Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Enantiomeric Distribution
2.3. Antimicrobial Activity of E. purpurea EO
2.4. Innate Immunomodulatory Activity of E. purpurea EO and Its Components
3. Materials and Methods
3.1. Materials
3.2. Essential Oil Extraction
3.3. Gas Chromatography-Mass Spectrometry (GC–MS) Analysis
3.4. Gas Chromatography–Flame Ionization Detection (GC–FID) Analysis
3.5. Enantiomeric Analysis by Chiral Gas Chromatography–Mass Spectrometry (CGC–MS)
3.6. Isolation of Human Neutrophils
3.7. Cell Culture
3.8. Ca2+ Mobilization Assay
3.9. Chemotaxis Assay
3.10. Cytotoxicity Assays
3.11. Antimicrobial Activity
3.12. Molecular Modeling
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shemluck, M. Medicinal and Other Uses of the Compositae by Indians in the United States and Canada. J. Ethnopharmacol. 1982, 5, 303–358. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Sharif, K.O.; Tufekci, E.F.; Ustaoglu, B.; Altunoglu, Y.C.; Zengin, G.; Llorent-Martínez, E.J.; Guney, K.; Baloglu, M.C. Anticancer and Biological Properties of Leaf and Flower Extracts of Echinacea purpurea (L.) Moench. Food Biosci. 2021, 41, 101005. [Google Scholar] [CrossRef]
- WFO Plant List: Echinacea purpurea (L.) Moench. Available online: https://wfoplantlist.org/plant-list/taxon/wfo-0000036347-2022-12?page=1 (accessed on 6 April 2023).
- Moltó, J.; Valle, M.; Miranda, C.; Cedeño, S.; Negredo, E.; Clotet, B. Herb-Drug Interaction between Echinacea purpurea and Etravirine in HIV-Infected Patients. Antimicrob. Agents Chemother. 2012, 56, 5328–5331. [Google Scholar] [CrossRef] [PubMed]
- Ogal, M.; Johnston, S.L.; Klein, P.; Schoop, R. Echinacea Reduces Antibiotic Usage in Children through Respiratory Tract Infection Prevention: A Randomized, Blinded, Controlled Clinical Trial. Eur. J. Med. Res. 2021, 26, 33. [Google Scholar] [CrossRef]
- Linde, K.; Barrett, B.; Wölkart, K.; Bauer, R.; Melchart, D. Echinacea for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2006, 2006, CD000530. [Google Scholar] [CrossRef]
- Temerdashev, Z.; Vinitskaya, E.; Meshcheryakova, E.; Shpigun, O. Chromatographic Analysis of Water and Water-Alcohol Extracts of Echinacea purpurea L. Obtained by Various Methods. Microchem. J. 2022, 179, 107507. [Google Scholar] [CrossRef]
- Hu, C.; Kitts, D. Studies on the Antioxidant Activity of Echinacea Root Extract. J. Agric. Food Chem. 2000, 48, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Haller, J.; Krecsak, L.; Zámbori, J. Double-Blind Placebo Controlled Trial of the Anxiolytic Effects of a Standardized Echinacea Extract. Phytother. Res. 2020, 34, 660–668. [Google Scholar] [CrossRef]
- Bauer, R. New Findings on the Pharmacological Activity and Therapeutical Efficacy of Preparations of the Pressed Juice of Echinacea purpurea. Wien. Med. Wochenschr. 2002, 152, 407–411. [Google Scholar] [CrossRef]
- Ardjomand-Woelkart, K.; Bauer, R. Review and Assessment of Medicinal Safety Data of Orally Used Echinacea Preparations. Planta Med. 2015, 82, 17–31. [Google Scholar] [CrossRef]
- Yu, D.; Yuan, Y.; Jiang, L.; Tai, Y.; Yang, X.; Hu, F.; Xie, Z. Anti-Inflammatory Effects of Essential Oil in Echinacea purpurea L. Pak. J. Pharm. Sci. 2013, 26, 403–408. [Google Scholar] [PubMed]
