Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors
Abstract
:1. Introduction
1.1. About Aptamers
1.2. Aptamers in Biosensors
2. Signal Generation Mechanisms
2.1. Förster Resonance Energy Transfer (FRET)
2.2. Fluorophore-Linked Aptamer Assay (FLAA)
2.3. Fluorescent Light-Up Aptamers (FLAPs)
2.4. Fluorescence Polarization/Fluorescence Anisotropy (FP/FA)
3. Fluorescent Probes
3.1. Organic Molecules as Fluorescent Probes
3.2. Nanomaterials as Fluorescent Probes
4. Signal Amplification Strategies
4.1. DNA Hybridization-Based Signal Amplification Strategies
4.2. Enzyme-Assisted Signal Amplification Strategies
4.3. Nanomaterial-Based Signal Amplification Strategies
Target | Sequence Details (5′-3′) | Affinity | Limit of Detection | Ref. |
---|---|---|---|---|
Anatoxin-a | TGG CGA CAA GAA GAC GTA CAA ACA CGC ACC AGG CCG GAG TGG AGT ATT CTG AGG TCG G | Kd: 81.3 nM | 4.45 pM | [20] |
PTK 7 | ATC TAA CTG CTG CGC CGC CGG GAA AAT ACT GTA CGG TTA GA | Kd: 0.78 nM | 0.016 ng/mL | [21] |
SARS-CoV-2 | CGC AGC ACC CAA GAA CAA GGA CTG CTT AGG ATT GCG ATA GGT TCG GTT TTT | Kd: 43 ± 4 nM | 7 nM | [22] |
ATC CAG AGT GAC GCA GCA AGG GTA TTG GCA GTG GTA GGT ACT GCG TGC GTT GTG GTT CTA GCA TGT TTA ATG GAC ACG GTG GCT TAG T | Kd: 21.2 nM | 106 copies/mL | [37] | |
CAC GTG GCC CAC GTT AAT CCG TTA TAA GTC AAG CTC GAT | Kd: 89.41 ± 18 nM | 41.87 nM | [38] | |
GGG GGC GTC AAG CGG GGT CAC ATC GGA GTA GGG AAT CTT G | Kd: 231.9 ± 15 nM | |||
TTC CGG TTA ATT TAT GCT CTA CCC GTC CAC CTA CCG GAA TTT TTT TTT TTT TTT TTT TTT TTT TTT TTT ACG GGT TTG GCG TCG GGC CTG GCG GGG GGA TAG TGC GGT | Kd: 0.51 nM | 5.1 × 104 TU/mL | [102] | |
Hep G2 cell | ACA GCA TCC CCA TGT GAA CAA TCG CAT TGT GAT TGT TAC GGT TTC CGC CTC ATG GAC GTG CTG | Kd: 4.51 ± 0.39 nM | ~100 cells/ml | [30] |
AGT AAT GCC CGG TAG TTA TTC AAA GAT GAG TAG GAA AAG A | - | - | [90] | |
Ochratoxin A | GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA | Kd: 63 ± 18 nM | 0.0058 ng/mL | [31] |
1 nM | [54] | |||
[106] | ||||
GGC AGT GTG GGC GAA TCT ATG CGT ACC GTT CGA TAT CGT G | Kd: 290 ± 150 nM | 9 nM | [69] | |
GGC GCA TGA TCA TTC GGT GGG TAA GGT GGT GGT AAC GTT G | Kd: 110 ± 50 nM | - | ||
Aflatoxin B1 | CAC GTG TTG TCT CTC TCT GTG TCT CGT G | Kd: 27.7 ± 2.4 nM | 0.046 ng/mL | [31] |
TGC ACG TGT TGT CTC TCT GTG TCT CGT GC | - | 60 pM | [54] | |
TTC TTC TGG CTT GGT GGT TGG TGT GTC TGC TGA TTT GGT A | Kd: 50.45 ± 11.06 nM | 20 ppb | [62] | |
ATC CGT CAC ACC TGC TCT GAC GCT GGG GTC GAC CCG | Kd: 35.6 ± 2.9 nM | 0.05 μg/kg | [88] | |
AGT TGG GCA CGT GTT GTC TCT CTG TGT CTC GTG CCC TTC GCT AGG CCC ACA | - | 0.13 ng/mL | [118] | |
Dopamine | GTC TCT GTG TGC GCC AGA GAA CAC TGG GGC AGA TAT GGG CCA GCA CAG AAT GAG GCC C | Kd: 1.6 μM | 2 nM | [32] |
Thrombin | AGT CCG TGG TAG GGC AGG TTG GGG TGA CT | Kd: 6 nM | 0.76 nM | [33] |
1 nM | [40] | |||
100 pM | [104] | |||
GGT TGG TGT GGT TGG | Kd: 5 nM | 1 nM | [40] | |
240 pM | [101] | |||
