A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2
Abstract
:1. Introduction
2. Results
2.1. Spectroscopic Characterization of LG18
2.2. LG18 Aggregation Studies
2.2.1. Spectroscopic Studies
2.2.2. Determination of the LG18 Critical Aggregation Concentration (cac)
2.2.3. Molecular Dynamics Simulations
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Elnagdy, S.; Kaczmarek, K.; Matsoukas, J.; New, R.; Parang, K.; Lopez, O.P.; Parhiz, H.; et al. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021, 26, 430. [Google Scholar] [CrossRef]
- Apostolopoulos, V.; Bojarska, J.; Chai, T.-T.; Feehan, J.; Kaczmarek, K.; Matsoukas, J.M.; Paredes Lopez, O.; Saviano, M.; Skwarczynski, M.; Smith-Carpenter, J.; et al. New Advances in Short Peptides: Looking Forward. Molecules 2022, 27, 3635. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic Peptides: Current Applications and Future Directions. Sig. Transduct. Target Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Henninot, A.; Collins, J.C.; Nuss, J.M. The Current Status of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382–1414. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D.; Whitehead, K.A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 2020, 5, 127–148. [Google Scholar] [CrossRef]
- Hamley, I.W. Lipopeptides: From self-assembly to bioactivity. Chem. Commun. 2015, 51, 8574–8583. [Google Scholar] [CrossRef]
- Ward, B.P.; Ottaway, N.L.; Perez-Tilve, D.; Ma, D.; Gelfanov, V.M.; Tschöp, M.H.; Di Marchi, R.D. Peptide Lipidation Stabilizes Structure to Enhance Biological Function. Mol. Metab. 2013, 2, 468–479. [Google Scholar] [CrossRef]
- Menacho-Melgar, R.; Decker, J.S.; Hennigan, J.N.; Lynch, M.D. A review of lipidation in the development of advanced protein and peptide therapeutics. J. Control. Release 2019, 205, 1–12. [Google Scholar] [CrossRef]
- Hutchinson, J.A.; Burholt, S.; Hamley, I.W. Peptide hormones and lipopeptides: From self-assembly to therapeutic applications. J. Pept. Sci. 2017, 23, 82–94. [Google Scholar] [CrossRef]
- Stachurski, O.; Neubauer, D.; Walewska, A.; Iłowska, E.; Bauer, M.; Bartoszewska, S.; Sikora, K.; Hać, A.; Wyrzykowski, D.; Prahl, A.; et al. Understanding the Role of Self-Assembly and Interaction with Biological Membranes of Short Cationic Lipopeptides in the Effective Design of New Antibiotics. Antibiotics 2022, 11, 1491. [Google Scholar] [CrossRef]
- Janosch, S.; Nicolini, C.; Ludolph, B.; Peters, C.; Völkert, M.; Hazlet, T.L.; Gratton, E.; Waldmann, H.; Winter, R. Partitioning of Dual-Lipidated Peptides into Membrane Microdomains: Lipid Sorting vs. Peptide Aggregation. J. Am. Chem. Soc. 2004, 126, 7496–7503. [Google Scholar] [CrossRef] [PubMed]
- Zemenová, J.; Sýkora, D.; Maletínská, L.; Kuneš, J. Lipopeptides as therapeutics: Applications and in vivo quantitative analysis. Bioanalysis 2017, 9, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Russel-Jones, D. Molecular, Pharmacological and Clinical Aspects of Liraglutide, a Once-Daily Human GLP-1 Analogue. J. Mol. Cell. Endocrinol. 2009, 297, 137–140. [Google Scholar] [CrossRef]
- Marassi, V.; Macis, M.; Giordani, S.; Ferrazzano, L.; Tolomelli, A.; Roda, B.; Zattoni, A.; Ricci, A.; Reschiglian, P.; Cabri, W. Application of Af4-Multidetection to Liraglutide in its Formulation: Preserving and Representing Native Aggregation. Molecules 2022, 27, 5485. [Google Scholar] [CrossRef] [PubMed]
- Plum, J.; Jensen, L.B.; Kristensen, J.B. In Vitro Protein Binding of Liraglutide in Human Plasma Determined by Reiterated Stepwise Equilibrium Dialysis. J. Pharm. Sci. 2013, 102, 2882–2888. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.B.; Nielsen, P.F.; Huusfeldt, P.O.; Johansen, N.L.; Madsen, K.; Pedersen, F.Z.; Thogersen, H.; Wilken, M.; Agerso, H. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J. Med. Chem. 2000, 43, 1664–1669. [Google Scholar] [CrossRef]
- Wang, Y.; Lomakin, A.; Kanai, S.; Alex, R.; Belli, S.; Donzelli, M.; Benedek, G.B. The molecular basis for the prolonged blood circulation of lapidated incretin peptides: Peptide oligomerization or binding to serum albumin? J. Control. Release 2016, 241, 25–33. [Google Scholar] [CrossRef]
- Wang, Y.; Lomakin, A.; Kanai, S.; Rainer, A.; Benedek, G.B. Transformation of Oligomers of Lipidated Peptide Induced by Change in pH. Mol. Pharm. 2015, 12, 413–419. [Google Scholar] [CrossRef]
