Grey Correlation Analysis of Drying Characteristics and Quality of Hypsizygus marmoreus (Crab-Flavoured Mushroom) By-Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Different Drying Methods on Nutritional Components of HMB
2.2. Effects of Different Drying Methods on the Active Ingredients of HMB
2.3. Effects of Different Drying Methods on the Amino Acid Composition of HMB
2.4. Effects of Different Drying Methods on Color Indices of HMB
2.5. Effects of Different Drying Methods on Texture Properties of HMB
2.6. Effects of Different Drying Methods on the Microstructure of HMB
2.7. Comprehensive Evaluation of the Effects of Different Drying Methods on the Quality of HMB
2.7.1. Analysis of the Weight of Each Indicator
2.7.2. Dimensionless Processing
i = 1, 2, 3, 4……13, n = 1, 2, 3, 4.
2.7.3. Correlation Analysis
2.8. Comparison of the Components between HMB and H. marmoreus of Commodity Specifications
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Sample Preparation
3.2.2. Index Determination
- (1)
- Moisture
- (2)
- Protein
- (3)
- Amino acid
- (4)
- Reducing sugar
- (5)
- Fat
- (6)
- Ash
- (7)
- Crude fibre
- (8)
- Crude polysaccharides
- (9)
- Total flavones
- (10)
- Total polyphenols
3.2.3. Colour Measurement
3.2.4. Texture Measurement
3.2.5. Microstructure Analyses
3.2.6. Grey Relational Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fortune Business Insights. Mushroom Market Size, Share & COVID-19 Impact Analysis, by Type, by Form, and Regional Forecast, 2021–2028. 2023. Available online: https://www.fortunebusinessinsights.com/industry-reports/mushroom-market-100197 (accessed on 20 July 2023).
- Antunes, F.; Taofiq, O.; Morais, A. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bian, C.; Wang, J. Determination of nutritional components in three kinds of edible. J. Anhui Agric. Sci. 2010, 38, 7544–7546. [Google Scholar]
- Li, X.; Yang, Y.; Zhou, F. Nutritional contents and flavor substances in fruit bodies and leftovers of Pleurotus eryngii. Mod. Food Sci. Technol. 2015, 31, 272–278. [Google Scholar]
- Chang, J.; Li, X.; Liang, X.; Feng, T.; Sun, M.; Song, S.; Yao, L.; Wang, H.; Hou, F. Novel umami peptide from Hypsizygus marmoreus hydrolysate and molecular docking to the taste receptor T1R1/T1R3. Food Chem. 2023, 401, 134163. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, W.; Yuxin Liu, Y.; Song, Y.; Wu, L.; Liu, C.; Wang, T. Water status and predictive models of moisture content during drying of soybean dregs based on LF-NMR. Molecules 2022, 27, 4421. [Google Scholar] [CrossRef]
- Gómez-Mejía, E.; Sacristán, I.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. Effect of storage and drying treatments on antioxidant activity and phenolic composition of lemon and clementine peel extracts. Molecules 2022, 28, 1624. [Google Scholar] [CrossRef]
- Kręcisz, M.; Stępień, B.; Pasławska, M.; Popłoński, J.; Dulak, K. Physicochemical and quality properties of dried courgette slices: Impact of vacuum impregnation and drying methods. Molecules 2021, 28, 4597. [Google Scholar] [CrossRef]
- Liu, Z.; Zielinska, M.; Yang, X.; Yu, X.; Chen, C.; Wang, H.; Wang, J.; Pan, Z.; Xiao, H. Moisturizing strategy for enhanced convective drying of mushroom slices. Renew. Energy 2021, 172, 728–739. [Google Scholar] [CrossRef]
- Shams, R.; Singh, J.; Dash, K.; Hussain Dar, A. Comparative study of freeze drying and cabinet drying of button mushroom. Appl. Food Res. 2022, 2, 100084. [Google Scholar] [CrossRef]