100 pM | [104] | |||
Lysozyme | ATC AGG GCT AAA GAG TGC AGA GTT ACT TAG | Kd: 65 nM | 30 nM | [34] |
Ofloxacin | AAG TGA GGT TCG TCC CTT TAA TAA ACT CGA TTA GGA TCT CGT GAG GTG TGC TCT ACA ATC GTA ATC AGT TAG | Kd: 56.9 ± 11.3 nM | 0.12 μM | [35] |
Streptomycin | CGG CAC CAC GGU CGG AUC | - | 33 nM | [39] |
GAU CGC AUU UGG ACU UCU GCC | Kd: 1 μM | |||
ATP (w/MG) | UCC CGA CUG GGG GAG TAT TGC GGA GGA AGG UAA CGA AUG GA | Kd: 50 μM | 10 μM | [46] |
TH (w/MG) | GUC GUA ACG AAU GGA UAC CAU GCA UGC ACC UUG GCA GCC CGA GAC | Kd: 40 μM | 2 μM | |
FMN (w/MG) | GCG GUA ACG AAU GUA GGA UAU GCA UGA UGC AGA AGG ACC GAC GC | Kd: 30 μM | - | |
DFHBI-1T (for Cu2+ ion) | CTT AGT AGG GAT GAT GCG GCA GTG GGC TTC ATC TAT ATA AGA TGA GGG GAC TAA G | Kd: 223.6 nM (w/o Cu2 +) 175.6 μM (w/Cu2+) | 0.1 μM (Cu2+) | [48] |
Nucleolin | GGT GGT GGT GGT TGT GGT GGT GGT GG | Kd: 16.36 ± 10.30 nM | - | [48] |
- | [77] | |||
0.87 pM | [97] | |||
Isa-5a (for Theo) | GGU ACC GGA AUC UGU CGA GUA GAG UGU GGU CGA UAC CAG CCG AAA GGC CCU UGG CAG CGA AGG UCG GGU CCA GAU ACC GGU GCC | Kobs: 0.337 ± 0.0259 nM−1 (no Theo) 2.27 ± 0.953 nM−1 (20 μM Theo) | 782 nM (Theo) | [49] |
DFHBI-1T (for SAM) | GGU ACC GGA AUC UGU CGA GUU GGA GUG UGG UCC GAA AGG AUG GCG GAA ACG CCA GAU GCC UUG UAA CCG AAA GGG GAA GGU CGG UUC CAG AUA CCG GUG CC | Kobs: 0.23 ± 0.04 μM−1 (no SAM) 2.25 ± 0.03 μM−1 (10 μM SAM) | 301 nM (SAM) | |
Theophylline | GGC GAU ACC AGC ACU GGG AAG CCC UUG GCA GCG UC | - | - | [50] |
Adenosine | CCT GGG GGA GTA TTG CGG AGG AAG G | Kd: 6 ± 3 μM | 1 μM | [53] |
ATP | ACC TGG GGG AGT ATT GCG GAG GAA GGT | Kd: 31 ± 3 μM | 0.5 μM | [54] |
400 nM | [111] | |||
SIgA | AAT CTC CCT AAT CTG CTG ATG TTT GTA TTT CAA ATT | Kd: 10.4 nM | - | [56] |
Salivary α-amylase | ATT GTG AAC GAC GTG AAT AGT GTT TGT GGG TCC GGA GTT | Kd: 441 pM | - | |
Immunoglobulin E | GGG GCA CGT TTA TCC GTC CCT AGT GGC GTG CCC C | Kd: 0.8 nM | 20 pM | [57] |
Cortisol | GCCCGCATGTTCCATGGATAGTCTTGACTA | - | - | [63] |
A549 cell | GTG GCC AGT CAC TCA ATT GGG TGT AGG GGT GGG GAT TGT GGG TTG | Kd: 94.6 nM | - | [66] |
Tetracycline | CGT ACG GAA TTC GCT AGC CCC CCG GCA GGC CAC GGC TTG GGT TGG TCC CAC TGC GCG TGG ATC CGA GCT CCA CGT G | Kd: 63.6 nM | 0.029 μg/mL | [70] |
AAA ACA UAC CAG AUU UCG AUC UGG AGA GGU GAA GAA UAC GAC CAC CU | Kd: 1 μM | 0.1 μM | [71] | |
Tat peptide | GGC UCG UUG AGC UCA UUA GCU CCG AGC C | Kd: ~10 nM | - | |
S-Adenosylmethionine | GAA AGG AUG GCG GAA ACG CCA GAU GCC UUG UAA CCG AAA GG | Kd: 1.7 μM | 1 μM | |
Guanosine tetraphosphate | CAG CGA CCG AGC GGU ACA A / ACA CCG UGA GCA UAA AAG GCU CCA | Kd: 10 nM | 1 μM | |
CA125 | AAA AAU GCA UGG AGC GAA GGU GUG GGG GAU ACC AAC CGC GCC GUG | Kd: 4.13 nM | 0.07 ng/mL | [78] |
Acinetobacter baumannii | TAC ATG GTC AAC CAA ATT CTT GCA AAT TCT GCA TTC CTA CTG T | Kd: 7.547 ± 1.353 pM | ~0.5 × 108 cells/mL | [79] |