- Xu, W.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Echinacea purpurea Suppresses the Cell Survival and Metastasis of Hepatocellular Carcinoma through Regulating the PI3K/Akt Pathway. Int. J. Biochem. Cell Biol. 2022, 142, 106115. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.C. Echinacea: A Miracle Herb against Aging and Cancer? Evidence in vivo in Mice. Evid.-Based Complement. Altern. Med. 2005, 2, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Barrett, B.; Brown, R.; Rakel, D.; Mundt, M.; Bone, K.; Barlow, S.; Ewers, T. Echinacea for Treating the Common Cold: A Randomized Controlled Trial. Ann. Intern. Med. 2010, 153, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Karsch-Völk, M.; Kiefer, B.B.; Bauer, R.; Linde, A.-W.K. Echinacea for Preventing and Treating the Common Cold (Review). Cochrane Database Syst. Rev. 2014, 2014, CD000530. [Google Scholar] [CrossRef] [PubMed]
- Nahas, R.; Balla, A. Clinical Review Complementary and Alternative Medicine for Prevention and Treatment of the Common Cold. Can. Fam. Physician 2011, 57, 31–36. [Google Scholar]
- Jawad, M.; Schoop, R.; Suter, A.; Klein, P.; Eccles, R. Safety and Efficacy Profile of Echinacea purpurea to Prevent Common Cold Episodes: A Randomized, Double-Blind, Placebo-Controlled Trial. Evid.-Based Complement. Altern. Med. 2012, 2012, 841315. [Google Scholar] [CrossRef]
- Ross, S.M. Echinacea purpurea: A Proprietary Extract of Echinacea purpurea Is Shown to Be Safe and Effective in the Prevention of the Common Cold. Holist. Nurs. Pract. 2016, 30, 54–57. [Google Scholar] [CrossRef]
- Schapowal, A.; Klein, P.; Johnston, S.L. Echinacea Reduces the Risk of Recurrent Respiratory Tract Infections and Complications: A Meta-Analysis of Randomized Controlled Trials. Adv. Ther. 2015, 32, 187–200. [Google Scholar] [CrossRef]
- Vimalanathan, S.; Schoop, R.; Suter, A.; Hudson, J. Prevention of Influenza Virus Induced Bacterial Superinfection by Standardized Echinacea purpurea, via Regulation of Surface Receptor Expression in Human Bronchial Epithelial Cells. Virus Res. 2017, 233, 51–59. [Google Scholar] [CrossRef]
- Isbaniah, F.; Wiyono, W.H.; Yunus, F.; Setiawati, A.; Totzke, U.; Verbruggen, M.A. Echinacea purpurea along with Zinc, Selenium and Vitamin C to Alleviate Exacerbations of Chronic Obstructive Pulmonary Disease: Results from a Randomized Controlled Trial. J. Clin. Pharm. Ther. 2011, 36, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.; Taylor, J.A.; Vander Stoep, A.; Weiss, N.S.; Standish, L.J.; Calabrese, C. Echinacea purpurea for Prevention of Upper Respiratory Tract Infections in Children. J. Altern. Complement. Med. 2005, 11, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Signer, J.; Jonsdottir, H.R.; Albrich, W.C.; Strasser, M.; Züst, R.; Ryter, S.; Ackermann-Gäumann, R.; Lenz, N.; Siegrist, D.; Suter, A.; et al. In Vitro Virucidal Activity of Echinaforce®, an Echinacea purpurea Preparation, against Coronaviruses, Including Common Cold Coronavirus 229E and SARS-CoV-2. Virol. J. 2020, 17, 136. [Google Scholar] [CrossRef] [PubMed]
- Pleschka, S.; Stein, M.; Schoop, R.; Hudson, J.B. Anti-Viral Properties and Mode of Action of Standardized Echinacea purpurea Extract against Highly Pathogenic Avian Influenza Virus (H5N1, H7N7) and Swine-Origin H1N1 (S-OIV). Virol. J. 2009, 6, 197. [Google Scholar] [CrossRef] [PubMed]
- Ladenheim, D.; Horn, O.; Werneke, U.; Phillpot, M.; Murungi, A.; Theobald, N.; Orkin, C. Potential Health Risks of Complementary Alternative Medicines in HIV Patients. HIV Med. 2008, 9, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Kolev, E.; Mircheva, L.; Edwards, M.R.; Johnston, S.L.; Kalinov, K.; Stange, R.; Gancitano, G.; Berghe, W.V.; Kreft, S. Echinacea purpurea For the Long-Term Prevention of Viral Respiratory Tract Infections During Covid-19 Pandemic: A Randomized, Open, Controlled, Exploratory Clinical Study. Front. Pharmacol. 2022, 13, 856410. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-T.; Huang, C.-C.; Shieh, X.-H.; Chen, C.-L.; Chen, L.-J.; Yu, B. Flavonoid, Phenol and Polysaccharide Contents of Echinacea purpurea L. and Its Immunostimulant Capacity In Vitro. Int. J. Environ. Sci. Dev. 2010, 1, 5–9. [Google Scholar] [CrossRef]