- Kalinke, I.; Ulrich Kulozik, U. Irreversible thermochromic ink in the identification of over- and under-processed product segments in microwave-assisted freeze drying. J. Food Eng. 2023, 349, 111470. [Google Scholar] [CrossRef]
- Huang, X.; Chen, X.; Wang, W.; Ge, Y.; Xie, J. Shelf-life prediction of chilled Penaeus vannamei using grey relational analysis and support vector regression. J. Aquat. Food Prod. Technol. 2020, 29, 507–519. [Google Scholar] [CrossRef]
- Jiang, M. Sustainable agriculture and food production in Qinghai: Analysis based on grey correlation model. IOP Conf. Ser. Earth Environ. Sci. 2021, 831, 012040. [Google Scholar] [CrossRef]
- Li, S.; Hu, Y.; Popov, E. Grey correlation analysis of milling temperature and milling vibration of TC4 titanium alloy. Noise Vib. World. 2022, 53, 330–339. [Google Scholar] [CrossRef]
- Urbelis, J.; Coope, J. Migration of food contact substances into dry foods: A review. Food Addit. Contam. Part A 2021, 38, 1044–1073. [Google Scholar] [CrossRef]
- Han, S.; Wang, W.; Yuan, G. Effect of different drying methods on quality of Dendrobium officinale stems. Food Sci. 2019, 40, 142–148. [Google Scholar]
- Deng, Y.; Tang, Q.; Zhang, R. Effects of different drying methods on the nutrition and physical properties of Momordica charantia. Sci. Agric. Sin. 2017, 50, 362–371. [Google Scholar]
- Besaliev, I.; Panfilov, A.; Karavaytsev, Y.; Reger, N.; Kholodilina, T. Content of prolin and essential amino acids in spring wheat grain in dry conditions. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012116. [Google Scholar] [CrossRef]
- Smith, K. Amino acid overview: Understanding umami. Environ. Nutr. 2021, 44, 2. [Google Scholar]
- FAO. Amino acid content of foods and biological data on proteins. Food policy and food Sci. Serv. Nutr. Div. 1970, 24, 5–6. [Google Scholar]
- Zhang, L.; Wang, Z.; Yang, H. Effects of different drying methods on the quality of Chinese chestnut. J. Nucl. Agric. Sci. 2016, 30, 2363–2372. [Google Scholar]
- Liu, Y.; Zhang, Z.; Hu, L. High efficient freeze-drying technology in food industry. Crit. Rev. Food Sci. 2022, 62, 3370–3388. [Google Scholar] [CrossRef]
- Krokida, M.; Maroulis, Z. Effect of drying method on shrinkage and porosity. Dry. Technol. 1997, 15, 2441–2458. [Google Scholar] [CrossRef]
- Saklar, S.; Ungan, S.; Katnas, S. Microstructural changes in hazelnuts during roasting. Food Res. Int. 2003, 36, 19–23. [Google Scholar] [CrossRef]
- Bao, X.; Min, R.; Zhou, K.; Traffano-Schiffo, M.V.; Dong, Q.; Luo, Q. Effects of vacuum drying assisted with condensation on drying characteristics and quality of apple slices. J. Food Eng. 2023, 340, 111286. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit. Rev. Food Sci. 2022, 62, 6204–6224. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.; Tang, B.; Li, Y.; Wu, L.; Weng, M.; Chen, J. Grey correlation analysis for physical and nutritional quality of Hypsizygus marmoreus from different drying methods. J. Nucl. Agric. Sci. 2021, 35, 2118–2126. [Google Scholar]
- GB 5009.5-2016; National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standards, Determination of Protein in Food. China Standards Press of China: Beijing, China, 2016.
- GB 5009.124-2016; National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standards, Determination of Amino Acids in Food. China Standards Press of China: Beijing, China, 2016.
- GB 5009.7-2016; National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standards, Determination of Reducing Sugar in Food. China Standards Press of China: Beijing, China, 2016.