Listeria monocytogenes | GGG AGC TCA GAA TAA ACG CTC AAT ACT ATC GCG GGA CAG CGC GGG AGG CAC CGG GGA TTC GAC ATG AGG CCC GGA TC | Kd: 48.74 ± 3.11 nM | 8 CFU/mL | [85] |
Staphylococcus aureus | GCA ATG GTA CGG TAC TTC CTC GGC ACG TTC TCA GTA GCG CTC GCT GGT CAT CCC ACA GCT ACG TCA AAA GTG CAC GCT ACT TTG CTA A | - | 10.7 CFU/mL | [86] |
Chloramphenicol | ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA GCC C | - | 0.09 nmol/L | [89] |
CAC CCC ACC TCG CTC CCG TGA CAC TAA TGC TA | Kd: 17.1 nM | - | [116] | |
CD63 | ATA TAC ACC CCA CCT CGC TCC CGT GAC ACT AAT GCT A | - | 0.5 particles/μL (EXO-MCF-7) 0.1 particles/μL (EXO-PANC-1) | [95] |
EpCAM | CAC TAC AGA GGT TGC GTC TGT CCC ACG TTG TCA TGG G | Kd: 22.8 ± 6.0 nM | ||
Mucin 1 | GCA GTT GAT CCT TTG GAT ACC CTG G | Kd: 38.3 nM | 0.75 nM | [97] |
Leptin | GTT AAT GGG GGA TCT CGC GGC CGT TCT TGT TGC TTA TAC A | Kd: 1.5 ± 0.25 μM | 100 pg/mL | [99] |
PDGF | AAG GCT ACG GCA CGT AGA GCA TCA CCA TGA TCC TG | Kd: ~0.1 nM | 6.8 nM | [101] |
Saxitoxin | CTT TTT ACA AAA TTC TCT TTT TAC CTA TAT TAT GAA CAG A | Kd: 61.44 ± 23.18 nM | 0.035 ng/mL | [105] |
Cardiac troponin I | CGT GCA GTA CGC CAA CCT TTC TCA TGC GCT GCC CCT C | Kd: 270 pM | 12.6 pM | [112] |
CGC ATG CCA AAC GTT GCC TCA TAG TTC CCT CCC CGT GTC C | Kd: 317 pM | |||
kanamycin | TGG GGG TTG AGG CTA AGC CGA | Kd: ~78.8 nM | 0.00039 ng/mL | [114] |
H5N1 | TTG GGG TTA TTT GGG AGG GCG GGG GTT | Kd: 24.7 nM | 2 ng/mL | [121] |
Amplification Strategies | Merits | Demerits |
---|---|---|
CHA | Simple design and fewer non-specific reactions. | Less sensitivity due to the low reaction efficiency. |
HCR | High sensitivity due to the high amplification efficiency. | High background due to the non-specifically triggerd opening of the probe. |
RT PCR | Real-time detection during exponential amplification. | Requires expensive equipment for variable temperature nucleic acid amplification and real-time monitoring. |
RCA | Isothermal nucleic acid amplification reaction that does not require separate equipment. High sensitivity due to the high amplification efficiency. | Largely affected by the purity of the circular template. Non-specific binding in complex environments due to the large size of the product. |
LAMP | Various applications are limited due to difficulties in the primer design. | |
Nuclease assisted strategies | Specific amplified signal detection due to the specific site recognition ability and high catalytic efficiency of nuclease. | Nucleases are expensive, have low stability, and are difficult to preserve. |
