Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of Cupressus sempervirens In Vitro and In Silico
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization of C. sempervirens Extract
2.2. Antimicrobial Activity of C. sempervirens Extract
2.3. Antioxidant Activity of C. sempervirens Extract
2.4. Antidiabetic Activity of C. sempervirens Extract
2.5. Anticoagulant Activity of C. sempervirens Extract
2.6. Molecular Docking Interaction of Hesperetin and Gallic Acid with Microbial Proteins, α-Amylase and α-Glucosidase
3. Material and Methods
3.1. Used Chemicals
3.2. Collection of Plant Material
3.3. Determination of Phenolic and Flavonoid Components by HPLC-UV Assay
3.4. Antimicrobial Activity of C. sempervirens Extract
3.5. Antioxidant Activity of C. sempervirens Extract
3.5.1. DPPH Free Radical Scavenging Test
3.5.2. Total Antioxidant Capacity Assay (TAC)
3.5.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3.6. Antidiabetic Activity of C. sempervirens Extract
3.6.1. α-Glucosidase Inhibition
3.6.2. α-Amylase Inhibitory Activity
3.7. Coagulation Assay of C. sempervirens Extract In Vitro
3.8. Experimental Methods of Molecular Docking Interaction
3.9. Statical Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mashraqi, A.; Modafer, Y.; Al Abboud, M.A.; Salama, H.M.; Abada, E. HPLC Analysis and Molecular Docking Study of Myoporum serratum Seeds Extract with Its Bioactivity against Pathogenic Microorganisms and Cancer Cell Lines. Molecules 2023, 28, 4041. [Google Scholar] [CrossRef]
- Mashraqi, A. Induction Role of Chitosan Nanoparticles to Anethum graveolens Extract Against Food-Borne Bacteria, Oxidant, and Diabetic Activities in vitro. Front. Microbiol. 2023, 14, 1209524. [Google Scholar] [CrossRef]
- Soudani, W.; Zaki, H.; Alaqarbeh, M.; ELMchichi, L.; Bouachrine, M.; Hadjadj-Aoul, F.Z. Discover the Medication Potential of Algerian Medicinal Plants Against Sars-Cov-2 Main Protease (Mpro): Molecular Docking, Molecular Dynamic Simulation, and ADMET Analysis. Chem. Afr. 2023. [Google Scholar] [CrossRef]
- Alsalamah, S.A.; Alghonaim, M.I.; Jusstaniah, M.; Abdelghany, T.M. Anti-Yeasts, Antioxidant and Healing Properties of Henna Pre-Treated by Moist Heat and Molecular Docking of Its Major Constituents, Chlorogenic and Ellagic Acids, with Candida albicans and Geotrichum candidum Proteins. Life 2023, 13, 1839. [Google Scholar] [CrossRef]
- Qanash, H.; Bazaid, A.S.; Aldarhami, A.; Alharbi, B.; Almashjary, M.N.; Hazzazi, M.S.; Felemban, H.R.; Abdelghany, T.M. Phytochemical Characterization and Efficacy of Artemisia judaica Extract Loaded Chitosan Nanoparticles as Inhibitors of Cancer Proliferation and Microbial Growth. Polymers 2023, 15, 391. [Google Scholar] [CrossRef]
- Mazari, K.; Bendimerad, N.; Bekhechi, C.; Fernandez, X. Chemical Composition and Antimicrobial Activity of Essential Oils Isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. J. Med. Plants Res. 2010, 4, 959–964. [Google Scholar]
- Selim, S.A.; Adam, M.E.; Hassan, S.M.; Albalawi, A.R. Chemical Composition, Antimicrobial and Antibiofilm Activity of the Essential Oil and Methanol Extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complement Altern. Med. 2014, 14, 179. [Google Scholar] [CrossRef] [PubMed]