- Sharma, M.; Schoop, R.; Suter, A.; Hudson, J.B. The Potential Use of Echinacea in Acne: Control of Propionibacterium Acnes Growth and Inflammation. Phytother. Res. 2011, 25, 517–521. [Google Scholar] [CrossRef]
- Oláh, A.; Szabó-Papp, J.; Soeberdt, M.; Knie, U.; Dähnhardt-Pfeiffer, S.; Abels, C.; Bíró, T. Echinacea purpurea-Derived Alkylamides Exhibit Potent Anti-Inflammatory Effects and Alleviate Clinical Symptoms of Atopic Eczema. J. Dermatol. Sci. 2017, 88, 67–77. [Google Scholar] [CrossRef]
- Dogan, Z.; Ergul, B.; Sarikaya, M.; Filik, L.; Gonultaş, A. The Protective Effect of Echinacea spp. (Echinacea angustifolia and Echinacea purpurea) in a Rat Colitis Model Induced by Acetic Acid. Pak. J. Pharm. Sci. 2014, 27, 1827–1835. [Google Scholar]
- Bauer, R. Echinacea: Biological Effects and Active Principles. In Phytomedicines of Europe: Chemistry and Biological Activity; Lawson, L., Bauer, R., Eds.; American Chemical Society: Washington, DC, USA, 1998; pp. 140–157. [Google Scholar]
- Rininger, J.A.; Kickner, S.; Chigurupati, P.; McLean, A.; Franck, Z. Immunopharmacological Activity of Echinacea Preparations Following Simulated Digestion on Murine Macrophages and Human Peripheral Blood Mononuclear Cells. J. Leukoc. Biol. 2000, 68, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Nyalambisa, M.; Oyemitan, I.A.; Matewu, R.; Oyedeji, O.O.; Oluwafemi, O.S.; Songca, S.P.; Nkeh-Chungag, B.N.; Oyedeji, A.O. Volatile Constituents and Biological Activities of the Leaf and Root of Echinacea Species from South Africa. Saudi Pharm. J. 2017, 25, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Oüzek, G.; Schepetkin, I.A.; Utegenova, G.A.; Kirpotina, L.N.; Andrei, S.R.; Oüzek, T.; Baser, K.H.C.; Abidkulova, K.T.; Kushnarenko, S.V.; Khlebnikov, A.I.; et al. Chemical Composition and Phagocyte Immunomodulatory Activity of Ferula iliensis Essential Oils. J. Leukoc. Biol. 2017, 101, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.; Williams, C. Phytochemistry of the Genus Echinacea. In Echinacea: The Genus Echinacea (Medicinal and Aromatic Plants—Industrial Profiles); Miller, S.C., Yu, H., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 55–71. [Google Scholar]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea Species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A Review of Their Chemistry, Pharmacology and Clinical Properties. J. Pharm. Pharmacol. 2010, 57, 929–954. [Google Scholar] [CrossRef]
- Lin, Z.; Neamati, N.; Zhao, H.; Kiryu, Y.; Turpin, J.A.; Aberham, C.; Strebel, K.; Kohn, K.; Witvrouw, M.; Pannecouque, C.; et al. Chicoric Acid Analogues as HIV-1 Integrase Inhibitors. J. Med. Chem. 1999, 42, 1401–1414. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Scagel, C.F. Chicoric Acid: Chemistry, Distribution, and Production. Front. Chem. 2013, 1, 40. [Google Scholar] [CrossRef] [PubMed]
- Parsons, J.L.; Liu, R.; Smith, M.L.; Harris, C.S. Echinacea Fruit: Phytochemical Localization and Germination in Four Species of Echinacea. Botany 2018, 96, 461–470. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Mnayer, D.; Morais-Braga, M.F.B.; Carneiro, J.N.P.; Bezerra, C.F.; Coutinho, H.D.M.; Salehi, B.; Martorell, M.; del Mar Contreras, M.; Soltani-Nejad, A.; et al. Echinacea Plants as Antioxidant and Antibacterial Agents: From Traditional Medicine to Biotechnological Applications. Phytother. Res. 2018, 32, 1653–1663. [Google Scholar] [CrossRef]