DNA walker | High directionality, flexibility, accuracy, sensitivity, and efficiency. | Limited applications due to complex systems consisting of DNA walker, DNA track, and driving force. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-Nonenal Newly Found in Human Body Odor Tends to Increase with Aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar] [CrossRef] [PubMed]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary Cortisol as a Biomarker in Stress Research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Vettoretti, M.; Cappon, G.; Acciaroli, G.; Facchinetti, A.; Sparacino, G. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications. J. Diabetes Sci. Technol. 2018, 12, 1064–1071. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Flammer, J. What are the biomarkers for glaucoma? Surv. Ophthalmol. 2007, 52, S155–S161. [Google Scholar] [CrossRef]
- Kumar, R.R.; Kumar, A.; Chuang, C.H.; Shaikh, M.O. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind. Eng. Chem. Res. 2023, 62, 5691–5713. [Google Scholar] [CrossRef]
- Wang, G.; Su, X.; Xu, Q.; Xu, G.; Lin, J.; Luo, X. Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens. Bioelectron. 2018, 101, 129–134. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review). J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef]
- Schmitz, F.R.W.; Valério, A.; de Oliveira, D.; Hotza, D. An overview and future prospects on aptamers for food safety. Appl. Microbiol. Biotechnol. 2020, 104, 6929–6939. [Google Scholar] [CrossRef]
- Kalita, J.J.; Sharma, P.; Bora, U. Recent developments in application of nucleic acid aptamer in food safety. Food Control 2023, 145, 109406. [Google Scholar] [CrossRef]
- Hermann, T.; Patel, D.J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825. [Google Scholar] [CrossRef]
- Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the next generation of diagnostic reagents. Proteom. Clin. Appl. 2012, 6, 563–573. [Google Scholar]
- Munzar, J.D.; Ng, A.; Juncker, D. Duplexed aptamers: History, design, theory, and application to biosensing. Chem. Soc. Rev. 2019, 48, 1390–1419. [Google Scholar]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Ellington, A.; Szostak, J. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar]
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566. [Google Scholar] [CrossRef]
- Ni, S.; Zhuo, Z.; Pan, Y.; Yu, Y.; Li, F.; Liu, J.; Wang, L.; Wu, X.; Li, D.; Wan, Y.; et al. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl. Mater. Interfaces 2021, 13, 9500–9519. [Google Scholar]
- Zhuo, Z.; Yu, Y.; Wang, M.; Li, J.; Zhang, Z.; Liu, J.; Wu, X.; Lu, A.; Zhang, G.; Zhang, B. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine. Int. J. Mol. Sci. 2017, 18, 2142. [Google Scholar]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2022, 69, 1771–1792. [Google Scholar]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar]
- Nguyen, D.-K.; Jang, C.-H. A Simple and Ultrasensitive Colorimetric Biosensor for Anatoxin-a Based on Aptamer and Gold Nanoparticles. Micromachines 2021, 12, 1526. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Liu, Y.; Shi, L.; Yang, D. Multi-carbon dots and aptamer based signal amplification ratiometric fluorescence probe for protein tyrosine kinase 7 detection. J. Nanobiotechnol. 2021, 19, 47. [Google Scholar]
