Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Botanical Origin of Bee Pollen Samples
2.2. Total Phenolic and Flavonoid
2.3. LC/DAD/ESI-MSn Bioactive Compounds Analysis
2.4. GC-MS Volatile Compounds Analysis
2.5. Biological Activity
2.5.1. Antioxidant Activity
2.5.2. Cytotoxic Activity
3. Materials and Methods
3.1. Standards and Reagents
3.2. Sample Collection
3.3. Palynological Analysis
3.4. Phenolic Compounds Analysis
3.4.1. Extraction Procedure
3.4.2. Total Phenolic and Flavonoid
3.4.3. LC/DAD/ESI-MSn Analysis
3.5. Volatile Analysis
3.5.1. Solid Phase Microextraction (SPME)
3.5.2. GC-MS Analysis
3.6. Biological Activity
3.6.1. Antioxidant Activity
volume (mL))/(bee pollen weight (mg))
3.6.2. Cytotoxic Activity
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, G.G.; Francis, N.; Hill, R.; Waters, D.; Blanchard, C.; Santhakumar, A.B. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int. J. Mol. Sci. 2019, 21, 140. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- de Almeida, T.S.; Neto, J.J.L.; de Sousa, N.M.; Pessoa, I.P.; Vieira, L.R.; de Medeiros, J.L.; Boligon, A.A.; Hamers, A.R.M.; Farias, D.F.; Peijnenburg, A.; et al. Phenolic Compounds of Triplaris Gardneriana Can Protect Cells against Oxidative Stress and Restore Oxidative Balance. Biomed. Pharmacother. 2017, 93, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, M.; Frassinetti, S.; Pucci, L. Antimicrobial Activity and Protective Effect of Tuscan Bee Pollens on Oxidative and Endoplasmic Reticulum Stress in Different Cell-Based Models. Foods 2021, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Konczak, I.; Sze, D.M.Y.; Ramzan, I. Molecular Pathways for Cancer Chemoprevention by Dietary Phytochemicals. Nutr. Cancer 2011, 63, 495–505. [Google Scholar] [CrossRef]
- Denisow, B.; Denisow-Pietrzyk, M. Biological and Therapeutic Properties of Bee Pollen: A Review. J. Sci. Food Agric. 2016, 96, 4303–4309. [Google Scholar] [CrossRef]
- Mohamed, A.E.; El-Magd, M.A.; El-Said, K.S.; El-Sharnouby, M.; Tousson, E.M.; Salama, A.F. Potential Therapeutic Effect of Thymoquinone and/or Bee Pollen on Fluvastatin-Induced Hepatitis in Rats. Sci. Rep. 2021, 11, 15688. [Google Scholar] [CrossRef] [PubMed]
- Aylanc, V.; Falcão, S.I.; Ertosun, S.; Vilas-Boas, M. From the Hive to the Table: Nutrition Value, Digestibility and Bioavailability of the Dietary Phytochemicals Present in the Bee Pollen and Bee Bread. Trends Food Sci. Technol. 2021, 109, 464–481. [Google Scholar] [CrossRef]
- Aylanc, V.; Larbi, S.; Calhelha, R.; Barros, L.; Rezouga, F.; Rodríguez-Flores, M.S.; Seijo, M.C.; El Ghouizi, A.; Lyoussi, B.; Falcão, S.I.; et al. Evaluation of Antioxidant and Anticancer Activity of Mono- and Polyfloral Moroccan Bee Pollen by Characterizing Phenolic and Volatile Compounds. Molecules 2023, 28, 835. [Google Scholar] [CrossRef] [PubMed]
- Aylanc, V.; Tomás, A.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Assessment of Bioactive Compounds under Simulated Gastrointestinal Digestion of Bee Pollen and Bee Bread: Bioaccessibility and Antioxidant Activity. Antioxidants 2021, 10, 651. [Google Scholar] [CrossRef]
- Campos, M.G.R.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczesna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen Composition and Standardisation of Analytical Methods. J. Apic. Res. 2015, 47, 154–161. [Google Scholar] [CrossRef]
- Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Rojo, S.; Vilas-Boas, M.; Falcão, S.I. Phenolic Profile of Castanea Bee Pollen from the Northwest of the Iberian Peninsula. Separations 2023, 10, 270. [Google Scholar] [CrossRef]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of Physicochemical Properties of Bee Pollen with Other Bee Products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Rojo, S.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Botanical Origin of Galician Bee Pollen (Northwest Spain) for the Characterization of Phenolic Content and Antioxidant Activity. Foods 2023, 12, 294. [Google Scholar] [CrossRef]
- Tomás, A.; Falcão, S.I.; Russo-Almeida, P.; Vilas-Boas, M. Potentialities of Beebread as a Food Supplement and Source of Nutraceuticals: Botanical Origin, Nutritional Composition and Antioxidant Activity. J. Apic. Res. 2017, 56, 219–230. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Screening of Indian Bee Pollen Based on Antioxidant Properties and Polyphenolic Composition Using UHPLC-DAD-MS/MS: A Multivariate Analysis and ANN Based Approach. Food Res. Int. 2021, 140, 110041. [Google Scholar] [CrossRef] [PubMed]
- Laaroussi, H.; Bakour, M.; Ousaaid, D.; Aboulghazi, A.; Ferreira-Santos, P.; Genisheva, Z.; Teixeira, J.A.; Lyoussi, B. Effect of Antioxidant-Rich Propolis and Bee Pollen Extracts against D-Glucose Induced Type 2 Diabetes in Rats. Food Res. Int. 2020, 138, 109802. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Ahmed, O.M.; Hozayen, W.G.; Ahmed, M.A. Ameliorative Effects of Bee Pollen and Date Palm Pollen on the Glycemic State and Male Sexual Dysfunctions in Streptozotocin-Induced Diabetic Wistar Rats. Biomed. Pharmacother. 2018, 97, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Tuoheti, T.; Rasheed, H.A.; Meng, L.; Dong, M. High Hydrostatic Pressure Enhances the Anti-Proliferative Properties of Lotus Bee Pollen on the Human Prostate Cancer PC-3 cells via Increased Metabolites. J. Ethnopharmacol. 2020, 261, 113057. [Google Scholar] [CrossRef]
- Amalia, E.; Diantini, A.; Subarnas, A. Water-Soluble Propolis and Bee Pollen of Trigona Spp. From South Sulawesi Indonesia Induce Apoptosis in the Human Breast Cancer MCF-7 Cell Line. Oncol. Lett. 2020, 20, 274. [Google Scholar] [CrossRef]
- Thakur, M.; Nanda, V. Composition and Functionality of Bee Pollen: A Review. Trends Food Sci. Technol. 2020, 98, 82–106. [Google Scholar] [CrossRef]
- Estevinho, L.M.; Feás, X.; Seijas, J.A.; Pilar Vázquez-Tato, M. Organic Honey from Trás-Os-Montes Region (Portugal): Chemical, Palynological, Microbiological and Bioactive Compounds Characterization. Food Chem. Toxicol. 2012, 50, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Aylanc, V.; Ertosun, S.; Russo-Almeida, P.; Falcão, S.I.; Vilas-Boas, M. Performance of green and conventional techniques for the optimal extraction of bioactive compounds in bee pollen. Int. J. Food Sci. Technol. 2022, 57, 3490. [Google Scholar] [CrossRef]
- Rocchetti, G.; Castiglioni, S.; Maldarizzi, G.; Carloni, P.; Lucini, L. UHPLC-ESI-QTOF-MS Phenolic Profiling and Antioxidant Capacity of Bee Pollen from Different Botanical Origin. Int. J. Food Sci. Technol. 2019, 54, 335–346. [Google Scholar] [CrossRef]
- Anjos, O.; Fernandes, R.; Cardoso, S.M.; Delgado, T.; Farinha, N.; Paula, V.; Estevinho, L.M.; Carpes, S.T. Bee Pollen as a Natural Antioxidant Source to Prevent Lipid Oxidation in Black Pudding. LWT—Food Sci. Technol. 2019, 111, 869–875. [Google Scholar] [CrossRef]
- Sobral, F.; Calhelha, R.C.; Barros, L.; Dueñas, M.; Tomás, A.; Santos-Buelga, C.; Vilas-Boas, M.; Ferreira, I.C.F.R. Flavonoid composition and antitumor activity of bee bread collected in northeast Portugal. Molecules 2017, 22, 248. [Google Scholar] [CrossRef]