- Cozzolino, R.; Malvagna, P.; Spina, E.; Giori, A.; Fuzzati, N.; Anelli, A.; Garozzo, D.; Impallomeni, G. Structural Analysis of the Polysaccharides from Echinacea Angustifolia Radix. Carbohydr. Polym. 2006, 65, 263–272. [Google Scholar] [CrossRef]
- Pellati, F.; Epifano, F.; Contaldo, N.; Orlandini, G.; Cavicchi, L.; Genovese, S.; Bertelli, D.; Benvenuti, S.; Curini, M.; Bertaccini, A.; et al. Chromatographic Methods for Metabolite Profiling of Virus- and Phytoplasma-Infected Plants of Echinacea purpurea. J. Agric. Food Chem. 2011, 59, 10425–10434. [Google Scholar] [CrossRef] [PubMed]
- Hudaib, M.; Bellardi, M.G.; Rubies-Autonell, C.; Fiori, J.; Cavrini, V. Chromatographic (GC-MS, HPLC) and Virological Evaluations of Salvia Sclarea Infected by BBWV-I. Farmaco 2001, 56, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Merdivan, M.; Tashakkori, P.; Erdem, P.; Anderson, J.L. Analysis of Echinacea Flower Volatile Constituents by HS-SPME-GC/MS Using Laboratory-Prepared and Commercial SPME Fibers. J. Essent. Oil Res. 2019, 31, 91–98. [Google Scholar] [CrossRef]
- Mirjalili, M.H.; Salehi, P.; Badi, H.N.; Sonboli, A. Volatile Constituents of the Flowerheads of ThreeEchinacea Species Cultivated in Iran. Flavour Fragr. J. 2006, 21, 355–358. [Google Scholar] [CrossRef]
- Mazza, G.; Cottrell, T. Volatile Components of Roots, Stems, Leaves, and Flowers of Echinacea Species. J. Agric. Food Chem. 1999, 47, 3081–3085. [Google Scholar] [CrossRef] [PubMed]
- Vaverková, S.; Mikulásová, M.; Habán, M.; Tekel’, J.; Hollá, M.; Otepka, P. Variability of the Essential Oil from Three Sorts of Echinacea MOENCH Genus during Ontogenesis. Ceska Slov. Farm. 2007, 56, 121–124. [Google Scholar] [PubMed]
- Yazdanian, M.; Rostamzadeh, P.; Alam, M.; Abbasi, K.; Tahmasebi, E.; Tebyaniyan, H.; Ranjbar, R.; Seifalian, A.; Moghaddam, M.M.; Kahnamoei, M.B. Evaluation of Antimicrobial and Cytotoxic Effects of Echinacea and Arctium Extracts and Zataria Essential Oil. AMB Express 2022, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Pérez Zamora, C.; Torres, C.; Nuñez, M. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef]
- Leite-Sampaio, N.F.; Gondim, C.N.F.L.; Martins, R.A.A.; Siyadatpanah, A.; Norouzi, R.; Kim, B.; Sobral-Souza, C.E.; Gondim, G.E.C.; Ribeiro-Filho, J.; Coutinho, H.D.M. Potentiation of the Activity of Antibiotics against ATCC and MDR Bacterial Strains with (+)-α-Pinene and (-)-Borneol. BioMed Res. Int. 2022, 2022, 8217380. [Google Scholar] [CrossRef]
- Yoo, H.-J.; Jwa, S.-K. Inhibitory Effects of β-Caryophyllene on Streptococcus Mutans Biofilm. Arch. Oral Biol. 2018, 88, 42–46. [Google Scholar] [CrossRef]
- Moo, C.-L.; Yang, S.-K.; Osman, M.-A.; Yuswan, M.H.; Loh, J.-Y.; Lim, W.-M.; Lim, S.-H.-E.; Lai, K.-S. Antibacterial Activity and Mode of Action of β-Caryophyllene on Bacillus cereus. Pol. J. Microbiol. 2020, 69, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria Crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of A-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- de Souza, W.F.C.; de Lucena, F.A.; de Castro, R.J.S.; de Oliveira, C.P.; Quirino, M.R.; Martins, L.P. Exploiting the Chemical Composition of Essential Oils from Psidium Cattleianum and Psidium Guajava and Its Antimicrobial and Antioxidant Properties. J. Food Sci. 2021, 86, 4637–4649. [Google Scholar] [CrossRef] [PubMed]