- GB 5009.6-2016; National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standards, Determination of Fat in Food. China Standards Press of China: Beijing, China, 2016.
- GB 5009.4-2016; National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standards, Determination of Ash in Food. China Standards Press of China: Beijing, China, 2016.
- GB/T 5009.10-2003; Ministry of Health of the People’s Republic of China. Determination of Crude Fiber in Plant Food. Standards Press of China: Beijing, China, 2003.
- SN/T 4260-2015; General Administration of Quality Supervision. Inspection and Quarantine of the People’s Republic of China. Determination of Crude Polysaccharides in Plant Derived Food for Export by Phenol Sulfuric Acid Method. Standards Press of China: Beijing, China, 2015.
- Lai, P.; Lai, F.; Chen, J. Studying on purification of total flavonoids from Perennial lablab sp. and its bacteriostatic activities. J. Nucl. Agric. Sci. 2015, 29, 1539–1546. [Google Scholar]
- Ouyang, Y.; Chen, X.; Tang, H. Extraction and separation of total polyphenols from Herba gei. Food Sci. 2009, 30, 44–47. [Google Scholar]
Amino Acid | NH-VFD | H-VFD | HPD | HAD |
---|---|---|---|---|
Essential amino acid (EAA) | 7.78 ± 0.04 b | 7.89 ± 0.14 b | 8.32 ± 0.05 a | 8.58 ± 0.16 a |
Threonine | 0.86 ± 0.02 b | 0.88 ± 0.01 b | 0.95 ± 0.02 a | 0.94 ± 0.01 a |
Valine | 0.87 ± 0.02 b | 0.88 ± 0.01 b | 0.96 ± 0.01 a | 0.98 ± 0.01 a |
Methionine | 2.46 ± 0.03 b | 2.5 ± 0.04 b | 2.46 ± 0.02 b | 2.63 ± 0.03 a |
Isoleucine | 0.69 ± 0.01 b | 0.69 ± 0.01 b | 0.76 ± 0.02 a | 0.79 ± 0.03 a |
Leucine | 1.13 ± 0.02 b | 1.15 ± 0.03 b | 1.23 ± 0.02 a | 1.27 ± 0.03 a |
Phenylalanine | 0.8 ± 0.02 b | 0.81 ± 0.04 b | 0.90 ± 0.03 a | 0.93 ± 0.03 a |
Lysine | 0.97 ± 0.03 c | 0.98 ± 0.02 bc | 1.06 ± 0.02 a | 1.04 ± 0.02 ab |
Nonessential amino acids (NEAA) | 10.18 ± 0.07 c | 10.33 ± 0.06 b | 11.75 ± 0.04 a | 11.59 ± 0.08 a |
Aspartic acid | 1.59 ± 0.04 b | 1.6 ± 0.02 b | 1.58 ± 0.03 b | 1.77 ± 0.02 a |
Serine | 0.89 ± 0.01 b | 0.92 ± 0.03 b | 1.02 ± 0.03 a | 0.99 ± 0.02 a |
Glutamate | 2.72 ± 0.03 d | 2.8 ± 0.03 c | 3.42 ± 0.03 a | 3.09 ± 0.02 b |
Glycine | 0.84 ± 0.02 b | 0.85 ± 0.04 b | 0.94 ± 0.02 a | 0.96 ± 0.02 a |
Alanine | 1.15 ± 0.01 c | 1.16 ± 0.02 c | 1.62 ± 0.01 a | 1.55 ± 0.03 b |
Cystine | 0.3 ± 0.02 b | 0.3 ± 0.01 b | 0.34 ± 0.02 a | 0.38 ± 0.02 a |
Tyrosine | 0.49 ± 0.02 a | 0.48 ± 0.02 a | 0.52 ± 0.03 a | 0.53 ± 0.02 a |
