Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity
Abstract
:1. Introduction
2. Results
3. Experimental Section
3.1. General Information
3.2. Microwave Irradiation Experiments
3.3. Cell Lines and Culture and Viability Assay
3.4. Synthetic Procedures for the Synthesis of Compound 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsui, K.; Shibuya, M.; Yamamoto, Y. Synthesis of pyrroles via ruthenium-catalyzed nitrogen-transfer [2 + 2 + 1] cycloaddition of α,ω-diynes using sulfoximines as nitrene surrogates. Commun. Chem. 2018, 1, 21–28. [Google Scholar] [CrossRef]
- Shi, T.; Yin, G.F.; Wang, X.D.; Xiong, Y.X.; Peng, Y.; Li, S.; Zeng, Y.F.; Wang, Z. Recent advances in the syntheses of pyrroles. Green Synth. Catal. 2023, 4, 20–34. [Google Scholar] [CrossRef]
- Michlik, S.; Kempe, R. A sustainable catalytic pyrrole synthesis. Nat. Chem. 2013, 5, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiou, M.-F.; Li, Y.; Ye, C.; Su, M.; Xue, M.; Yuan, X.; Wang, C.; Wan, W.-M.; Li, D.; et al. Synthesis of unsymmetrically tetrasubstituted pyrroles and studies of AIEE in pyrrolo[1,2-a]pyrimidine derivatives. Chem. Sci. 2022, 13, 5667–5673. [Google Scholar] [CrossRef]
- La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Sisinni, L.; Bolognesi, A.; et al. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J. Med. Chem. 2014, 57, 6531–6552. [Google Scholar] [CrossRef]
- Bailey, D.M.; Johnson, R.E.; Salvador, U.J. Pyrrole antibacterial agents. 1. Compounds related to pyoluteorin. J. Med. Chem. 1973, 16, 1298–1300. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, L.; Zhang, J.; Hu, X.; Liu, Y.; Yin, H.; Lv, T.; Zhang, H.; Liu, L.; An, H.; et al. Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci. 2013, 104, 1052–1061. [Google Scholar] [CrossRef]
- Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 2011, 7, 442–495. [Google Scholar] [CrossRef]
- Liu, J.; Ming, B.; Gong, G.H.; Wang, D.; Bao, G.L.; Yu, L.J. Current research on anti-breast cancer synthetic compounds. RSC Adv. 2018, 8, 4386–4416. [Google Scholar] [CrossRef]
- Abdel-Aziz, Y.; Metz, D.C.; Howden, C.W. Review article: Potassium-competitive acid blockers for the treatment of acid-related disorders. Aliment. Pharmacol. Ther. 2021, 53, 794–809. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, M.; Kidarsa, T.; Johnson, C.P.; Loper, J.E. Two pathway-specific transcriptional regulators, PltR and PltZ, coordinate autoinduction of pyoluteorin in pseudomonas protegens Pf-5. Microorganisms 2021, 9, 1489. [Google Scholar] [CrossRef]
- Menichincheri, M.; Albanese, C.; Alli, C.; Ballinari, D.; Bargiotti, A.; Caldarelli, M.; Ciavolella, A.; Cirla, A.; Colombo, M.; Colotta, F.; et al. Cdc7 kinase inhibitors: 5-heteroaryl-3-carboxamido-2-aryl pyrroles as potential antitumor agents. 1. Lead finding. J. Med. Chem. 2010, 53, 7296–7315. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Ulloa, A.; Miranda-Cervantes, A.; Licea-Navarro, A.; Mansour, C.; Beltrán-Partida, E.; Donis-Maturano, L.; Delgado De la Herrán, H.C.; Villarreal, F.; Álvarez-Delgado, C. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur. J. Pharmacol. 2018, 822, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R. The first approved agent in the Glitazar’s Class: Saroglitazar. Curr. Drug Targets 2014, 15, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Boonlarppradab, C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Marineosins A and B, cytotoxic spiroaminals from a marine-derived actinomycete. Org. Lett. 2008, 10, 5505–5508. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qiu, G.; Li, C.; Sun, K.; Wang, Z.C.; Wang, X. Heterocycle synthesis via decarboxylative cyclization methods. Adv. Synth. Catal. 2022, 364, 3756–3781. [Google Scholar] [CrossRef]