- Radice, M.; Durofil, A.; Buzzi, R.; Baldini, E.; Martínez, A.P.; Scalvenzi, L.; Manfredini, S. Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities, Pharmaceutical and Food Applications. Life 2022, 12, 1602. [Google Scholar] [CrossRef] [PubMed]
- Adolpho, L.O.; Paz, L.H.A.; Rosa, O.; Morel, A.F.; Dalcol, I.I. Chemical Profile and Antimicrobial Activity of Leonotis nepetifolia (L.) R. Br. Essential Oils. Nat. Prod. Res. 2023, 15, 1–5. [Google Scholar] [CrossRef]
- Cárdenas, J.; Rojas, J.; Rojas-Fermin, L.; Lucena, M.; Buitrago, A. Essential Oil Composition and Antibacterial Activity of Monticalia greenmaniana (Asteraceae). Nat. Prod. Commun. 2012, 7, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Uçüncü, O.; Kahriman, N.; Terzioğlu, S.; Karaoğlue, S.A.; Yayli, N. Composition and Antimicrobial Activity of the Essential Oils from Flowers of Senecio othonnae, S. racemosus, and S. nemorensis. Nat. Prod. Commun. 2010, 5, 831–834. [Google Scholar]
- González, A.M.; Tracanna, M.I.; Amani, S.M.; Schuff, C.; Poch, M.J.; Bach, H.; Catalán, C.A.N. Chemical Composition, Antimicrobial and Antioxidant Properties of the Volatile Oil and Methanol Extract of Xenophyllum poposum. Nat. Prod. Commun. 2012, 7, 1663–1666. [Google Scholar] [CrossRef]
- Hoi, T.M.; Chung, N.T.; Huong, L.T.; Ogunwande, I.A. Studies on Asteraceae: Chemical Compositions of Essential Oils and Antimicrobial Activity of the Leaves of Vernonia patula (Dryand.) Merr. and Grangea maderaspatana (L.) Poir. from Vietnam. J. Essent. Oil Bear. Plants 2021, 24, 500–509. [Google Scholar] [CrossRef]
- Thinh, B.B.; Thin, D.B. Essential Oil Composition, Antimicrobial and Antioxidant Properties of Pluchea eupatorioides Kurz Collected from Vietnam. J. Essent. Oil Bear. Plants 2023, 26, 653–663. [Google Scholar] [CrossRef]
- Kim, H.-R.; Oh, S.-K.; Lim, W.; Lee, H.K.; Moon, B.-I.; Seoh, J.-Y.; Commun, N.P. Immune Enhancing Effects of Echinacea purpurea Root Extract by Reducing Regulatory T Cell Number and Function. Nat. Prod. Commun. 2014, 9, 511–514. [Google Scholar]
- Park, S.J.; Lee, M.; Kim, D.; Oh, D.H.; Prasad, K.S.; Eun, S.; Lee, J. Echinacea purpurea Extract Enhances Natural Killer Cell Activity in Vivo by Upregulating MHC II and Th1-Type CD4+T Cell Responses. J. Med. Food 2021, 24, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, F.N.; Papanicolaou, G.; Lin, H.; Lau, C.B.S.; Kennelly, E.J.; Cassileth, B.R.; Cunningham-Rundles, S. Echinacea purpurea (L.) Moench Modulates Human T-Cell Cytokine Response. Int. Immunopharmacol. 2014, 19, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Malech, H.L.; DeLeo, F.R.; Quinn, M.T. The Role of Neutrophils in the Immune System: An Overview. Neutrophil Methods Protoc. 2014, 1124, 3–10. [Google Scholar]
- Dixit, N.; Kim, M.-H.; Rossaint, J.; Yamayoshi, I.; Zarbock, A.; Simon, S.I. Leukocyte Function Antigen-1, Kindlin-3, and Calcium Flux Orchestrate Neutrophil Recruitment during Inflammation. J. Immunol. 2012, 189, 5954–5964. [Google Scholar] [CrossRef] [PubMed]
