Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells
Abstract
:1. Introduction
2. Results and Discussions
2.1. Cytotoxicity of Alizarin with HepG2 Cells
2.2. Alizarin Induced CYP1A1 Gene Expression and Increased Ethoxyresorufin-O-deethylase (EROD) Activity in HepG2 Cells
2.3. In Vitro and In Silico Study on the Interactions between Alizarin and AHR Receptor
2.4. The Transcriptional Changes of HepG2 Cells Exposed to Alizarin
3. Materials and Methods
3.1. Chemicals and Cell Culture
3.2. Cell Viability Test
3.3. Total RNA Extraction and qRT-PCR Analysis
3.4. RNA-Seq
3.5. AHR Mediated Luciferase Reporter Gene Assay and EROD Activity Test
3.6. Molecular Docking Analysis
3.7. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puchtler, H.; Meloan, S.N.; Terry, M.S. On the history and mechanism of alizarin and alizarin red S stains for calcium. J. Histochem. Cytochem. 1969, 17, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.Y.; Hu, X.D.; Zhu, J.J.; Wan, J.Q.; Yao, J.B. Studies on the photofading of alizarin, the main component of madder. Dye. Pigment. 2021, 185, 108940. [Google Scholar] [CrossRef]
- Dilorio, Y.; Rodriguez, H.B.; Roman, E.S.; Grela, M.A. Photoelectrochemical behavior of alizarin modified TiO2 films. J. Phys. Chem. C 2010, 114, 11515–11521. [Google Scholar]
- Xu, Z.; Hou, Y.; Zou, C.; Liang, H.; Mu, J.; Jiao, X.; Zhu, Y.; Su, L.; Liu, M.; Chen, X.; et al. Alizarin, a nature compound, inhibits the growth of pancreatic cancer cells by abrogating NF-kappaB activation. Int. J. Biol. Sci. 2022, 18, 2759–2774. [Google Scholar] [CrossRef] [PubMed]
- Fotia, C.; Avnet, S.; Granchi, D.; Baldini, N. The natural compound alizarin as an osteotropic drug for the treatment of bone tumors. J. Orthop. Res. 2012, 30, 1486–1492. [Google Scholar] [CrossRef]
- Jager, I.; Hafner, C.; Welsch, C.; Schneider, K.; Iznaguen, H.; Westendorf, J. The mutagenic potential of madder root in dyeing processes in the textile industry. Mutat. Res. 2006, 605, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, E.; Fujita, K.; Kamataki, T.; Arimoto-Kobayashi, S.; Okamoto, K.; Negishi, T. Inhibition of human cytochrome P450 1B1, 1A1 and 1A2 by antigenotoxic compounds, purpurin and alizarin. Mutat. Res. 2002, 508, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, X. Antioxidant activities of baicalin, green tea polyphenols and alizarin in vitro and in vivo. J. Nutr. Environ. Med. 1997, 7, 79–90. [Google Scholar]
- Kaur, P.; Chandel, M.; Kumar, S.; Kumar, N.; Singh, B.; Kaur, S. Modulatory role of alizarin from Rubia cordifolia L. against genotoxicity of mutagens. Food Chem. Toxicol. 2010, 48, 320–325. [Google Scholar] [CrossRef]
- Inoue, K.; Yoshida, M.; Takahashi, M.; Fujimoto, H.; Shibutani, M.; Hirose, M.; Nishikawa, A. Carcinogenic potential of alizarin and rubiadin, components of madder color, in a rat medium-term multi-organ bioassay. Cancer Sci. 2009, 100, 2261–2267. [Google Scholar] [CrossRef]
- Sugiyama, K.I.; Furusawa, H.; Shimizu, M.; Gruz, P.; Honma, M. Epigenetic mutagen as histone modulator can be detected by yeast flocculation. Mutagenesis 2016, 31, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.I.; Furusawa, H.; Gruz, P.; Honma, M. Detection of epigenetic mutagens including anthracene-derived compounds using yeast FLO1 promoter GFP reporter gene assay. Mutagenesis 2017, 32, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, E.; Arimoto, S.; Okamoto, K.; Negishi, T. Enhancement of phase II enzyme activity by purpurin resulting in the suppression of MeIQx-DNA-adduct formation in mice. Mutat. Res. 2007, 626, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Kawajiri, K.; Fujii-Kuriyama, Y. Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Arch. Biochem. Biophys. 2007, 464, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Snyder, M.; Kenison, J.E.; Yang, K.; Lara, B.; Lydell, E.; Bennani, K.; Novikov, O.; Federico, A.; Monti, S.; et al. How the AHR became important in cancer: The role of chronically active AHR in cancer aggression. Int. J. Mol. Sci. 2020, 22, 387. [Google Scholar] [CrossRef] [PubMed]
- Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Cytochrome P450 CYP1A1: Wider roles in cancer progression and prevention. BMC Cancer 2009, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Potter, D.A. CYP1A1 regulates breast cancer proliferation and survival. Mol. Cancer Res. 2013, 11, 780–792. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Shukla, S.P.; Govindarajan, R.B.; Kumar, K.; Bharti, V.S. Application of microalgal physiological response as biomarker for evaluating the toxicity of the textile dye alizarin red S. Bull. Environ. Contam. Toxicol. 2022, 109, 401–408. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Park, S.; Hu, L.; Lee, J. Phytopigment alizarin inhibits multispecies biofilm development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics 2022, 14, 1047. [Google Scholar] [CrossRef]