- Frederiksen, T.M.; Sønderby, P.; Rybeg, L.A.; Harris, P.; Bukrinski, J.T.; Scharff-Poulsen, A.M.; Elf-Lind, M.N.; Peters, G.H. Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations. Biophys. J. 2015, 109, 1202–1213. [Google Scholar] [CrossRef]
- Guryanov, I.; Bondesan, A.; Visentini, D.; Orlandin, A.; Biondi, B.; Toniolo, C.; Formaggio, F.; Ricci, A.; Zanon, J.; Cabri, W. Innovative Chemical Synthesis and Conformational Hints on the Lipopeptide Liraglutide. J. Pept. Sci. 2016, 22, 471–479. [Google Scholar] [CrossRef]
- Gallo, M.; Vanni, D.; Esposito, S.; Alaimo, N.; Orvieto, F.; Rulli, F.; Missineo, A.; Caretti, F.; Bonelli, F.; Venenziano, M.; et al. Oligomerization, albumin binding and catabolism of therapeutic peptides in the subcutaneous compartment: An investigation on lipidated GLP-1 analogs. J. Pharm. Biomed. Analys. 2022, 210, 114566. [Google Scholar] [CrossRef]
- Venanzi, M.; Savioli, M.; Cimino, R.; Gatto, E.; Palleschi, A.; Ripani, G.; Cicero, D.; Placidi, E.; Orvieto, F.; Bianchi, E. A Spectroscopic and Molecular Dynamics Study on the Aggregation Process of a Long-Lipidated Therapeutic Peptide: The Case of Semaglutide. Soft Matter 2020, 16, 10122–10131. [Google Scholar] [CrossRef]
- Pinotsi, D.; Grisanti, L.; Mahou, P.; Gebauer, R.; Kaminski, C.F.; Hassanali, A.; Kaminski Schierle, G.S. Proton transfer and structure-specific fluorescence in hydrogen bond-rich protein structures. J. Am. Chem. Soc. 2016, 138, 3046–3057. [Google Scholar] [CrossRef] [PubMed]
- Balasco, N.; Diaferia, C.; Rosa, E.; Monti, A.; Ruvo, M.; Doti, N.; Vitagliano, L. A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. Int. J. Mol. Sci. 2023, 24, 8372. [Google Scholar] [CrossRef] [PubMed]
- Karpovic, D.S.; Blanchard, G.J. Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J. Phys. Chem. 1995, 99, 3951–3958. [Google Scholar] [CrossRef]
- Cimino, R.; Savioli, M.; Ferrante Carrante, N.; Placidi, E.; Garay-Perez, H.; Lopez-Abad, M.; Musacchio Lasa, A.; Del Carmen Dominguez-Horta, M.; Gatto, E.; Cavalieri, F.; et al. Aggregation Properties of a Therapeutic Peptide for Rheumatoid Arthritis: A Spectroscopic and Molecular Dynamics Study. ChemPhysMater 2022, 1, 62–70. [Google Scholar] [CrossRef]
- Savioli, M.; Antonelli, L.; Bocchinfuso, G.; Cavalieri, F.; Cimino, R.; Gatto, E.; Placidi, E.; Fernandez Masso, J.R.; Garay Perez, H.; Santana, H.; et al. Formulation Matters! A Spectroscopic and Molecular Dynamics Investigation on the Peptide CIGB552 as Itself and in Its Therapeutical Formulation. J. Pept. Sci. 2021, 28, e3356. [Google Scholar] [CrossRef]
Concentration (μM) | <τ> (ns) | r | Vh (nm3) | Rh (Å) |
---|---|---|---|---|
3 | 2.80 | 0.109 ± 0.001 | 9.3 | 13.0 |
21 | 3.00 | 0.112 ± 0.001 | 10.5 | 13.5 |
36 | 3.01 | 0.127 ± 0.001 | 13.3 | 14.7 |
LG18 | Rg (Å) | Vg (nm3) | Rh, (Å) | Vh (nm3) |
---|---|---|---|---|
Monomer | 13.9 ± 0.5 | 11.3 ± 0.6 | 10.8 ± 0.2 | 5.3 ± 0.3 |
Dimer | 25.1 ± 1.1 | 66.2 ± 1.2 | 10.9 ± 0.2 | 5.4 ± 0.3 |
Tetramer | 36.1 ± 0.7 | 197.1 ± 0.8 | 11.2 ± 0.1 | 5.9 ± 0.2 |
Octamer | 38.5 ± 0.5 | 239.0 ± 0.6 | 12.1 ± 0.1 | 7.4 ± 0.2 |
Hexadecamer | 45.2 ± 0.5 | 386.8 ± 0.6 | 13.8 ± 0.1 | 11.0 ± 0.2 |
No. of LG18 Molecules | No. of H2O Molecules | Dimensions of the Simulation Box (nm3) |
---|---|---|
1 | 11,068 | 7.00 × 7.00 × 7.00 |
2 | 10,934 | 7.01 × 7.01 × 7.01 |
4 | 16,319 | 8.02 × 8.02 × 8.02 |
8 | 26,931 | 9.55 × 9.55 × 9.55 |
16 | 47,434 | 11.53 × 11.53 × 11.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannetti, M.; Palleschi, A.; Ricciardi, B.; Venanzi, M. A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2. Molecules 2023, 28, 7536. https://doi.org/10.3390/molecules28227536
Giannetti M, Palleschi A, Ricciardi B, Venanzi M. A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2. Molecules. 2023; 28(22):7536. https://doi.org/10.3390/molecules28227536
Chicago/Turabian StyleGiannetti, Micaela, Antonio Palleschi, Beatrice Ricciardi, and Mariano Venanzi. 2023. "A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2" Molecules 28, no. 22: 7536. https://doi.org/10.3390/molecules28227536
APA StyleGiannetti, M., Palleschi, A., Ricciardi, B., & Venanzi, M. (2023). A Spectroscopic and Molecular Dynamics Study on the Aggregation Properties of a Lipopeptide Analogue of Liraglutide, a Therapeutic Peptide against Diabetes Type 2. Molecules, 28(22), 7536. https://doi.org/10.3390/molecules28227536