- Gronski, M.A.; Kinchen, J.M.; Juncadella, I.J.; Franc, N.C.; Ravichandran, K.S. An Essential Role for Calcium Flux in Phagocytes for Apoptotic Cell Engulfment and the Anti-Inflammatory Response. Cell Death Differ. 2009, 16, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.; Özek, G.; Özek, T.; Kirpotina, L.; Khlebnikov, A.; Quinn, M. Chemical Composition and Immunomodulatory Activity of Hypericum Perforatum Essential Oils. Biomolecules 2020, 10, 916. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Kushnarenko, S.V.; Özek, G.; Kirpotina, L.N.; Sinharoy, P.; Utegenova, G.A.; Abidkulova, K.T.; Özek, T.; Başer, K.H.C.; Kovrizhina, A.R.; et al. Modulation of Human Neutrophil Responses by the Essential Oils from Ferula akitschkensis and Their Constituents. J. Agric. Food Chem. 2016, 64, 7156–7170. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Kushnarenko, S.V.; Özek, G.; Kirpotina, L.N.; Utegenova, G.A.; Kotukhov, Y.A.; Danilova, A.N.; Özek, T.; Başer, K.H.C.; Quinn, M.T. Inhibition of Human Neutrophil Responses by the Essential Oil of Artemisia kotuchovii and Its Constituents. J. Agric. Food Chem. 2015, 63, 4999–5007. [Google Scholar] [CrossRef]
- Futosi, K.; Fodor, S.; Mócsai, A. Neutrophil Cell Surface Receptors and Their Intracellular Signal Transduction Pathways. Int. Immunopharmacol. 2013, 17, 638–650. [Google Scholar] [CrossRef]
- Decarlo, A.; Johnson, S.; Ouédraogo, A.; Dosoky, N.S.; Setzer, W.N. Chemical Composition of the Oleogum Resin Essential Oils of Boswellia dalzielii from Burkina Faso. Plants 2019, 8, 223. [Google Scholar] [CrossRef]
- Kumar Poudel, D.; Dangol, S.; Rokaya, A.; Maharjan, S.; Kumar Ojha, P.; Rana, J.; Dahal, S.; Timsina, S.; Dosoky, N.S.; Satyal, P.; et al. Quality Assessment of Zingiber officinale Roscoe Essential Oil from Nepal. Nat. Prod. Commun. 2022, 17, 1934578X2210803. [Google Scholar] [CrossRef]
- Liu, X.; Ouyang, S.; Yu, B.; Liu, Y.; Huang, K.; Gong, J.; Zheng, S.; Li, Z.; Li, H.; Jiang, H. PharmMapper Server: A Web Server for Potential Drug Target Identification Using Pharmacophore Mapping Approach. Nucleic Acids Res. 2010, 38, W609–W614. [Google Scholar] [CrossRef]
RIexp a | Compound | E1 | E2 | E3 | E4 | E5 | Average | SD |
---|---|---|---|---|---|---|---|---|
881 | 2-Butyl furan | - | - | - | 0.06 | - | 0.06 | - |
924 | α-Thujene | - | - | - | 0.05 | - | 0.05 | - |
932 | α-Pinene | 1.86 | 2.71 | 1.52 | 2.58 | 1.77 | 2.09 | 0.53 |
949 | Camphene | - | - | - | 0.05 | - | 0.05 | - |
971 | Sabinene | 0.28 | 0.54 | 0.26 | 0.48 | 0.28 | 0.37 | 0.13 |
977 | β-Pinene | 1.70 | 2.82 | 1.64 | 2.65 | 1.64 | 2.09 | 0.59 |
988 | Myrcene | 0.62 | 0.86 | 0.76 | 0.73 | 0.57 | 0.71 | 0.12 |
1007 | α-Phellandrene | 8.95 | 11.86 | 8.66 | 12.09 | 8.62 | 10.04 | 1.78 |
1024 | p-Cymene | 1.62 | 3.17 | 1.57 | 3.01 | 1.65 | 2.20 | 0.81 |
1028 | Limonene | 0.40 | 0.63 | 0.44 | 0.56 | 0.39 | 0.48 | 0.11 |
1030 | β-Phellandrene | 0.08 | 0.13 | 0.09 | 0.11 | 0.07 | 0.10 | 0.02 |
1330 | Bicycloelemene | - | - | 0.10 | - | 0.08 | 0.09 | 0.01 |
1335 | δ-Elemene | - | - | 0.08 | 0.07 | - | 0.08 | 0.01 |
1345 | α-Cubebene | - | - | 0.10 | 0.05 | 0.10 | 0.08 | 0.03 |
1367 | α-Ylangene | - | - | 0.14 | - | 0.14 | 0.14 | - |
1374 | α-Copaene | 0.88 | 0.89 | 0.81 | 0.77 | 0.93 | 0.86 | 0.06 |
1386 | β-Cubebene | 0.45 | 0.46 | 0.44 | - | 0.47 | 0.46 | 0.01 |
1388 | β-Elemene | 1.55 | 1.77 | 1.60 | 2.07 | 1.56 | 1.71 | 0.22 |
1405 | β-Maaliene | - | - | - | - | 0.07 | 0.07 | - |
1409 | α-Gurjunene | - | - | - | 0.08 | - | 0.08 | - |
1419 | β-Caryophyllene | 6.31 | 6.57 | 6.23 | 6.60 | 6.52 | 6.45 | 0.17 |
1428 | β-Copaene | 0.78 | 0.61 | 0.66 | - | 0.66 | 0.68 | 0.07 |
1429 | γ-Elemene | - | - | - | 0.16 | - | 0.16 | - |
1431 | trans-α-Bergamotene | 0.62 | 0.61 | 0.55 | 1.02 | 0.62 | 0.68 | 0.19 |
1447 | Z-Muurola-3,5-diene | - | - | 0.09 | 0.09 | 0.12 | 0.10 | 0.02 |
1447 | Isogermacrene D | - | - | - | 0.11 | - | 0.11 | - |
1449 | E-Muurola-3,5-diene | 0.14 | - | 0.14 | 0.12 | 0.12 | 0.13 | 0.01 |
1454 | α-Humulene | 1.90 | 1.91 | 1.85 | 1.86 | 1.83 | 1.87 | 0.03 |