- Llorach, R.; Espín, J.C.; Tomás-Barberán, F.A.; Ferreres, F. Valorization of Cauliflower (Brassica oleracea L. var. botrytis) By-Products as a Source of Antioxidant Phenolics. J. Agric. Food Chem. 2003, 51, 2181–2187. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.M.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic profiling of Portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides: Phenolic profiling of Portuguese Propolis. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef]
- Paupière, M.J.; Müller, F.; Li, H.; Rieu, I.; Tikunov, Y.M.; Visser, R.G.; Bovy, A.G. Untargeted metabolomic analysis of tomato pollen development and heat stress response. Plant Reprod. 2017, 30, 81–94. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Potocki, L.; Kapusta, I.T. Chemical Profiling, Bioactive Properties, and Anticancer and Antimicrobial Potential of Juglans regia L. Leaves. Molecules 2023, 28, 1989. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem. 2023, 405, 134800. [Google Scholar] [CrossRef]
- Vogt, T. Unusual Spermine-Conjugated Hydroxycinnamic Acids on Pollen: Function and Evolutionary Advantage. J. Exper. Botany 2018, 69, 5311–5315. [Google Scholar] [CrossRef]
- Edreva, A.M.; Velikova, V.B.; Tsonev, T.D. Phenylamides in plants. Russ. J. Plant Physiol. 2007, 54, 287. [Google Scholar] [CrossRef]
- Bassard, J.-E.; Ullmann, P.; Bernier, F.; Werck-Reichhart, D. Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry 2010, 71, 1808. [Google Scholar] [CrossRef]
- Kaškoniene, V.; Kaškonas, P.; Maruška, A. Volatile Compounds Composition and Antioxidant Activity of Bee Pollen Collected in Lithuania. Chem. Pap. 2015, 69, 291–299. [Google Scholar] [CrossRef]
- Starowicz, M.; Hanus, P.; Lamparski, G.; Sawicki, T. Characterizing the Volatile and Sensory Profiles, and Sugar Content of Beeswax, Beebread, Bee Pollen, and Honey. Molecules 2021, 26, 3410. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Ruočkuvienė, G.; Kaškonas, P.; Akuneca, I.; Maruška, A. Chemometric Analysis of Bee Pollen Based on Volatile and Phenolic Compound Compositions and Antioxidant Properties. Food Anal. Meth. 2015, 8, 1150–1163. [Google Scholar] [CrossRef]
- Smith, G.; Alnasser, G.; Jones, D.; Bromenshenk, J. Volatile and Semi-Volatile Organic Compounds in Beehive Atmospheres. In Honey Bees; Taylor and Francis: Abingdon, UK, 2002; pp. 12–41. [Google Scholar]
- Keeling, C.I.; Plettner, E.; Slessor, K.N. Hymenopteran Semiochemicals. In The Chemistry of Pheromones and Other Semiochemicals I; Springer: Berlin/Heidelberg, Germany, 2004; Volume 239, pp. 133–177. [Google Scholar]
- Schiestl, F.P. The Evolution of Floral Scent and Insect Chemical Communication. Ecol. Lett. 2010, 13, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Salazar-González, C.Y.; Stinco, C.M.; Rodríguez-Pulido, F.J.; Díaz-Moreno, C.; Fuenmayor, C.; Heredia, F.J.; González-Miret, M.L. Characterization of carotenoid profile and α-tocopherol content in Andean bee pollen influenced by harvest time and particle size. LWT 2022, 170, 114065. [Google Scholar] [CrossRef]
- Aylanc, V.; Eskin, B.; Zengin, G.; Dursun, M.; Cakmak, Y.S. In Vitro Studies on Different Extracts of Fenugreek (Trigonella Spruneriana BOISS.): Phytochemical Profile, Antioxidant Activity, and Enzyme Inhibition Potential. J. Food Biochem. 2020, 44, e13463. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.A.; Choi, K.C.; Hwang, K.A. Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells. Biomolec. Therap. 2018, 26, 503. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed]
- Chekuri, S.; Vyshnava, S.S.; Somisetti, S.L.; Cheniya, S.B.K.; Gandu, C.; Anupalli, R.R. Isolation and anticancer activity of quercetin from Acalypha indica L. against breast cancer cell lines MCF-7 and MDA-MB-231. Biotech 2023, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. Bee World 2015, 59, 139–157. [Google Scholar] [CrossRef]