Histidine | 0.33 ± 0.02 a | 0.33 ± 0.03 a | 0.35 ± 0.03 a | 0.35 ± 0.03 a |
Arginine | 1.16 ± 0.01 a | 1.18 ± 0.03 a | 1.16 ± 0.04 a | 1.12 ± 0.03 a |
Proline | 0.71 ± 0.02 b | 0.71 ± 0.02 b | 0.8 ± 0.04 a | 0.85 ± 0.02 a |
Total amino acids (TAA) | 17.96 ± 0.09 b | 18.22 ± 0.19 b | 20.07 ± 0.04 a | 20.17 ± 0.04 a |
EAA/TAA | 0.43 ± 0.01 a | 0.43 ± 0.01 a | 0.41 ± 0.01 b | 0.43 ± 0.01 a |
EAA/NEAA | 0.77 ± 0.01 a | 0.76 ± 0.01 ab | 0.71 ± 0.01 c | 0.74 ± 0.01 b |
Index | Average Value | Standard Deviation | Variation Coefficient | Weighting |
---|---|---|---|---|
Protein | 25.13 | 1.12 | 0.04 | 0.019 |
Reducing sugar | 1.90 | 0.16 | 0.09 | 0.037 |
Fat | 3.93 | 0.60 | 0.15 | 0.066 |
Ash | 8.60 | 0.41 | 0.05 | 0.020 |
Crude fibre | 7.43 | 0.88 | 0.12 | 0.051 |
Total flavonoid | 0.42 | 0.05 | 0.11 | 0.046 |
Total phenolic | 0.72 | 0.05 | 0.07 | 0.030 |
Crude polysaccharide | 6.21 | 0.64 | 0.10 | 0.044 |
Amino acids | 19.11 | 1.18 | 0.06 | 0.026 |
Colour | 35.88 | 21.99 | 0.61 | 0.263 |
Browning index | 45.06 | 32.65 | 0.72 | 0.311 |
Hardness | 701.64 | 92.20 | 0.13 | 0.056 |
Chewiness | 965.06 | 70.03 | 0.07 | 0.031 |
Rn (i) | R0 (i) | R1 (i) | R2 (i) | R3 (i) | R4 (i) |
---|---|---|---|---|---|
Protein | 1.000 | 0.912 | 0.943 | 1.000 | 0.996 |
Reducing sugar | 1.000 | 0.905 | 0.810 | 1.000 | 0.905 |
Fat | 1.000 | 1.206 | 1.382 | 1.029 | 1.000 |
Ash | 1.000 | 0.911 | 0.922 | 1.000 | 0.989 |
Crude fibre | 1.000 | 1.074 | 1.015 | 1.000 | 1.279 |
Total flavonoid | 1.000 | 0.875 | 0.813 | 0.792 | 1.000 |
Total phenolic | 1.000 | 0.936 | 1.000 | 0.910 | 0.846 |
Crude polysaccharide | 1.000 | 0.890 | 1.000 | 0.776 | 0.898 |
Amino acids | 1.000 | 0.890 | 0.903 | 0.995 | 1.000 |
Colour | 1.000 | 1.000 | 1.119 | 3.489 | 3.416 |
Browning index | 1.000 | 1.000 | 1.072 | 4.467 | 4.580 |
Hardness | 1.000 | 1.000 | 1.053 | 1.280 | 1.294 |
Chewiness | 1.000 | 1.054 | 1.164 | 1.154 | 1.000 |
Δn (i) | Δ1 (i) | Δ2(i) | Δ3(i) | Δ4(i) |
---|---|---|---|---|
Protein | 0.088 | 0.057 | 0.000 | 0.004 |
Reducing sugar | 0.095 | 0.190 | 0.000 | 0.095 |
Fat | 0.206 | 0.382 | 0.029 | 0.000 |
Ash | 0.089 | 0.078 | 0.000 | 0.011 |
Crude fibre | 0.074 | 0.015 | 0.000 | 0.279 |
Total flavonoid | 0.125 | 0.188 | 0.208 | 0.000 |
Total phenolic | 0.064 | 0.000 | 0.090 | 0.154 |
Crude polysaccharide | 0.110 | 0.000 | 0.224 | 0.102 |
Amino acids | 0.110 | 0.097 | 0.005 | 0.000 |
Colour | 0.000 | 0.119 | 2.489 | 2.416 |