- Tümen, I.; Şenol, F.; Orhan, E.I. Evaluation of Possible In Vitro Neurobiological Effects of Two Varieties of Cupressus sempervirens (Mediterranean cypress) Through Their Antioxidant and Enzyme Inhibition Actions. Turk. J. Biochem-Turk Biyokim. Derg. 2012, 37, 5–13. [Google Scholar] [CrossRef]
- Thukral, S.K.; Singh, S.; Sharma, S.K. Pharmacognostical Standardization of Leaves of Cupressus macrocarpa Hartweg. ex Gordon. J. Appl. Pharmaceut. Sci. 2014, 4, 71–74. [Google Scholar]
- Al-Snafi, A.E. Medical Importance of Cupressus sempervirens-A review. IOSR J. Pharm. 2016, 6, 66–76. [Google Scholar]
- Zengin, G.; Mollica, A.; Aktumsek, A.; Picot CM, N.; Mahomoodally, M.F. In Vitro and In Silico Insights of Cupressus sempervirens, Artemisia absinthium and Lippia triphylla: Bridging Traditional Knowledge and Scientific Validation. Eur. J. Integr. Med. 2017, 12, 135–141. [Google Scholar] [CrossRef]
- Rguez, S.; Essid, R.; Adele, P.; Msaada, K.; Hammami, M.; Mkadmini, K.; Sellami, I.H. Towards the Use of Cupressus sempervirens L. Organic Extracts as A Source of Antioxidant, Antibacterial and Antileishmanial Biomolecules. Ind. Crops Prod. 2019, 131, 194–202. [Google Scholar] [CrossRef]
- Teibo, J.O.; Ayinde, K.S.; Olaoba, O.T.; Adelusi, T.I.; Teibo, T.K.; Bamikunle, M.V.; Batiha, G.E.S. Functional Foods’ Bioactive Components and Their Chemoprevention Mechanism in Cervical, Breast, and Liver Cancers: A systematic review. Funct. Foods Health Dis. 2021, 11, 559–585. [Google Scholar] [CrossRef]
- Batiha, G.E.; Teibo, J.O.; Shaheen, H.M.; Akinfe, O.A.; Awad, A.A.; Teibo, T.K.A.; Alexiou, A.; Papadakis, M. Bioactive Compounds, Pharmacological Actions and Pharmacokinetics of Cupressus sempervirens. Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Azzaz, N.A.; Hamed, S.S.; Kenawy, T.A. Chemical Studies on Cypress Leaves (Cupressus sempervirens) and Their Activity as Antimicrobial Agents. Al-Azhar J. Agric. Res. 2019, 44, 100–109. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; El-Seedi, H.R.; Mohammed, M.M.D. Constituents and Biological Activity of the Chloroform Extract and Essential Oil of Cupressus sempervirens. Chem. Nat. Compd. 2009, 45, 309–313. [Google Scholar] [CrossRef]
- Asgary, S.; Naderi, G.A.; Shams, A.R.; Sahebkar, A.; Airin, A.; Aslani, S.; Emami, S.A. Chemical Analysis and Biological Activities of Cupressus sempervirens var. Horizontalis Essential Oils. Pharm. Biol. 2013, 51, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Shahid, W.; Durrani, R.; Iram, S.; Durrani, M.; Khan, F.A. Antibacterial Activity In Vitro of Medicinal Plants. Sky J. Microbiol. Res. 2013, 1, 5–21. [Google Scholar]
- Galovičová, L.; Čmiková, N.; Schwarzová, M.; Vukic, M.D.; Vukovic, N.L.; Kowalczewski, P.Ł.; Bakay, L.; Kluz, M.I.; Puchalski, C.; Obradovic, A.D.; et al. Biological Activity of Cupressus sempervirens Essential Oil. Plants 2023, 12, 1097. [Google Scholar] [CrossRef]
- Al-Rajhi, A.M.H.; Abelghany, T.M. Nanoemulsions of Some Edible Oils and Their Antimicrobial, Antioxidant, and Anti-hemolytic Activities. BioResources 2023, 18, 1465–1481. [Google Scholar] [CrossRef]