- Falcão, S.I.; Freire, C.; Vilas-Boas, M. A Proposal for Physicochemical Standards and Antioxidant Activity of Portuguese Propolis. J. Am. Oil Chem. Soc. 2013, 90, 1729–1741. [Google Scholar] [CrossRef]
- Bicudo de Almeida-Muradian, L.; Monika Barth, O.; Dietemann, V.; Eyer, M.; Freitas, A.D.S.D.; Martel, A.C.; Marcazzan, G.L.; Marchese, C.M.; Mucignat-Caretta, C.; Pascual-Maté, A.; et al. Standard Methods for Apis Mellifera Honey Research. J. Apic. Res. 2020, 59, 1–62. [Google Scholar] [CrossRef]
Origin | Sample Code | Visual Colour | Family | Predominant Pollen Type (%) |
---|---|---|---|---|
Nisa, PT | BP1 | Beige | Asteraceae | Carduus sp. (˃80%) |
BP2 | Yellow | Oleaceae | Ligustrum/Olea sp. (˃80%) | |
BP3 | Orange | Cistaceae | Cistaceae (100%) | |
BP4 | Light green | Rosaceae | Rubus sp. (100%) | |
BP5 | Purple | Boraginaceae | Echium sp. (100%) | |
Bragança, PT | BP6 | Soft green | Rosaceae | Rubus sp. (100%) |
BP7 | Dark yellow | Fagaceae | Castanea sp. (100%) | |
Classification | Monofloral |
Sample | TPC (mg GAE/g) | TFC (mg QE/g) | DPPH• (EC50: mg/mL) | ABTS•+ (mM Trolox/mg) | Reducing Power (mg GAE/g) |
---|---|---|---|---|---|
BP1 | 2.9 ± 0.8 f | 0.7 ± 0.1 e | 0.38 ± 0.00 b | 0.98 ± 0.02 e | 0.02 ± 0.00 e |
BP2 | 16.0 ± 0.8 c | 4.8 ± 0.8 a | 0.15 ± 0.00 d | 1.33 ± 0.02 b | 0.03 ± 0.00 d |
BP3 | 6.8 ± 1.0 e | 2.5 ± 0.3 c | 0.25 ± 0.01 bc | 1.22 ± 0.15 c | 0.09 ± 0.01 a |
BP4 | 14.8 ± 0.3 d | 1.2 ± 0.2 d | 0.37 ± 0.00 b | 1.59 ± 0.15 a | 0.02 ± 0.01 e |
BP5 | 6.8 ± 1.1 e | 2.3 ± 0.3 c | 0.75 ± 0.04 a | 1.11 ± 0.05 d | 0.03 ± 0.00 d |
BP6 | 19.3 ± 0.4 b | 0.7 ± 0.0 e | 0.20 ± 0.02 cd | 1.35 ± 0.05 b | 0.04 ± 0.01 c |
BP7 | 35.8 ± 1.5 a | 3.1 ± 0.1 b | 0.07 ± 0.00 e | 1.34 ± 0.16 b | 0.05 ± 0.02 b |
tR (min) | λmax (nm) | [M − H]− m/z | MSn (% Base Peak) | Proposed Compound | BP1 | BP2 | BP3 | BP4 | BP5 | BP6 | BP7 |
---|---|---|---|---|---|---|---|---|---|---|---|
6.7 | 259, 356 | 625 | 317 | Myricetin-3-O-rutinoside a,c | nd | nd | 0.69 ± 0.02 | nd | nd | nd | nd |
7.5 | 257, 353 | 625 | 301 (100), 300 (90), 445 (82), 271 (15) | Quercetin-O-diglucoside a,c | 0.21 ± 0.00 | 4.88 ± 0.09 | nd | nd | nd | nd | nd |
8.2 | 258, 356 | 711 | 667 | Myricetin-O-malonyl-rutinoside a,d | nd | nd | 0.19 ± 0.02 | nd | nd | nd | nd |
8.5 | 271, 325, 353sh | 639 | 459 (100), 315 (91), 300 (34) | Methyl herbacetin-O-dihexoside a,e | 0.24 ± 0.02 | nd | nd | 4.23 ± 0.04 | nd | 2.38 ± 0.05 | nd |
9.2 | 258, 356 | 639 | 330 (100), 331 (47), 315 (21) | Laricitrin-O-hexosyl-deoxyhexoside a,f | nd | nd | 0.22 ± 0.01 | nd | nd | nd | nd |
9.3 | 265, 349 | 609 | 429 (100), 285 (98), 284 (40) | Kaempferol-O-dihexoside a,c | 0.20 ± 0.01 | nd | nd | nd | nd | nd | nd |
9.6 | 256, 355 | 609 | 300 (100), 301 (44) | Quercetin-3-O-rutinoside a,c | nd | 0.27 ± 0.01 | 0.41 ± 0.02 | nd | nd | nd | nd |
10.3 | 265, 349 | 609 | 429 (100), 285 (98), 284 (40) | Kaempferol-O-dihexoside (isomer) a,c,g | 0.16 ± 0.02 | 0.63 ± 0.06 | nd | nd | nd | nd | nd |
10.5 | 259, 355 | 565 | 521 | Myricetin-O-malonyl hexoside a,c | nd | nd | 0.25 ± 0.01 | nd | nd | nd | nd |
10.7 | 271, 331, 358sh | 725 | 681 | Methyl herbacetin-malonyl-dihexoside a | 0.21 ± 0.02 | nd | nd | 2.05 ± 0.04 | nd | 2.07 ± 0.07 | nd |
11.0 | 266, 348 | 593 | 447 (100), 431 (48), 285 (8) | Kaempferol-O-hexosyl-O-deoxyhexoside a,c | nd | nd | 0.32 ± 0.02 | nd | nd | nd | nd |
11.6 | 254, 354 | 609 | 315 | Isorhamnetin-O-pentosyl-hexoside a,c,k | 0.23 ± 0.00 | nd | nd | nd | nd | nd | nd |
11.8 | 256, 355 | 695 | 651 | Quercetin-O-malonyl deoxyhexosyl-hexoside a,c | nd | nd | 0.24 ± 0.01 | nd | nd | nd | nd |
