011 | 19.047 ± 0.042 |
30 | 14.05 | 27.89 | Flavogallonic acid methyl ester | 261.7, 349.8 | 483.0207 | 0.30 | C22H11O13 | 451, 301, 271 | tr | tr |
31 | 14.57 | 28.30 | Kaempferol galloyl hexoside | 266.8, 347.3 | 599.1055 | 2.15 | C28H23O15 | 313, 285, 169, 151 | 1.256 ± 0.012 | 6.347 ± 0.064 |
32 ** | 14.77 | 29.15 | Kaempferol-3-O-β-xylopyranoside | 264.2, 346.0 | 417.0828 | 0.25 | C20H17O10 | 417, 285, 284, 255, 227 | 2.703 ± 0.134 | 12.087 ± 0.287 |
33 ** | 15.54 | 29.76 | Kaempferol-3-O-α-arabinofuranoside (Juglanin) | 264.2, 347.3 | 417.0829 | 0.40 | C20H17O10 | 417, 285, 284, 255, 227 | 5.420 ± 0.005 | 23.784 ± 0.060 |
34 ** | 15.67 | 29.25 | Kaempferol-3-O-β-glucopyranosyl (1 → 4)-α-l-rhamnopyranoside (Multiflorin B) | 264.2, 344.7 | 593.1515 | 0.5 | C27H29O15 | 593, 285, 284, 227 | 4.629 ± 0.118 | 13.77 ± 0.243 |
35 ** | 16.27 | 30.34 | Kaempferol-3-O-α-l-rhamnopyranoside | 256.7, 356.1 | 431.0983 | −0.1 | C21H19O10 | 431, 285, 284, 255, 227 | 6.647 ± 0.004 | 29.891 ± 0.060 |
36 ** | 17.41 | 30.50 | Quercetin-3-O-[6-O-acetyl-β-d-glucopyranosyl] (1 → 4)-α-l-rhamnopyranoside | 264.2, 351.0 | 651.1580 | 2.07 | C29H31O17 | 651, 609, 301, 271, 255 | tr | tr |
37 | 18.29 | 31.40 | Quercetin p-coumaroyl hexoside | 264.2, 313.3, 365.0 sh | 609.1268 | 2.94 | C30H25O14 | 609, 463, 301, 300, 271, 255, 151 | 1.365 ± 0.002 | 6.092 ± 0.006 |
38 * | 18.98 | 34.16 | Quercetin | 256.7, 373.7 | 301.0353 | −0.12 | C15H9O7 | 301, 273, 179, 151 | 3.859 ± 0.003 | 16.758 ± 0.103 |
39 ** | 19.52 | 32.11 | Kaempferol-3-O-[6‴-O-acetyl-β-d-glucopyranosyl] (1 → 4)-α-l-rhamnopyranoside (Multiflorin A) | 263.0, 343.5 | 635.1626 | 1.32 | C29H31O16 | 635, 593, 477, 285, 257 | 1.818 ± 0.002 | 9.136 ± 0.020 |
40 ** | 20.41 | 33.24 | trans-Tiliroside | 265.5, 312.1, 360.0 sh | 593.1306 | 0.93 | C30H25O13 | 593, 447, 285, 284, 255, 227 | 4.905 ± 0.001 | 24.024 ± 0.076 |
41 | 21.32 | 33.98 | cis-Tiliroside | 260.5, 312.1, 360.0 sh | 593.1301 | 0.11 | C30H25O13 | 593, 447, 285, 284, 255, 227 | 0.750 ± 0.002 | 3.073 ± 0.020 |
42 * | 22.95 | 38.20 | Kaempferol | 265.5, 364.9 | 285.0404 | −0.3 | C15H9O6 | 285 | 4.751 ± 0.008 | 20.206 ± 0.051 |
Extract | DPPH (IC50 mg/mL) | ABTS (mM Trolox/g E) | FRAP (mM Fe2+/g E) |
---|---|---|---|
DRE | 0.27 ± 0.01 | 1.98 ± 0.01 | 5.40 ± 0.14 |
EAE | 0.16 ± 0.01 | 3.49 ± 0.01 | 13.84 ± 0.16 |
BHT | 0.47 ± 0.03 | - | 8.92 + 0.08 |
Caffeic acid | 0.068 ± 0.001 | - | 14.36 ± 0.01 |
Test Strain | Inhibition Zone (mm) | ||||