- Salman, A.A.; El-Aleem, A.; Ibrahim, M.; Rahman, A.E.; Ahmed, A.; Elhusseini, T.S.; El-Hadary, A.A.E. Protective Impacts of Cupressus sempervirens Leaves Extracts Against Paracetamol Hepatotoxicity. Benha Vet. Med. J. 2017, 32, 41–49. [Google Scholar] [CrossRef]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Sarker Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Atefeh, S.; Sorayya, G.; Solomon, H.; Shirin, A.; Zahra, L. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evid-Based Complement. Altern. Med. 2021, 2021, 9913179. [Google Scholar] [CrossRef]
- Srivastava, S.; Somasagara, R.; Hegde, M. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep. 2016, 6, 24049. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, S. Investigation of the Anticoagulant and Antithrombotic Effects of Chlorogenic Acid. J. Biochem. Mol. Toxicol. 2017, 31, e21865. [Google Scholar] [CrossRef] [PubMed]
- Yongwang, Y.; Xu, Z.; Kangxiao, G.; Feng, Z.; Hongqi, Y. Use of Chlorogenic Acid Against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Alkhalidy, H.; Moore, W.; Zhang, Y.; McMillan, R.; Wang, A.; Ali, M.; Suh, K.S.; Zhen, W.; Cheng, Z.; Jia, Z.; et al. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β -Cell Mass in Middle-Aged Obese Diabetic Mice. J. Diabetes Res. 2015, 2015, 532984. [Google Scholar] [CrossRef]
- Sriti, J.; Haj Salem, M.; Aidi Wannes, W.; Bachrouch, O.; Mejri, H.; Belloumi, S.; Fares, N.; Jallouli, S.; Haoual-Hamdi, S.; Mediouni-Ben Jemâa, J.; et al. Antioxidant, Antibacterial and Insecticidal Activities of Cypress (Cupressus sempervirens L.) Essential Oil. Int. J. Environ. Health Res. 2023, 1–12. [Google Scholar] [CrossRef]
- Yazdani, S.; Doudi, M.; Rezayatmand, Z.; Rahimzadeh, T.L. Investigating the Antibacterial and Phytochemical Effect of Methanol and Acetone Extracts of the Cupressus sempervirens and Juniperus excelsa on Some Important Foodborne Diseases. J. Med. Herbs 2023, 14, 63–72. [Google Scholar]
- Ben Nouri, A.; Dhifi, W.; Bellili, S.; Ghazghazi, H.; Aouadhi, C.; Chérif, A.; Mnif, W. Chemical Composition, Antioxidant Potential, and Antibacterial Activity of Essential Oil Cones of Tunisian Cupressus sempervirens. J. Chem. 2015, 2015, 538929. [Google Scholar] [CrossRef]
- Ahmed, K.M. GC-MS, ICP-OES Analysis and Antioxidant Activity of Different Extracts of Leaves Part of Cupressus sempervirens L. cultivated in Kurdistan region—Iraq. J. Garmian Univ. 2017, 1, 542–560. [Google Scholar]
- Duh, P.D.; Tu, Y.Y.; Yen, G.C. Antioxidant Activity of Water Extract of Chyrsanthemum morifolium (Ramat.). Lebensm–Wiss. Technol. 1999, 32, 269–277. [Google Scholar] [CrossRef]
- Truscheit, E.; Frommer, W.; Junge, B.; Müller, L.; Schmidt, D.D.; Wingender, W. Chemistry and Biochemistry of Microbial α-Glucosidase Inhibitors. Angew. Chem. Int. Edit. 1981, 20, 744–761. [Google Scholar] [CrossRef]
- Shaki, F.; Habibi, E.; Parandavaji, M.; Ataee, R. Evaluation of Blood Sugar Lowering Effect of Airy Organs Extract of Cupressus sempervirens L. on Streptozocin Induced Diabetic Mice. SJKU 2019, 24, 52–65. [Google Scholar] [CrossRef]
- Abdel Ghany, T.M.; Ganash, M.; Alawlaqi, M.M. Antioxidant, Antitumor, Antimicrobial Activities Evaluation of Musa paradisiaca L. Pseudostem Exudate Cultivated in Saudi Arabia. BioNanoScience 2019, 9, 172–178. [Google Scholar] [CrossRef]