12.1 | 267, 347 | 593 | 284 (100), 285 (69) | Kaempferol-3-O-rutinoside a,e,h | 0.24 ± 0.01 | 0.46 ± 0.01 | 0.32 ± 0.02 | 0.21 ± 0.01 | 2.61 ± 0.03 | nd | 0.36 ± 0.00 |
12.3 | 254, 354 | 623 | 314 (100), 315 (85), 459 (80) | Isorhamnetin-3-O-hexosyl-deoxyhexoside a,h,k | nd | nd | 0.16 ± 0.00 | nd | nd | nd | 1.01 ± 0.01 |
12.6 | 256, 354 | 463 | 301 | Quercetin-3-O-glucoside a,h | nd | 0.33 ± 0.01 | 0.18 ± 0.00 | nd | nd | nd | nd |
12.6 | 254, 354 | 609 | 315 | Isorhamnetin-O-pentosyl-hexoside a,c,k | nd | nd | nd | nd | nd | nd | 0.62 ± 0.00 |
12.6 | 272, 327, 352sh | 709 | 665 | Methyl herbacetin-O-malonyl-hexosyl-deoxyhexoside a | nd | nd | nd | 0.21 ± 0.01 | nd | 0.22 ± 0.02 | nd |
12.8 | 253, 353 | 709 | 519 | Isorhamnetin-O-acetyl-hexoside a,e | nd | nd | 0.16 ± 0.00 | nd | nd | nd | nd |
13.0 | 254, 354 | 609 | 315 | Isorhamnetin-O-pentosyl-hexoside a,c,k | nd | nd | nd | nd | nd | nd | 0.67 ± 0.01 |
13.0 | 255, 354 | 695 | 651 | Isorhamnetin-O-malonyl pentosyl-hexoside a,c | 0.46 ± 0.01 | nd | nd | nd | 0.15 ± 00 | nd | nd |
13.3 | 256, 353 | 549 | 505 | Quercetin-O-malonyl hexoside a,c | nd | nd | 0.97 ± 0.01 | nd | nd | nd | nd |
13.4 | 266, 348 | 679 | 635 | Kaempferol-O-malonyl-hexosyl-deoxyhesoxide a,d | 0.19 ± 0.01 | 0.28 ± 0.01 | nd | nd | 1.24 ± 0.01 | nd | 0.18 ± 0.00 |
13.5 | 272, 327, 352sh | 477 | 315 (100), 462 (50), 300 (15) | Methyl herbacetin-O-hexoside a,d | nd | nd | 0.19 ± 0.01 | nd | 0.18 ± 0.02 | nd | |
13.5 | 253, 256 | 579 | 535 | Laricitrin-O-malonylhexoside a | nd | nd | 0.17 ± 0.00 | nd | nd | nd | nd |
13.6 | 254, 354 | 623 | 315 | Isorhamnetin-3-O-hexosyl-deoxyhexoside (isómer) a,h,k | nd | nd | nd | nd | nd | nd | 0.32 ± 0.00 |
13.9 | 254, 353 | 549 | 505 | Quercetin-O-malonyl hexoside (isomer) a,c | nd | nd | 0.17 ± 0.01 | nd | nd | nd | nd |
14.1 | 263, 347 | 447 | 285 (100), 284 (90) | Kaempferol-O-hexoside a,e | nd | nd | 0.16 ± 0.00 | nd | 0.17 ± 0.00 | nd | nd |
14.3 | 253.351 | 477 | 314 (100), 315 (53) | Isorhamnetin-3-O-glucoside a,c | 0.19 ± 0.01 | nd | 0.16 ± 0.00 | nd | nd | nd | 0.54 ± 0.02 |
14.5 | 299, 308 | 436 | 316 | di-p-coumaroylspermidine a,i | nd | 0.16 ± 0.00 | nd | nd | nd | nd | nd |
15.0 | 265, 340 | 417 | 284 (100), 285 (48) | Kaempferol-O-pentoside a,j | 0.17 ± 0.00 | nd | nd | nd | nd | nd | nd |
15.0 | 295, 315 | 630 | 468 (100), 494 (86), 358 (7) | N1, N5, N10-tricaffeoylspermidine a,e | nd | 0.33 ± 0.02 | nd | nd | nd | nd | 0.39 ± 0.01 |
15.0 | 266, 344 | 679 | 635 | Kaempferol-O-malonyl-hexosyl-deoxyhexoside (isómer) a,d | nd | nd | 0.25 ± 0.01 | nd | nd | nd | nd |
15.4 | 255, 355 | 563 | 519 | Isorhamnetin-O-malonyl-hexoside (isomer) a,d | 0.39 ± 0.03 | nd | 0.29 ± 0.00 | nd | nd | nd | nd |
15.8 | 295, 316 | 630 | 468 (100), 494 (85), 495 (20) | N10, N5, N10-tricaffeoylspermidine a,e | nd | nd | nd | nd | nd | nd | 1.84 ± 0.03 |
16.3 | 256, 370 | 447 | 301 | Quercetin-3-O-rhamnoside a,h | nd | nd | 0.85 ± 0.01 | nd | nd | nd | |
16.2 | 298, 318 | 630 | 468 (100), 494 (86), 358 (7) | N1, N5, N10-tricaffeoylspermidine (isómer) a,e | nd | nd | nd | nd | nd | nd | 0.26 ± 0.01 |
16.8 | 299.319 | 630 | 468 (100), 494 (84), 358 (7) | N1, N5, N10-tricaffeoylspermidine (isómer) a,e | nd | nd | nd | nd | nd | nd | 8.83 ± 0.01 |
17.6 | 293, 315 | 644 | 508 (100), 468 (11), 482 (11) | N1-feruloyl-N5, N10-dicaffeoylspermidin a,e | nd | nd | nd | nd | nd | nd | 0.34± 0.04 |
18.0 | 296, 315 | 614 | 478 (100), 452 (69), 494 (25), 358 (20) | N1-p-coumaroyl-N5, N10-dicaffeoylspermidine a,e | nd | 0.24 ± 0.00 | nd | nd | nd | nd | 0.41 ± 0.05 |