- Curti, F.; Fortunati, S.; Knoll, W.; Giannetto, M.; Corradini, R.; Bertucci, A.; Careri, M. A Folding-Based Electrochemical Aptasensor for the Single-Step Detection of the SARS-CoV-2 Spike Protein. ACS Appl. Mater. Interfaces 2022, 14, 19204–19211. [Google Scholar] [PubMed]
- Chen, H.; Park, S.-G.; Choi, N.; Kwon, H.-J.; Kang, T.; Lee, M.-K.; Choo, J. Sensitive Detection of SARS-CoV-2 Using a SERS-Based Aptasensor. ACS Sens. 2021, 6, 2378–2385. [Google Scholar] [CrossRef] [PubMed]
- Kara, N.; Ayoub, N.; Ilgu, H.; Fotiadis, D.; Ilgu, M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023, 28, 3728. [Google Scholar]
- Schäferling, M. The art of fluorescence imaging with chemical sensors. Angew. Chem. Int. Ed. 2012, 51, 3532. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, X.; Zhao, S.; Cui, X.; Gong, T.; Song, Z.; Meng, H.; Zhang, X.; Yu, B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119038. [Google Scholar] [CrossRef]
- Clegg, R.M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110. [Google Scholar]
- Shi, J.; Tian, F.; Lyu, J.; Yang, M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J. Mater. Chem. B 2015, 3, 6989–7005. [Google Scholar]
- Zhang, X.; Hu, Y.; Yang, X.; Tang, Y.; Han, S.; Kang, A.; Deng, H.; Chi, Y.; Zhu, D.; Lu, Y. FOrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 2019, 138, 111314. [Google Scholar]
- Lai, Z.; Tan, J.; Wan, R.; Tan, J.; Zhang, Z.; Hu, Z.; Li, J.; Yang, W.; Wang, Y.; Jiang, Y.; et al. An ‘activatable’ aptamer-based fluorescence probe for the detection of HepG2 cells. Oncol. Rep. 2017, 37, 2688–2694. [Google Scholar]
- Suo, Z.; Liang, X.; Jin, H.; He, B.; Wei, M. A signal-enhancement fluorescent aptasensor based on the stable dual cross DNA nanostructure for simultaneous detection of OTA and AFB1. Anal. Bioanal. Chem. 2021, 413, 7587–7595. [Google Scholar] [PubMed]
- Xu, J.; Li, Y.; Wang, L.; Huang, Y.; Liu, D.; Sun, R.; Luo, J.; Sun, C. A facile aptamer-based sensing strategy for dopamine through the fluorescence resonance energy transfer between rhodamine B and gold nanoparticles. Dyes Pigm. 2015, 123, 55–63. [Google Scholar]
- Li, J.; Hu, X.; Shi, S.; Zhang, Y.; Yao, T. Three label-free thrombin aptasensors based on aptamers and [Ru(bpy)(2)(o-mopip)]2+. J. Mater. Chem. B 2016, 4, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, K.; Dhakal, S. FRET-Based Aptasensor for the Selective and Sensitive Detection of Lysozyme. Sensors 2020, 20, 914. [Google Scholar] [CrossRef]
- Ben Aissa, S.; Mastouri, M.; Catanante, G.; Raouafi, N.; Marty, J.L. Investigation of a Truncated Aptamer for Ofloxacin Detection Using a Rapid FRET-Based Apta-Assay. Antibiotics 2020, 9, 860. [Google Scholar] [CrossRef]
- Seo, H.B.; Gu, M.B. Aptamer-based sandwich-type biosensors. J. Biol. Eng. 2017, 11, 11. [Google Scholar]