- Alghonaim, M.I.; Alsalamah, S.A.; Alsolami, A.; Abdelghany, T.M. Characterization and Efficiency of Ganoderma lucidum Biomass as an Antimicrobial and Anticancer Agent. BioResources 2023, 18, 8037–8061. [Google Scholar] [CrossRef]
- French, G.L. Bactericidal Agents in the Treatment of MRSA infections—The Potential Role of Daptomycin. J. Antimicrob. Chemother. 2006, 58, 1107. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Lahmass, I.; Ouahhoud, S.; Elmansuri, M.; Sabouni, A.; Elyoubi, M.; Benabbas, R.; Choukri, M.; Saalaoui, E. Determination of Antioxidant Properties of Six By-products of Crocus sativus L.(Saffron) Plant Products. Waste Biomass Valorization 2018, 9, 1349–1357. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as A Measure of Antioxidant Power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Athamena, S.; Laroui, S.; Bouzid, W.; Meziti, A. The Antioxidant, Anti-inflammatory, Analgesic and Antipyretic Activities of Juniperu thurifera. J. Herbs Spices Med. Plants 2019, 25, 271–286. [Google Scholar] [CrossRef]
- Pistia-Brueggeman, G.; Hollingsworth, R.I. A Preparation and Screening Strategy for Glycosidase Inhibitors. Tetrahedron 2001, 57, 8773–8778. [Google Scholar] [CrossRef]
- Wickramaratne, M.N.; Punchihewa, J.C.; Wickramaratne, D.B.M. In-Vitro Alpha Amylase Inhibitory Activity of The Leaf Extracts of Adenanthera pavonina. BMC Complement. Altern. Med. 2016, 16, 466. [Google Scholar] [CrossRef] [PubMed]
- Fana, L.; Wua, P.; Zhanga, J.; Gaoa, S.; Wanga, L.; Li, M.; Shaa, M.; Xieb, W.; Niec, M. Synthesis and Anticoagulant Activity of The Quaternary Ammonium Chitosan Sulfates. Int. J. Biol. Macromol. 2012, 50, 31–37. [Google Scholar] [CrossRef] [PubMed]
Component | Retention Time | Area | Area (%) | Concentration (µg/mL) |
---|---|---|---|---|
Gallic acid | 3.59 | 254.25 | 2.19 | 1107.26 |
Chlorogenic acid | 4.27 | 57.45 | 0.49 | 389.09 |
Catechin | 4.46 | 13.46 | 0.12 | 153.80 |
Methyl gallate | 5.35 | 137.75 | 1.19 | 360.24 |
Caffeic acid | 6.05 | 15.21 | 0.13 | 62.35 |
Syringic acid | 6.38 | 24.08 | 0.21 | 95.94 |
Pyro catechol | 6.58 | 343.41 | 2.96 | 2922.53 |
Rutin | 6.99 | 129.41 | 1.11 | 1313.26 |
Ellagic acid | 7.21 | 0.00 | 0.00 | 0.00 |
Coumaric acid | 8.69 | 125.63 | 1.08 | 233.58 |
Vanillin | 9.09 | 216.18 | 1.86 | 413.13 |
Ferulic acid | 9.71 | 3.78 | 0.03 | 11.53 |
Naringenin | 10.41 | 32.53 | 0.28 | 156.53 |
Rosmarinic acid | 15.97 | 26.34 | 0.23 | 145.71 |
Daidzein | 15.97 | 69.83 | 0.60 | 203.58 |
Quercetin | 17.31 | 15.44 | 0.13 | 97.56 |
Cinnamic acid | 19.33 | 191.74 | 1.65 | 177.51 |
Kaempferol | 20.55 | 18.72 | 0.16 | 61.39 |
Hesperetin | 21.26 | 9938.11 | 85.58 | 25,579.57 |
Tested Microorganism | Inhibition Zones (mm) | MIC (µg/mL) | MBC (µg/mL) | MIC/MBC Index | ||
---|---|---|---|---|---|---|
Extract | * Antibiotic/Antifungal | ** Control | ||||
E. faecalis | 35 ± 0.2 | 25 ± 0.2 | 0.00 | 7.80 ± 0.5 | 15.62 ± 1.0 | 2 |
S. aureus | 23 ± 0.4 | 22 ± 0.1 | 0.00 | 125 ± 2.5 | 125 ± 2.25 | 1 |
E. coli | 33 ± 0.2 | 20 ± 0.1 | 0.00 | 15.62 ± 1.0 | 15.62 ± 0.5 | 1 |
S. typhi | 25 ± 0.1 | 21 ± 0.3 | 0.00 | 31.25 ± 1.2 | 62.5 ± 1.5 | 2 |
C. albicans | 32 ± 0.2 | 29 ± 0.2 | 0.00 | 15.62 ± 1.33 | 15.62 ± 1.33 | 2 |
M. circinelloid | 21 ± 0.2 | 16 ± 0.3 | 0.00 | 125 ± 3.0 | 500 ± 5.0 | 4 |