18.1 | 299, 310 | 598 | 462 (100), 452 (45), 478 (40) | N1, N5-di-p-coumaroyl-N10-caffeoylspermidine a,e | nd | nd | nd | 0.23 ± 0.00 | nd | 0.22 ± 0.03 | nd |
18.3 | 296, 315 | 614 | 478 (100), 452 (69), 494 (25), 358 (20) | N1-p-coumaroyl-N5, N10-dicaffeoylspermidine (isomer) a,e | nd | 0.19 ± 0.02 | nd | nd | nd | nd | 0.30 ± 0.05 |
18.7 | 296, 315 | 614 | 478 (100), 452 (68), 468 (20), 342(5) | N1-p-coumaroyl-N5, N10-dicaffeoylspermidine (isomer) a,e | nd | nd | nd | nd | nd | nd | 0.72 ± 0.02 |
19.0 | 299, 310 | 598 | 462 (100), 478 (41), 452 (39), | N1, N5-di-p-coumaroyl-N10-caffeoylspermidine (isomer) a,e | nd | nd | nd | 0.42 ± 0.05 | nd | 0.44 ± 0.01 | nd |
19.3 | 298, 308 | 614 | 478 (100), 452 (78), 494 (24), 358 (18) | N1-p-coumaroyl-N5, N10-dicaffeoylspermidine (isomer) a,e | 0.15 ± 0.02 | 0.57 ± 0.03 | nd | 0.35 ± 0.05 | nd | 0.40 ± 0.01 | 2.00 ± 0.03 |
19.5 | 297, 319 | 644 | 508 (100), 468 (11), 482 (11) | N1-feruloyl-N5, N10-dicaffeoylspermidine (isomer) a,e | nd | nd | nd | nd | nd | nd | 0.83 ± 0.04 |
20.0 | 297, 319 | 644 | 508 (100), 482 (80), 468 (4) | N1-feruloyl-N5, N10-dicaffeoylspermidine (isomer) a,e | nd | 0.14 ± 0.00 | nd | nd | nd | nd | 1.33 ± 0.03 |
20.0 | 271, 356 | 623 | 315 (100), 300 (42), 477 (14) | Methylherbacetin-3-O-rutinoside a,f | 0.26 ± 0.00 | nd | nd | nd | nd | nd | nd |
20.3 | 299, 310 | 598 | 462 (100), 478 (46),452 (46), 342 (14) | N1, N5-di-p-coumaroyl-N10-caffeoylspermidine (isomer) a,e | nd | 0.16 ± 0.01 | nd | 0.84 ± 0.02 | nd | 0.33 ± 0.01 | nd |
20.6 | 264, 341 | 431 | 285 | Kaempferol-3-O-rhamnoside a,h | nd | nd | 0.17 ± 0.00 | nd | nd | nd | nd |
21.2 | 290, 309 | 582 | 462 | N1, N5, N10-tri-p-coumaroylspermidine a,e, | nd | nd | nd | 1.22 ± 0.01 | nd | 0.41 ± 0.01 | 0.66 ± 0.01 |
21.3 | 268, 347 | 285 | 285 (100), 257 (13), 151 (20) | Kaempferol a,b | 0.27 ± 0.00 | nd | nd | nd | nd | nd | nd |
21.5 | 273 | 612 | 492 | Feruloyl dicoumaroyl spermidine (isomer) a,i | nd | nd | nd | nd | 0.17 ± 0.02 | nd | nd |
22.2 | 299, 310 | 598 | 462 (100), 478 (39), 452 (34), 342 (14) | N1, N5-di-p-coumaroyl-N10-caffeoylspermidine (isomer) a,e | 0.23 ± 0.00 | 0.44 ± 0.01 | nd | 2.37 ± 0.01 | nd | 0.65 ± 0.01 | 2.07 ± 0.08 |
22.8 | 295, 310 | 582 | 462 (100), 436 (9), 342 (7) | N1, N5, N10-tri-p-coumaroylspermidine (isomer) a,e | nd | nd | nd | 2.34 ± 0.03 | nd | 0.54 ± 0.01 | 0.37 ± 0.00 |
23.1 | 291, 310 | 612 | 492 | Feruloyl dicoumaroyl spermidine (isomer) a,i | nd | nd | nd | nd | 0.22 ± 0.06 | nd | nd |
24.0 | 291, 310 | 642 | 522 (100), 492 (78), 506 (57)466 (16), | Diferuloyl coumaroyl spermidine (isomer) a,i | nd | nd | nd | nd | 0.16 ± 0.02 | nd | nd |
24.1 | 295, 310 | 582 | 462 (100), 436 (9), 342 (6) | N1, N5, N10-tri-p-coumaroylspermidine (isomer) a,c | 0.14 ± 0.00 | 0.23 ± 0.00 | nd | 3.63 ± 0.01 | nd | 0.79 ± 0.01 | 1.04 ± 0.01 |
24.5 | 293, 310 | 612 | 492 | Feruloyl dicoumaroyl spermidine (isomer) a,i | nd | nd | nd | nd | 0.21 ± 0.00 | nd | nd |
25.0 | 295, 310 | 583 | 462 (100), 436 (9), 342 (7) | N1, N5, N10-tri-p-coumaroylspermidine (isomer) a,c | nd | nd | nd | 1.37 ± 0.08 | nd | 0.40 ± 0.01 | 0.88 ± 0.01 |
25.4 | 291, 310 | 642 | 522 (100), 492 (78), 506 (57)466 (16), | Diferuloyl coumaroyl spermidine (isomer) a,i | nd | nd | nd | nd | 0.18 ± 0.03 | nd | nd |
25.4 | 367 | 271 | 151 (100), 176 (10) | Naringenin a,b | nd | 0.66 ± 0.05 | nd | nd | nd | nd | nd |
26.2 | 294, 310 | 612 | 492 | Feruloyl dicoumaroyl spermidine (isomer) a,i | nd | nd | nd | nd | 0.21 ± 0.05 | nd | nd |
26.5 | 295, 310 | 582 | 462 (100), 436 (10), 342 (7) | N1, N5, N10-tri-p-coumaroylspermidine (isomer) a,c | 0.54 ± 0.01 | 0.72 ± 0.03 | 0.18 ± 0.02 | 12.2 ± 0.02 | 0.17 ± 0.00 | 7.13 ± 0.09 | 0.87 ± 0.01 |