1458 | allo-Aromadendrene | 0.15 | 0.20 | 0.21 | 0.28 | 0.17 | 0.20 | 0.05 |
1460 | Z-Muurola-4(14),5-diene | 0.29 | - | 0.14 | - | 0.27 | 0.23 | 0.08 |
1465 | Z-Cadina-1(6),4-diene | - | 0.23 | - | 0.19 | - | 0.21 | 0.03 |
1472 | Citronellol isobutanoate | 1.03 | 1.23 | 1.44 | 1.09 | - | 1.20 | 0.18 |
1474 | Dodecenol | 0.72 | - | - | - | 0.92 | 0.82 | 0.14 |
1476 | E-Cadina-1(6),4-diene | 0.40 | 0.20 | 0.49 | 0.81 | 0.32 | 0.44 | 0.23 |
1479 | γ-Curcumene | 3.42 | 7.44 | 6.44 | 2.79 | 5.05 | 5.03 | 1.96 |
1484 | Germacrene D | 45.07 | 33.13 | 43.84 | 41.35 | 45.65 | 41.81 | 5.12 |
1488 | β-Selinene | 0.27 | 0.21 | 0.26 | 0.44 | 0.25 | 0.29 | 0.09 |
1492 | 1-Pentadecene | - | 0.81 | - | 0.55 | 1.09 | 0.82 | 0.27 |
1494 | Bicyclogermacrene | 1.73 | 1.55 | 1.53 | 1.93 | 1.20 | 1.59 | 0.27 |
1496 | E-Muurola-4(14),5-diene | 0.54 | 0.41 | 1.16 | 0.23 | - | 0.59 | 0.40 |
1497 | α-Muurolene | 1.19 | 0.91 | 1.33 | - | 1.23 | 1.17 | 0.18 |
1501 | β-Cadinene | 0.18 | 0.13 | 0.20 | 0.24 | 0.17 | 0.18 | 0.04 |
1506 | E,E-α-Farnesene | - | - | 0.09 | - | - | 0.09 | - |
1509 | Shyobunone | 0.17 | 0.18 | 0.88 | 0.10 | 0.07 | 0.28 | 0.34 |
1510 | Cubebol | 0.16 | 0.19 | - | - | - | 0.18 | 0.02 |
1512 | γ-Cadinene | 0.94 | 0.73 | 0.89 | 0.77 | 0.85 | 0.84 | 0.09 |
1517 | δ-Cadinene | 3.89 | 3.03 | 4.14 | 2.99 | 3.34 | 3.48 | 0.52 |
1524 | Isoshyobunone | - | - | - | 0.39 | 0.21 | 0.30 | 0.13 |
1524 | Zonarene | - | - | - | 0.29 | - | 0.29 | - |
1531 | E-Cadina-1,4-diene | 0.20 | 0.16 | 0.21 | - | 0.19 | 0.19 | 0.02 |
1535 | α-Cadinene | 0.27 | 0.21 | 0.23 | 0.23 | 0.23 | 0.23 | 0.02 |
1543 | α-Elemol | 0.12 | 0.16 | - | - | - | 0.14 | 0.03 |
1556 | α-Cadinol | 2.08 | 1.77 | 1.62 | 1.87 | 1.96 | 1.86 | 0.18 |
1557 | Germacrene B | 0.33 | 0.33 | 0.34 | 0.39 | 0.32 | 0.34 | 0.03 |
1560 | E-Nerolidol | 0.66 | 0.56 | 0.58 | 0.41 | 0.58 | 0.56 | 0.09 |
1566 | 1,5-Epoxy salvial-4(14)-ene | 0.42 | 0.39 | 0.28 | 0.41 | 0.39 | 0.38 | 0.06 |
1576 | Germacrene D-4-ol | 1.14 | 1.33 | 0.80 | 1.06 | 1.00 | 1.07 | 0.19 |
1580 | Caryophyllene oxide | 0.82 | 1.14 | 0.60 | 1.63 | 0.75 | 0.99 | 0.41 |
1583 | β-Copaen-4-α-ol | 0.23 | 0.23 | 0.19 | - | 0.23 | 0.22 | 0.02 |
1591 | Salvial-4(14)-en-1-one | 0.27 | 0.23 | 0.19 | 0.28 | 0.28 | 0.25 | 0.04 |
1608 | Humulene epoxide II | 0.30 | 0.35 | 0.11 | 0.29 | 0.18 | 0.25 | 0.10 |
1616 | Junenol | 0.38 | 0.32 | - | - | - | 0.35 | 0.04 |
1621 | Widdrol isomer | 0.25 | 0.31 | 0.29 | - | 0.39 | 0.31 | 0.06 |
1626 | 1-epi-Cubenol | 0.20 | 0.17 | 0.14 | - | 0.17 | 0.17 | 0.02 |
1641 | δ-Cadinol | 0.33 | 0.24 | 0.16 | - | - | 0.24 | 0.09 |
1642 | τ-Cadinol | - | - | - | - | 0.60 | 0.60 | - |
1644 | τ-Muurolol | - | - | - | - | 0.96 | 0.96 | - |
1646 | epi-α-Cadinol | 0.73 | 0.57 | 0.58 | 0.60 | - | 0.62 | 0.07 |
1649 | epi-α-Muurolol | 0.83 | 0.62 | 0.76 | 0.75 | - | 0.74 | 0.09 |
1653 | Eudesm-4(15),7-dien-1 a-ol | 0.08 | 0.20 | - | - | - | 0.14 | 0.08 |
1657 | 7E-Tetradecenol | - | 0.16 | - | - | - | 0.16 | - |
1679 | epi-α-Bisabolol | - | 0.13 | - | - | - | 0.13 | - |
1679 | Germacra-4(15),5,10(14)-trien-1-α-ol | 0.22 | 0.13 | - | - | - | 0.18 | 0.06 |
1685 | Germacra-4(15),5,10(14)-trien-1-β-ol | 0.21 | 0.18 | - | - | - | 0.20 | 0.02 |
1688 | Shyobunol | 1.26 | 1.64 | - | - | - | 1.45 | 0.27 |
1773 | 14-oxy-α-Muurolene | - | - | - | 0.10 | - | 0.10 | - |
1828 | Z-Thujopsenic acid | 0.26 | 0.26 | 0.14 | 0.37 | 0.27 | 0.26 | 0.08 |
1839 | Phytone | 0.12 | 0.15 | 0.08 | 0.13 | 0.15 | 0.13 | 0.03 |
2293 | Tricosane | - | - | - | 0.03 | - | 0.03 | - |
2493 | Pentacosane | - | - | - | 0.04 | - | 0.04 | - |