- Xu, X.J.; Van der Eycken, E.V.; Feng, H.D. Metal-free decarboxylation of α,β-unsaturated carboxylic acids for carbon-carbon and carbon-heteroatom coupling reactions. Chin. J. Chem. 2020, 38, 1780–1792. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, Q.; Zhu, J.P. Palladium-catalyzed three-component reaction of propargyl carbonates, isocyanides, and alcohols or water: Switchable synthesis of pyrroles and its bicyclic analogues. Org. Lett. 2017, 19, 270–273. [Google Scholar] [CrossRef]
- Hu, H.; Wang, C.; Lai, H.; Wang, S.; Ni, H.; Yu, W.; Cao, P. Fe(III)-catalyzed decarboxylative cycloaddition of β-Ketoacids and 2H-azirines for the synthesis of pyrrole derivatives. Org. Chem. Front. 2020, 7, 3686–3691. [Google Scholar] [CrossRef]
- Qi, X.; Xiang, H.; Yang, Y.; Yang, C. Synthesis of substituted pyrroles using a silver-catalysed reaction between isocyanoacetates/benzyl isocyanides and chromones. RSC Adv. 2015, 5, 98549–98552. [Google Scholar] [CrossRef]
- Qi, X.; Xiang, H.; Yang, C. Synthesis of functionalized chromeno[2,3-b]pyrrol-4(1H)-ones by silver-catalyzed cascade reactions of chromones/thiochromones and isocyanoacetates. Org. Lett. 2015, 17, 5590–5593. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.Y.; Yap, W.J.; Wu, J.E.; Wong, M.W.; Zhao, Y. Three-component reactions of isocyanoacetates, amines and 3-formylchromones initiated by an unexpected aza-Michael addition. Chem. Commun. 2017, 53, 9067–9070. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.G.P.R.; Tome, A.C.; Silva, A.M.S.; Cavaleiro, J.A.S. Reaction of chromone-3-carbaldehyde with a-amino acids-syntheses of 3- and 4-(2-hydroxybenzoyl)pyrroles. Tetrahedron 2007, 63, 910–917. [Google Scholar] [CrossRef]
- Plaskon, A.; Ryabukhin, S.V.; Volochnyuk, D.M.; Shivanyuk, A.N.; Tolmachev, A.A. A synthesis of 5-hetaryl-3-(2-hydroxybenzoyl)pyrroles. Tetrahedron 2008, 64, 5933–5943. [Google Scholar] [CrossRef]
- Jadala, C.; Prasad, B.; Prasanthi, A.V.G.; Shankaraiah, N.; Kamal, A. Transition metal-free one-pot synthesis of substituted pyrroles by employing aza-Wittig reaction. RSC Adv. 2019, 9, 30659–30665. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.D.; Lv, Y.; Lu, Z.H.; Yan, S.J. Cu-Catalyzed decarboxylative annulation of N-substituted glycines with 3-formylchromones: Synthesis of functionalized chromeno[2,3-b]pyrrol-4(1H)-ones. Chem. Commun. 2022, 58, 10194–10197. [Google Scholar] [CrossRef]
- An, Y.N.; Huang, J.H.; Xu, S.F.; Wang, X.L.; Zhou, C.H.; Xu, Z.G.; Lei, J.; Chen, Z.Z. Unexpected cascade sequence forming the C(sp3)–N/C(sp2)–C(sp2) bond: Direct access to γ-lactam-fused pyridones with anticancer activity. J. Org. Chem. 2023, 88, 7998–8009. [Google Scholar] [CrossRef]
- Lei, J.; Ding, Y.; Zhou, H.-Y.; Gao, X.-Y.; Cao, Y.-H.; Tang, D.-Y.; Li, H.Y.; Xu, Z.-G.; Chen, Z.-Z. Practical synthesis of quinolone drugs via a novel TsCl-mediated domino reaction sequence. Green Chem. 2022, 24, 5755–5759. [Google Scholar] [CrossRef]
- Lei, J.; Li, Y.; Xu, J.; Tang, D.-Y.; Shao, J.-W.; Li, H.; Chen, Z.-Z.; Xu, Z.-G. An acid-catalyzed 1,4-addition isocyanide-based multicomponent reaction in neat water. Green Chem. 2020, 22, 3716–3720. [Google Scholar] [CrossRef]