27.0 | 270 | 785 | 665 | Tetracoumaroyl spermine (isomer) a,d,e | 0.50 ± 0.01 | nd | nd | nd | nd | nd | nd |
27.6 | 298, 310 | 612 | 492 | Feruloyl dicoumaroyl spermidine (isomer) a,d,e,i | nd | 0.19 ± 0.00 | nd | 0.44 ± 0.03 | 0.28 ± 0.00 | 0.19 ± 0.01 | nd |
28.6 | 276 | 785 | 665 | Tetracoumaroyl spermine (isomer) a,d,e | 0.77 ± 0.01 | 0.20 ± 0.00 | 0.15 ± 0.01 | nd | 0.23 ± 0.00 | nd | nd |
29.3 | 280, 310sh | 785 | 665 | Tetracoumaroyl spermine (isomer) a,d,e | 0.17 ± 0.02 | nd | nd | nd | nd | nd | nd |
30.6 | 291 | 785 | 665 | Tetracoumaroyl spermine (isomer) a,d,e | 0.25 ± 0.01 | nd | nd | nd | nd | nd | nd |
32.8 | 294, 310 | 785 | 665 | Tetracoumaroyl spermine (isomer) a,d,e | 0.21 ± 0.01 | nd | nd | nd | nd | nd | nd |
34.0 | 299, 310 | 785 | 665 | Tetracoumaroyl spermine (isomer) a,d,e | 0.99 ± 0.01 | 2.11 ± 0.01 | nd | 0.19 ± 0.00 | 0.18 ± 0.04 | nd | nd |
Total flavonoids (mg/g) | 3.16 ± 0.05 | 7.51 ± 0.10 | 6.33 ± 0.05 | 6.89 ± 0.05 | 4.17 ± 0.03 | 4.85 ± 0.01 | 3.70 ± 0.02 | ||||
Total phenylamides (mg/g) | 4.21 ± 0.04 | 5.68 ± 0.05 | 0.33 ± 0.02 | 25.6 ± 0.10 | 2.01 ± 0.10 | 11.5 ± 0.10 | 23.1 ± 0.10 |
RT | Compound | LRI | BP1 | BP2 | BP3 | BP4 | BP5 | BP6 | BP7 |
---|---|---|---|---|---|---|---|---|---|
3.1 | Hexanal | 768 | 2.8 ± 1.8 | 2.3 ± 1.1 | 3.8 ± 0.2 | 16.1 ± 8.1 | 7.3 ± 1.1 | 8.6 ± 1.9 | 0.1 ± 0.9 |
4.2 | 2-hexenal | 830 | 1.1 ± 0.9 | nd | 0.8 ± 0.1 | nd | nd | nd | nd |
5.0 | 1-hexanol | 849 | nd | nd | nd | nd | nd | 4.1 ± 1.3 | 1.8 ± 0.1 |
5.4 | Heptanal | 883 | 0.5 ± 0.3 | 1.2 ± 0.1 | 0.4 ± 0.4 | nd | nd | 3.0 ± 0.7 | 1.4 ± 0.1 |
6.1 | Methyl hexanoate | 909 | 0.3 ± 0.3 | 2.4 ± 1.3 | 0.9 ± 0.5 | nd | nd | nd | nd |
7.3 | (E,E)-2,4-heptadien-6-ynal | 943 | nd | nd | nd | nd | nd | nd | 0.4 ± 0.4 |
7.3 | Benzaldehyde | 944 | 1.2 ± 0.5 | nd | nd | nd | nd | nd | nd |
8.1 | 1-octen-3-ol | 965 | nd | nd | nd | nd | 1.8 ± 0.1 | nd | 0.3 ± 0.1 |
8.2 | 6-Methyl-5-hepten-2-one | 970 | 3.8 ± 1.4 | 3.3 ± 0.4 | 7.7 ± 0.8 | 3.9 ± 0.9 | 3.9 ± 0.3 | 7.6 ± 6.6 | 1.8 ± 0.2 |
8.6 | 2,4-heptadienal | 998 | 6.5 ± 2.1 | 2.8 ± 0.1 | 0.5 ± 0.4 | nd | nd | 2.4 ± 0.7 | nd |
8.9 | Octanal | 988 | nd | nd | 2.1 ± 1.4 | 4.3 ± 1.2 | nd | 6.0 ± 1.9 | 13.9 ± 1.2 |
9.2 | 2,4-heptadienal (isomer) | 999 | nd | nd | 7.6 ± 1.4 | 2.4 ± 0.8 | nd | nd | nd |
9.9 | Eucalyptol | 1016 | nd | nd | nd | nd | nd | 2.1 ± 0.3 | nd |
10.4 | 3,5,5-trimethyl-3-cyclohexen-1-one | 1026 | 0.9 ± 0.1 | nd | nd | nd | nd | nd | nd |
11.7 | 3,5-octadien-2-one | 1057 | 10.4 ± 3.4 | 4.5 ± 0.8 | nd | 12.5 ± 0.4 | 18.1 ± 1.1 | 5.6 ± 2.6 | nd |
11.8 | Octanol | 1059 | nd | nd | nd | nd | nd | nd | 8.1 ± 1.3 |
12.6 | 3,5-octadien-2-one (isomer) | 1079 | nd | nd | 7.7 ± 0.8 | 5.6 ± 0.8 | 7.9 ± 0.1 | nd | nd |
13.0 | Linalool | 1086 | nd | nd | nd | nd | nd | 5.6 ± 0.9 | nd |
13.2 | Nonanal | 1091 | 2.7 ± 1.9 | 2.5 ± 2.4 | 11.6 ± 0.8 | 7.8 ± 2.6 | 7.3 ± 0.2 | 0.2 ± 0.2 | 66.9 ± 1.8 |
13.4 | Phenylethylalcohol | 1097 | nd | nd | nd | nd | 1.2 ± 0.4 | nd | nd |
13.7 | Isophorone | 1104 | nd | nd | nd | nd | 0.7 ± 0.6 | nd | nd |
14.1 | Methyl octanoate | 1111 | 1.7 ± 0.1 | 5.7 ± 4.2 | 4.8 ± 1.1 | nd | nd | nd | nd |
15.6 | Nonenal | 1144 | nd | nd | nd | nd | 1.8 ± 0.2 | nd | nd |
16.2 | Nonanol | 1159 | nd | nd | nd | nd | nd | 4.5 ± 1.7 | 2.6 ± 0.1 |
17.3 | Ethyl octanoate | 1183 | 5.4 ± 0.7 | 8.1 ± 3.7 | nd | nd | nd | nd | nd |
17.7 | Decanal | 1191 | 0.7 ± 0.2 | nd | nd | nd | 1.4 ± 0.1 | 6.5 ± 1.1 | nd |
19.0 | Cis-verbenol | 1219 | nd | nd | nd | 1.9 ± 0.7 | 1.5 ± 0.7 | nd | nd |
19.1 | Linalyl anthranilate | 1223 | nd | nd | nd | nd | nd | 2.4 ± 0.4 | nd |
20.3 | Citral | 1248 | nd | nd | nd | 3.3 ± 0.4 | 2.2 ± 0.5 | nd | nd |