2692 | Heptacosane | - | - | - | 0.05 | - | 0.05 | - |
2891 | Nonacosane | - | - | - | 0.03 | - | 0.03 | - |
Unidentified | 0.00 | 1.94 | 1.93 | 1.52 | 2.35 |
Chiral Compounds | Average (%) | SD | |
---|---|---|---|
(+) | (−) | ||
α-Pinene | 4.11 | 95.89 | 2.71 |
Sabinene | 20.43 | 79.57 | 4.15 |
β-Pinene | 1.23 | 98.77 | 0.41 |
α-Phellandrene | 100.00 | 0.00 | 0.00 |
Limonene | 49.21 | 50.79 | 10.80 |
α-Copaene | 100.00 | 0.00 | 0.00 |
β-Phellandrene | 48.37 | 51.63 | 0.10 |
β-Elemene | 23.30 | 76.70 | 1.24 |
β-Caryophyllene | 0.00 | 100.00 | 0.00 |
Germacrene D | 9.50 | 90.50 | 2.45 |
δ-Cadinene | 98.60 | 1.40 | 0.82 |
Bacterial Species | MIC (μg/mL) |
---|---|
Citrobacter freundii | 312.5 ± 0.49 |
Escherichia coli | 625.0 ± 0.32 |
Klebsiella pneumoniae | 312.5 ± 0.34 |
Bacillus cereus | 312.5 ± 0.43 |
Pseudomonas aeruginosa | 312.5 ± 0.44 |
Shigella flexneri | 312.5 ± 0.14 |
Staphylococcus aureus | 1250.0 ± 0.28 |
Stroptococcus pyogenes | 625.0 ± 0.21 |
Alcaligenes faecalis | 312.5 ± 0.38 |
Staphylococcus epidermidis | 625.0 ± 0.29 |
Shigella sonnei | 312.5 ± 0.24 |
Enterococcus faecalis | 312.5 ± 0.30 |
Essential Oil or Pure Compound | Activation of [Ca2+]i | Inhibition of fMLF-Induced [Ca2+]i | Chemotaxis | Cytotoxicity (at 24 h) | Cytotoxicity (at 90 min) |
---|---|---|---|---|---|
EC50 (μg/mL) | IC50 (μg/mL) | IC50 (μg/mL) | IC50 (μg/mL) | ||
Echinacea EO | 19.9 ± 4.5 | 1.8 ± 0.6 | 1.7 ± 0.7 | 25–30% (at 50 μg/mL) | n.t. |
EC50 (μM) | IC50 (μM) | IC50 (μM) | IC50 (μM) | ||
β-Caryophyllene | N.A. | 0.13 ± 0.02 | 17.6 ± 5.7 * | n.t. | n.t. |
(+)-δ-Cadinene | 24.6 ± 6.7 | 0.48 ± 0.1 | 7.2 ± 1.6 | n.t. | n.t. |
α-Phellandrene | 20.8 ± 7.5 | 7.9 ± 1.1 | 19.4 ± 1.5 | 35% at 50 μM | n.t. |
Germacrene D | 21.7 ± 7.1 | 1.9 ± 0.1 | 5.4 ± 2.3 * | n.t. | n.t. |
Rank | PDB ID | Target Name | Fit Score |
---|---|---|---|
1 | 1J96 | Aldo-keto reductase family 1 member C2 | 2.974 |
2 | 1REU | Bone morphogenetic protein 2 | 2.948 |
3 | 1PME | Mitogen-activated protein kinase 1 | 2.918 |
4 | 1P49 | Steryl-sulfatase | 2.905 |
5 | 1F40 | Peptidyl-prolyl cis-trans isomerase FKBP1A | 2.901 |
6 | 1E7E | Serum albumin | 2.874 |
7 | 1SHJ | Caspase-7 | 2.842 |
8 | 2PIN | Thyroid hormone receptor beta | 2.837 |
9 | 2P3G | MAP kinase-activated protein kinase 2 | 2.804 |
10 | 1L6L | Apolipoprotein A-II | 2.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dosoky, N.S.; Kirpotina, L.N.; Schepetkin, I.A.; Khlebnikov, A.I.; Lisonbee, B.L.; Black, J.L.; Woolf, H.; Thurgood, T.L.; Graf, B.L.; Satyal, P.; et al. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules 2023, 28, 7330. https://doi.org/10.3390/molecules28217330
Dosoky NS, Kirpotina LN, Schepetkin IA, Khlebnikov AI, Lisonbee BL, Black JL, Woolf H, Thurgood TL, Graf BL, Satyal P, et al. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules. 2023; 28(21):7330. https://doi.org/10.3390/molecules28217330
Chicago/Turabian StyleDosoky, Noura S., Liliya N. Kirpotina, Igor A. Schepetkin, Andrei I. Khlebnikov, Brent L. Lisonbee, Jeffrey L. Black, Hillary Woolf, Trever L. Thurgood, Brittany L. Graf, Prabodh Satyal, and et al. 2023. "Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils" Molecules 28, no. 21: 7330. https://doi.org/10.3390/molecules28217330
APA StyleDosoky, N. S., Kirpotina, L. N., Schepetkin, I. A., Khlebnikov, A. I., Lisonbee, B. L., Black, J. L., Woolf, H., Thurgood, T. L., Graf, B. L., Satyal, P., & Quinn, M. T. (2023). Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Molecules, 28(21), 7330. https://doi.org/10.3390/molecules28217330