---|---|---|---|---|---|
(+) Control | 5% DMSO | DRE | EAE | ||
Bacillus cereus ATCC 11778 | Gentamicin 10 µg/disk | 19.17 ± 0.45 | NZ | 11.92 ± 0.45 b | 10.01 ± 0.08 b |
Staphylococcus aureus ATCC 25923 | Gentamicin 10 µg/disk | 17.34 ± 0.48 | NZ | 17.08 ± 0.24 a | 21.86 ± 0.19 b |
Staphylococcus epidermidis ATCC 12228 | Gentamicin 10 µg/disk | 24.51 ± 0.42 | NZ | 23.67 ± 0.30 a | 27.99 ± 0.04 b |
Propionibacterium acnes (an isolate) | Clindamycin 2 µg/disk; | 17.65 ± 0.50 | NZ | 21.92 ± 0.02 b | 25.04 ± 0.26 b |
Escherichia coli ATCC 25922 | Gentamicin 10 µg/disk | 18.73 ± 0.59 | NZ | 8.40 ± 0.29 b | 11.03 ± 0.27 b |
Pseudomonas aeruginosa ATCC 27853 | Gentamicin 10 µg/disk | 17.38 ± 0.77 | NZ | 9.08 ± 0.21 b | 10.87 ± 0.51 b |
Candida albicans ATCC10231 | Nystatin 100 units/disk | 22.0 ± 0.09 | NZ | NZ | NZ |
Test Strain | MIC, mg/mL | |
---|---|---|
DRE | EAE | |
Bacillus cereus ATCC 11778 | 5 | 2.5 |
Staphylococcus aureus ATCC 25923 | 10 | 5 |
Staphylococcus epidermidis ATCC 12228 | 20 | 5 |
Propionibacterium acnes (an isolate) | 10 | 5 |
Escherichia coli ATCC 25922 | 2.5 | 10 |
Pseudomonas aeruginosa ATCC 27853 | 20 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trendafilova, A.; Staleva, P.; Petkova, Z.; Ivanova, V.; Evstatieva, Y.; Nikolova, D.; Rasheva, I.; Atanasov, N.; Topouzova-Hristova, T.; Veleva, R.; et al. Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill. Molecules 2023, 28, 7666. https://doi.org/10.3390/molecules28227666
Trendafilova A, Staleva P, Petkova Z, Ivanova V, Evstatieva Y, Nikolova D, Rasheva I, Atanasov N, Topouzova-Hristova T, Veleva R, et al. Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill. Molecules. 2023; 28(22):7666. https://doi.org/10.3390/molecules28227666
Chicago/Turabian StyleTrendafilova, Antoaneta, Plamena Staleva, Zhanina Petkova, Viktoria Ivanova, Yana Evstatieva, Dilyana Nikolova, Iliyana Rasheva, Nikola Atanasov, Tanya Topouzova-Hristova, Ralitsa Veleva, and et al. 2023. "Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill" Molecules 28, no. 22: 7666. https://doi.org/10.3390/molecules28227666
APA StyleTrendafilova, A., Staleva, P., Petkova, Z., Ivanova, V., Evstatieva, Y., Nikolova, D., Rasheva, I., Atanasov, N., Topouzova-Hristova, T., Veleva, R., Moskova-Doumanova, V., Dimitrov, V., & Simova, S. (2023). Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill. Molecules, 28(22), 7666. https://doi.org/10.3390/molecules28227666