Browning index | 0.000 | 0.072 | 3.467 | 3.580 |
Hardness | 0.000 | 0.053 | 0.280 | 0.294 |
Chewiness | 0.054 | 0.164 | 0.154 | 0.000 |
ξn (i) | ξ1 (i) | ξ2(i) | ξ3 (i) | ξ4 (i) |
---|---|---|---|---|
Protein | 0.088 | 0.057 | 0.000 | 0.004 |
Reducing sugar | 0.095 | 0.190 | 0.000 | 0.095 |
Fat | 0.206 | 0.382 | 0.029 | 0.000 |
Ash | 0.089 | 0.078 | 0.000 | 0.011 |
Crude fibre | 0.074 | 0.015 | 0.000 | 0.279 |
Total flavonoid | 0.125 | 0.188 | 0.208 | 0.000 |
Total phenolic | 0.064 | 0.000 | 0.090 | 0.154 |
Crude polysaccharide | 0.110 | 0.000 | 0.224 | 0.102 |
Amino acids | 0.110 | 0.097 | 0.005 | 0.000 |
Colour | 0.000 | 0.119 | 2.489 | 2.416 |
Browning index | 0.000 | 0.072 | 3.467 | 3.580 |
Hardness | 0.000 | 0.053 | 0.280 | 0.294 |
Chewiness | 0.054 | 0.164 | 0.154 | 0.000 |
Weighted correlation degree | 0.978 | 0.945 | 0.620 | 0.620 |
Components | HMB | HMCS | HMB/HMCS |
---|---|---|---|
Protein | 26.60 | 19.10 | 139.27 |
Reducing sugar | 1.70 | 1.80 | 94.44 |
Fat | 4.70 | 2.80 | 167.86 |
Ash | 8.30 | 6.80 | 122.06 |
Crude fibre | 6.90 | 6.60 | 104.55 |
Total flavonoids | 0.39 | 0.43 | 90.70 |
Total phenolics | 0.78 | 0.49 | 159.18 |
Crude polysaccharide | 6.90 | 6.27 | 110.05 |
Total amino acids | 18.22 | 14.19 | 128.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, P.; Xiao, Z.; Li, Y.; Tang, B.; Wu, L.; Weng, M.; Sun, J.; Chen, J. Grey Correlation Analysis of Drying Characteristics and Quality of Hypsizygus marmoreus (Crab-Flavoured Mushroom) By-Products. Molecules 2023, 28, 7394. https://doi.org/10.3390/molecules28217394
Lai P, Xiao Z, Li Y, Tang B, Wu L, Weng M, Sun J, Chen J. Grey Correlation Analysis of Drying Characteristics and Quality of Hypsizygus marmoreus (Crab-Flavoured Mushroom) By-Products. Molecules. 2023; 28(21):7394. https://doi.org/10.3390/molecules28217394
Chicago/Turabian StyleLai, Pufu, Zheng Xiao, Yibin Li, Baosha Tang, Li Wu, Minjie Weng, Junzheng Sun, and Junchen Chen. 2023. "Grey Correlation Analysis of Drying Characteristics and Quality of Hypsizygus marmoreus (Crab-Flavoured Mushroom) By-Products" Molecules 28, no. 21: 7394. https://doi.org/10.3390/molecules28217394
APA StyleLai, P., Xiao, Z., Li, Y., Tang, B., Wu, L., Weng, M., Sun, J., & Chen, J. (2023). Grey Correlation Analysis of Drying Characteristics and Quality of Hypsizygus marmoreus (Crab-Flavoured Mushroom) By-Products. Molecules, 28(21), 7394. https://doi.org/10.3390/molecules28217394