- Yang, L.F.; Kacherovsky, N.; Panpradist, N.; Wan, R.; Liang, J.; Zhang, B.; Salipante, S.J.; Lutz, B.R.; Pun, S.H. Aptamer Sandwich Lateral Flow Assay (AptaFlow) for Antibody-Free SARS-CoV-2 Detection. Anal. Chem. 2022, 94, 7278–7285. [Google Scholar] [CrossRef]
- Franco-Urquijo, P.A.; Sierra-Martínez, M.; Jarquín-Martínez, M.; Martínez-Roque, M.A.; García-Velásquez, V.M.; Acosta-Altamirano, G.; Ruiz-Pérez, N.J.; Toscano-Garibay, J.D.; Alvarez-Salas, L.M. Fluorescence-Linked Aptamer Assay for SARS-CoV-2 Spike-Protein: A Step-by-Step Performance Analysis in Clinical Samples. Diagnostics 2022, 12, 2829. [Google Scholar]
- Zhu, Q.; Liu, L.; Wang, R.; Zhou, X. A split aptamer (SPA)-based sandwich-type biosensor for facile and rapid detection of streptomycin. J. Hazard. Mater. 2021, 403, 123941. [Google Scholar] [CrossRef]
- Xu, B.; Zhao, C.; Wei, W.; Ren, J.; Miyoshi, D.; Sugimoto, N.; Qu, X. Aptamer carbon nanodot sandwich used for fluorescent detection of protein. Analyst 2012, 137, 5483–5486. [Google Scholar]
- Bruno, J.G.; Phillips, T.; Richarte, A.M.; Montez, T.; Garcia, A.; Sivils, J.C. Fluorescent DNA Aptamer-Magnetic Bead Sandwich Assays and Portable Fluorometer for Sensitive and Rapid Foodborne Pathogen Detection and Epidemiology. J. Infect. Dis. Epidemiol. 2016, 2, 011. [Google Scholar] [CrossRef]
- Grate, D.; Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 1999, 96, 6131–6136. [Google Scholar] [CrossRef] [PubMed]
- Paige, J.S.; Wu, K.Y.; Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 2011, 333, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Dolgosheina, E.V.; Jeng, S.C.Y.; Panchapakesan, S.S.S.; Cojocaru, R.; Chen, P.S.K.; Wilson, P.D.; Hawkins, N.; Wiggins, P.A.; Unrau, P.J. RNA mango aptamer-fluorophore: A bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 2014, 9, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, J. RNA fluorescence with light-up aptamers. Front. Chem. 2016, 4, 29. [Google Scholar] [CrossRef]
- Stojanovic, M.N.; Kolpashchikov, D.M. Modular aptameric sensors. J. Am. Chem. Soc. 2004, 126, 9266–9270. [Google Scholar] [CrossRef]
- Lee, E.-S.; Lee, J.M.; Kim, H.-J.; Kim, Y.-P. Fluorogenic Aptasensors with Small Molecules. Chemosensors 2021, 9, 54. [Google Scholar] [CrossRef]
- Mou, Y.; Yin, P.; Chen, M.; Wei, C.; Zhang, Y.; Zhang, J.; Zhao, Y.; Luo, X.; Wang, Y. Engineering of An Aptamer-Functionalized Fluorescent DNA Sensor for Cu(II) Responding in Living Tumor Cells. Anal. Chem. 2023, 95, 8348–8356. [Google Scholar] [CrossRef]
- Endoh, T.; Tan, J.H.; Chen, S.B.; Sugimoto, N. Cladogenetic Orthogonal Light-Up Aptamers for Simultaneous Detection of Multiple Small Molecules in Cells. Anal. Chem. 2023, 95, 976–985. [Google Scholar] [CrossRef]
- Sett, A.; Zara, L.; Dausse, E.; Toulmé, J. A Malachite Green Light-up Aptasensor for the Detection of Theophylline. Talanta 2021, 232, 122417. [Google Scholar] [CrossRef]