21.4 | Thymol | 1273 | nd | nd | nd | 1.9 ± 0.3 | 1.6 ± 0.2 | nd | nd |
22.6 | 3-(3-methyl-1-butenyl)cyclohexene | 1299 | 0.7 ± 0.7 | nd | nd | nd | nd | nd | nd |
22.9 | Methyl decanoate | 1307 | 1.4 ± 0.3 | 7.4 ± 2.2 | nd | nd | nd | nd | nd |
25.3 | N-Decanoic acid | 1360 | 1.6 ± 0.8 | nd | nd | nd | nd | nd | nd |
25.7 | Jasmone | 1370 | nd | 4.8 ± 1.4 | nd | nd | nd | nd | nd |
25.9 | Ethyl hexadecanoate | 1377 | nd | nd | nd | 0.9 ± 0.1 | nd | nd | nd |
26.0 | Ethyl decanoate | 1377 | nd | 2.5 ± 0.4 | 4.8 ± 0.2 | nd | nd | nd | nd |
26.4 | 1,3,5-trimethoxy-benzene | 1386 | nd | 5.5 ± 1.3 | nd | nd | nd | nd | nd |
26.5 | Dodecanal | 1388 | 1.1 ± 0.3 | nd | nd | nd | nd | nd | nd |
28.0 | Nerylacetone | 1423 | nd | nd | 16.5 ± 0.7 | nd | 3.1 ± 0.1 | nd | nd |
28.0 | 6,10-dimethyl-5,9-undecadien-2-one | 1425 | 6.4 ± 1.5 | 7.4 ± 8.1 | nd | nd | nd | 15.9 ± 0.2 | nd |
29.6 | 2,6,10-trimethyltetradecane | 1462 | nd | nd | nd | nd | 0.6 ± 0.4 | nd | nd |
30.1 | Hexadecane | 1474 | nd | nd | nd | 6.9 ± 1.8 | 5.9 ± 0.7 | nd | nd |
31.2 | Methyl dodecanoate | 1500 | 4.4 ± 0.5 | 10.2 ± 5.5 | nd | nd | nd | nd | nd |
33.2 | 7-hexadecene | 1551 | nd | nd | 4.4 ± 0.7 | nd | nd | nd | nd |
36.3 | 9,12,15-octadecatrienal | 1642 | nd | 14.4 ± 0.2 | nd | 0.4 ± 0.9 | 2.1 ± 0.1 | nd | nd |
36.4 | 9,12,15-octadecatrien-1-ol | 1634 | 2.7 ± 0.9 | nd | nd | nd | nd | nd | nd |
36.5 | Octadecyne | 1636 | nd | nd | 4.3 ± 0.3 | nd | nd | nd | nd |
37.0 | 8-heptadecene | 1649 | 36.5 ± 1.2 | nd | nd | 21.7 ± 2.2 | 21.7 ± 1.0 | 10.9 ± 5.1 | nd |
37.8 | Nonadecane | 1671 | 6.4 ± 3.0 | nd | 22.1 ± 1.3 | 10.4 ± 0.7 | 9.1 ± 0.8 | 14.4 ± 2.1 | nd |
Assay | r | Significance Level (p Value) |
---|---|---|
TPC–DPPH• | 0.589 | 0.164 |
TPC–ABTS•+ | 0.543 | 0.208 |
TPC–Reducing power | 0.071 | 0.879 |
TFC–DPPH• | 0.247 | 0.593 |
TFC–ABTS•+ | 0.106 | 0.822 |
TFC–Reducing power | 0.216 | 0.642 |
Cell Lines | GI50, µg/mL | ||||||
---|---|---|---|---|---|---|---|
BP1 | BP2 | BP3 | BP4 | BP5 | BP6 | BP7 | |
AGS | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
CaCo-2 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
HeLa | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
MCF-7 | 17 ± 1 | >1000 | >1000 | >1000 | >1000 | 814 ± 10 | 746 ± 1 |
NCI-H460 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
hFOB | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 | >1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larbi, S.; Aylanc, V.; Rodríguez-Flores, M.S.; Calhelha, R.C.; Barros, L.; Rezouga, F.; Seijo, M.C.; Falcão, S.I.; Vilas-Boas, M. Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties. Molecules 2023, 28, 7601. https://doi.org/10.3390/molecules28227601
Larbi S, Aylanc V, Rodríguez-Flores MS, Calhelha RC, Barros L, Rezouga F, Seijo MC, Falcão SI, Vilas-Boas M. Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties. Molecules. 2023; 28(22):7601. https://doi.org/10.3390/molecules28227601
Chicago/Turabian StyleLarbi, Samar, Volkan Aylanc, Maria Shantal Rodríguez-Flores, Ricardo C. Calhelha, Lillian Barros, Feriel Rezouga, Maria Carmen Seijo, Soraia I. Falcão, and Miguel Vilas-Boas. 2023. "Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties" Molecules 28, no. 22: 7601. https://doi.org/10.3390/molecules28227601
APA StyleLarbi, S., Aylanc, V., Rodríguez-Flores, M. S., Calhelha, R. C., Barros, L., Rezouga, F., Seijo, M. C., Falcão, S. I., & Vilas-Boas, M. (2023). Differentiating between Monofloral Portuguese Bee Pollens Using Phenolic and Volatile Profiles and Their Impact on Bioactive Properties. Molecules, 28(22), 7601. https://doi.org/10.3390/molecules28227601