- Albuquerque, H.M.T.; Pinto, D.C.G.A.; Silva, A.M.S. Microwave irradiation: Alternative heating process for the synthesis of biologically applicable chromones, quinolones, and their precursors. Molecules 2021, 26, 6293. [Google Scholar] [CrossRef]
- Goossen, L.J.; Manjolinho, F.; Khan, B.A.; Rodríguez, N. Microwave-assisted Cu-catalyzed protodecarboxylation of aromatic carboxylic acids. J. Org. Chem. 2009, 74, 2620–2623. [Google Scholar] [CrossRef] [PubMed]
- Åberg, V.; Norman, F.; Chorell, E.; Westermark, A.; Olofsson, A.; Sauer-Erikssonb, A.E.; Almqvist, F. Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of A β-peptide aggregation inhibitors. Org. Biomol. Chem. 2005, 3, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 2016, 18, 3879–3890. [Google Scholar] [CrossRef]
- Neo, A.G.; Díaz, J.; Marcaccinib, S.; Marcos, C.F. Conjugate addition of isocyanides to chromone 3-carboxylic acid: An efficient one-pot synthesis of chroman-4-one 2-carboxamides. Org. Biomol. Chem. 2012, 10, 3406–3416. [Google Scholar] [CrossRef]
- Lei, J.; Xu, J.; Tang, D.-Y.; Shao, J.-W.; Li, H.; Chen, Z.-Z.; Xu, Z.-G. A concise and unexpected one-pot methodology for the synthesis of pyrazinone-fused pyridines. Org. Chem. Front. 2020, 7, 2657–2663. [Google Scholar] [CrossRef]
- Qu, C.-H.; Song, G.-T.; Huang, J.-H.; Huang, R.; Chen, Y.; Liu, T.; Tang, D.-Y.; Xu, Z.-G.; Chen, Z.-Z. Tandem isonitrile insertion/azacyclopropylideneannulated cyclohexenone–tropone rearrangement of p-QMs and TosMIC: De novo synthesis of pyrrolotropones with anti-cancer activity. Org. Chem. Front. 2021, 8, 6515–6521. [Google Scholar] [CrossRef]
Entry | Base | Temp. (°C) | Solvent | Time (min) | Yield (%) b |
---|---|---|---|---|---|
1 | K2CO3 | MW 80 | DCE | 10 | 27 c |
2 | Na2CO3 | MW 80 | DCE | 10 | 21 |
3 | NaOH | MW 80 | DCE | 10 | 12 |
4 | NaHCO3 | MW 80 | DCE | 10 | 17 |
5 | tBuOLi | MW 80 | DCE | 10 | complex |
6 | DABCO | MW 80 | DCE | 10 | 19 |
7 | DBU | MW 80 | DCE | 10 | 45 |
8 | TEA | MW 80 | DCE | 10 | 23 |
9 | DBU | MW 80 | DMSO | 10 | 29 |
10 | DBU | MW 80 | DMF | 10 | 31 |
11 | DBU | MW 80 | Toluene | 10 | 13 |
12 | DBU | MW 80 | THF | 10 | <10 |
13 | DBU | MW 80 | MeCN | 10 | 57 |
14 | DBU | MW 80 | EtOH | 10 | trace |
15 | DBU | MW 80 | Dioxane | 10 | 43 |
16 | DBU | MW 80 | 1-hexanol | 10 | 32 |
17 | DBU | MW 80 | N-ethylpyrrolidone | 10 | 40 |
18 c | DBU | MW 80 | MeCN | 10 | 61 |
19 c | DBU | MW 100 | MeCN | 10 | 72 |
20 c | DBU | MW 120 | MeCN | 10 | 72 |
21 | DBU | MW 100 | MeCN | 5 | 58 |
22 | DBU | MW 100 | MeCN | 15 | 71 |
23 | DBU | 100 | MeCN | 1 h | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, X.-Y.; Fan, B.-Y.; Yu, Q.; Lei, J.; Xu, Z.-G.; Chen, Z.-Z. Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity. Molecules 2023, 28, 7602. https://doi.org/10.3390/molecules28227602
Li X, Chen X-Y, Fan B-Y, Yu Q, Lei J, Xu Z-G, Chen Z-Z. Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity. Molecules. 2023; 28(22):7602. https://doi.org/10.3390/molecules28227602
Chicago/Turabian StyleLi, Xue, Xing-Yu Chen, Bing-Ying Fan, Qun Yu, Jie Lei, Zhi-Gang Xu, and Zhong-Zhu Chen. 2023. "Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity" Molecules 28, no. 22: 7602. https://doi.org/10.3390/molecules28227602
APA StyleLi, X., Chen, X. -Y., Fan, B. -Y., Yu, Q., Lei, J., Xu, Z. -G., & Chen, Z. -Z. (2023). Metal-Free Catalyzed Oxidation/Decarboxylative [3+2] Cycloaddition Sequences of 3-Formylchromones to Access Pyrroles with Anti-Cancer Activity. Molecules, 28(22), 7602. https://doi.org/10.3390/molecules28227602