- Liu, Y.; Mapa, M.S.T.; Sprando, R.L. Anthraquinones inhibit cytochromes P450 enzyme activity in silico and in vitro. J. Appl. Toxicol. 2021, 41, 1438–1445. [Google Scholar] [CrossRef]
- Jiang, W.; Tian, X.; Wang, Y.; Sun, Z.; Dong, P.; Wang, C.; Huo, X.; Zhang, B.; Huang, S.; Deng, S.; et al. The natural anthraquinones from Rheum palmatum induced the metabolic disorder of melatonin by inhibiting human CYP and SULT enzymes. Toxicol. Lett. 2016, 262, 27–38. [Google Scholar] [CrossRef]
- Nebert, D.W. Aryl hydrocarbon receptor (AHR): “Pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog. Lipid Res. 2017, 67, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.; Kaneko, A.; Nishiumi, S.; Kawase, M.; Nishikiori, R.; Fujitake, N.; Ashida, H. Structure-activity relationships of anthraquinones on the suppression of DNA-binding activity of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biosci. Bioeng. 2009, 107, 296–300. [Google Scholar] [CrossRef]
- Amakura, Y.; Tsutsumi, T.; Sasaki, K.; Yoshida, T.; Maitani, T. Screening of the inhibitory effect of vegetable constituents on the aryl hydrocarbon receptor-mediated activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biol. Pharm. Bull. 2003, 26, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Ciolino, H.P.; Yeh, G.C. The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br. J. Cancer 1999, 79, 1340–1346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qin, C.; Safe, S.H. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: Effects of structure and cell context. Environ. Health Perspect. 2003, 111, 1877–1882. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.; Phillips, J.L.; Kerkvliet, N.I.; Tanguay, R.L.; Perdew, G.H.; Kolluri, S.K.; Bisson, W.H. A structural switch between agonist and antagonist bound conformations for a ligand-optimized model of the human aryl hydrocarbon receptor ligand binding domain. Biology 2014, 3, 645–669. [Google Scholar] [CrossRef]
- Niraj, J.; Farkkila, A.; D’Andrea, A.D. The fanconi anemia pathway in cancer. Annu. Rev. Cancer. Biol. 2019, 3, 457–478. [Google Scholar] [CrossRef]
- Leggett, C.S.; Doll, M.A.; Salazar-Gonzalez, R.A.; Habil, M.R.; Trent, J.O.; Hein, D.W. Identification and characterization of potent, selective, and efficacious inhibitors of human arylamine N-acetyltransferase 1. Arch. Toxicol. 2022, 96, 511–524. [Google Scholar] [CrossRef]
- Ishii, Y.; Nakamura, K.; Mitsumoto, T.; Takimoto, N.; Namiki, M.; Takasu, S.; Ogawa, K. Visualization of the distribution of anthraquinone components from madder roots in rat kidneys by desorption electrospray ionization-time-of-flight mass spectrometry imaging. Food Chem. Toxicol. 2022, 161, 112851. [Google Scholar] [CrossRef]
- Ishii, Y.; Takasu, S.; Kuroda, K.; Matsushita, K.; Kijima, A.; Nohmi, T.; Ogawa, K.; Umemura, T. Combined application of comprehensive analysis for DNA modification and reporter gene mutation assay to evaluate kidneys of gpt delta rats given madder color or its constituents. Anal. Bioanal. Chem. 2014, 406, 2467–2475. [Google Scholar] [CrossRef]
- Ou, D.; Zhang, Z.; Wu, Z.; Shen, P.; Huang, Y.; She, S.; She, S.; Lin, M.E. Identification of the putative tumor suppressor characteristics of FAM107A via Pan-Cancer Analysis. Front. Oncol. 2022, 12, 861281. [Google Scholar] [CrossRef]
- Mohammadi-Bardbori, A. Assay for quantitative determination of CYP1A1 enzyme activity using 7-ethoxyresorufin as standard substrate (EROD assay). Protoc. Exch. 2014. [Google Scholar] [CrossRef]
- Heinrich, P.; Diehl, U.; Forster, F.; Braunbeck, T. Improving the in vitro ethoxyresorufin-o-deethylase (EROD) assay with rtl-w1 by metabolic normalization and use of beta-naphthoflavone as the reference substance. Comp. Biochem. Physiol. 2014, 164, 27–34. [Google Scholar]
- Paula, S.; Baker, J.R.; Zhu, X.; McCluskey, A. Binding of chlorinated phenylacrylonitriles to the Aryl Hydrocarbon Receptor: Computational docking and molecular dynamics simulations. In Molecular Docking and Molecular Dynamics; Stefaniu, A., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Bo, H.; Zhang, Y.; Zhen, H.; Zhong, L. Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells. Molecules 2023, 28, 7373. https://doi.org/10.3390/molecules28217373
Liang S, Bo H, Zhang Y, Zhen H, Zhong L. Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells. Molecules. 2023; 28(21):7373. https://doi.org/10.3390/molecules28217373
Chicago/Turabian StyleLiang, Shengxian, Haimei Bo, Yue Zhang, Hongcheng Zhen, and Li Zhong. 2023. "Alizarin, an Agonist of AHR Receptor, Enhances CYP1A1 Enzyme Activity and Induces Transcriptional Changes in Hepatoma Cells" Molecules 28, no. 21: 7373. https://doi.org/10.3390/molecules28217373