Mol | Protein | S | rmsd_refine | E_conf | E_place | E_score1 | E_refine | E_score2 |
---|---|---|---|---|---|---|---|---|
Hesperetin | 3CLQ | −5.42187 | 1.747535 | −23.2777 | −35.9618 | −10.0029 | −25.5451 | −5.42187 |
Gallic acid | 3CLQ | −4.20859 | 1.471674 | −33.0233 | −37.7896 | −6.38937 | −14.4935 | −4.20859 |
Hesperetin | 7RJC | −6.25187 | 1.854136 | −25.7032 | −94.8581 | −10.9026 | −33.9136 | −6.25187 |
Gallic acid | 7RJC | −4.47121 | 1.27963 | −32.0095 | −66.3415 | −10.6428 | −23.225 | −4.47121 |
Hesperetin | 4W93 | −5.92382 | 1.377247 | −24.2932 | −79.725 | −12.4299 | −31.6749 | −5.92382 |
Gallic acid | 4W93 | −4.69897 | 1.040136 | −27.5389 | −74.3128 | −11.4052 | −22.7225 | −4.69897 |
Hesperetin | 3TOP | −6.3585 | 2.155518 | −24.8734 | −100.872 | −12.1185 | −37.3104 | −6.3585 |
Gallic acid | 3TOP | −4.61066 | 1.322542 | −32.9586 | −66.2276 | −10.376 | −24.2049 | −4.61066 |
Mol | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
Hesperetin | O 26 | O ASN 110 (A) | H-donor | 3.31 | −0.5 |
O 30 | O LYS 443 (A) | H-donor | 3.07 | −2.0 | |
O 25 | N GLY 113 (A) | H-acceptor | 3.39 | −0.6 | |
Gallic acid | O 17 | O GLY 317 (A) | H-acceptor | 2.85 | −3.9 |
Mol | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
Hesperetin | O 25 | N ASP 271 (A) | H-acceptor | 3.11 | −1.7 |
Gallic acid | O 11 | O HIS 301 (A) | H-donor | 2.87 | −1.4 |
Mol | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
Hesperetin | O 26 | OD2 ASP 317 (A) | H-donor | 3.04 | −3.4 |
Gallic acid | O 9 | OD1 ASP 317 A) | H-donor | 2.92 | −1.9 |
O 13 | OD1 ASP 317 (A) | H-donor | 2.71 | −3.4 |
Mol | Ligand | Receptor | Interaction | Distance | E (kcal/mol) |
---|---|---|---|---|---|
Hesperetin | O 26 | O GLY 1309 (A) | H-donor | 2.82 | −1.1 |
O 28 | O LYS 1306 (A) | H-donor | 2.96 | −3.0 | |
O 25 | NH2 ARG 1311 (A) | H-acceptor | 3.21 | −1.4 | |
Gallic acid | O 11 | O HIS 1727 (A) | H-donor | 3.08 | −0.5 |
O 13 | O ASP 1754 (A) | H-donor | 2.81 | −2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rajhi, A.M.H.; Bakri, M.M.; Qanash, H.; Alzahrani, H.Y.; Halawani, H.; Algaydi, M.A.; Abdelghany, T.M. Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of Cupressus sempervirens In Vitro and In Silico. Molecules 2023, 28, 7402. https://doi.org/10.3390/molecules28217402
Al-Rajhi AMH, Bakri MM, Qanash H, Alzahrani HY, Halawani H, Algaydi MA, Abdelghany TM. Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of Cupressus sempervirens In Vitro and In Silico. Molecules. 2023; 28(21):7402. https://doi.org/10.3390/molecules28217402
Chicago/Turabian StyleAl-Rajhi, Aisha M. H., Marwah M. Bakri, Husam Qanash, Hassan Y. Alzahrani, Haneen Halawani, Meaad A. Algaydi, and Tarek M. Abdelghany. 2023. "Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of Cupressus sempervirens In Vitro and In Silico" Molecules 28, no. 21: 7402. https://doi.org/10.3390/molecules28217402
APA StyleAl-Rajhi, A. M. H., Bakri, M. M., Qanash, H., Alzahrani, H. Y., Halawani, H., Algaydi, M. A., & Abdelghany, T. M. (2023). Antimicrobial, Antidiabetic, Antioxidant, and Anticoagulant Activities of Cupressus sempervirens In Vitro and In Silico. Molecules, 28(21), 7402. https://doi.org/10.3390/molecules28217402