- Jameson, D.M.; Ross, J.A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 2010, 110, 2685–2708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Tao, J.; Feng, W.; Uppal, J.S.; Peng, H.; Le, X.C. Aptamer binding assays and molecular interaction studies using fluorescence anisotropy—A review. Anal. Chim. Acta 2020, 1125, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Ravelet, C.; Perrier, S.; Guieu, V.; Fiore, E.; Peyrin, E. Single-stranded DNA binding protein-assisted fluorescence polarization aptamer assay for detection of small molecules. Anal. Chem. 2012, 84, 7203–7211. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Q. Aptamer Structure Switch Fluorescence Anisotropy Assay for Small Molecules Using Streptavidin as an Effective Signal Amplifier Based on Proximity Effect. Anal. Chem. 2019, 91, 7379–7384. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Q. Aptamer Structure Switch Fluorescence Anisotropy Assay for Aflatoxin B1 Using Tetramethylrhodamine-Guanine Interaction to Enhance Signal Change. Chin. Chem. Lett. 2020, 31, 1982–1985. [Google Scholar] [CrossRef]
- Minagawa, H.; Shimizu, A.; Kataoka, Y.; Kuwahara, M.; Kato, S.; Horii, K.; Shiratori, I.; Waga, I. Fluorescence Polarization-Based Rapid Detection System for Salivary Biomarkers Using Modified DNA Aptamers Containing Base-Appended Bases. Anal. Chem. 2020, 92, 1780–1787. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, Y.; Wang, H. Directing a Rational Design of Aptamer-Based Fluorescence Anisotropy Assay for Sensitive Detection of Immunoglobulin E by Site-Specific Binding Study. Talanta 2020, 217, 121018. [Google Scholar] [CrossRef]
- Terai, T.; Nagano, T. Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol. 2008, 12, 515–521. [Google Scholar] [CrossRef]
- Pak, Y.L.; Swamy, K.M.K.; Yoon, J. Recent Progress in Fluorescent Imaging Probes. Sensors 2015, 15, 24374–24396. [Google Scholar] [CrossRef]
- Duan, N.; Yang, S.; Tian, H.; Sun, B. The recent advance of organic fluorescent probe rapid detection for common substances in beverages. Food Chem. 2021, 358, 129839. [Google Scholar] [CrossRef]
- Singuru, M.M.R.; Sun, S.-C.; Chuang, M.C. Advances in oligonucleotide-based detection coupled with fluorescence resonance energy transfer. TrAC-Trends Anal. Chem. 2020, 123, 115756. [Google Scholar]
- Shi, H.; Lei, Y.; Ge, J.; He, X.; Cui, W.; Ye, X.; Liu, J.; Wang, K. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging. Anal. Chem. 2019, 91, 9154–9160. [Google Scholar] [PubMed]
- Setlem, S.K.; Mondal, B.; Ramlal, S. A Fluorescent Aptasensor for the Detection of Aflatoxin B1 by Graphene Oxide Mediated Quenching and Release of Fluorescence. J. Microbiol. Methods 2022, 193, 106414. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Salguero, K.; Freeley, M.; Chávez, J.L.; Palma, M. Single-Molecule DNA Origami Aptasensors for Real-Time Biomarker Detection. J. Mater. Chem. B 2020, 8, 6352–6356. [Google Scholar] [PubMed]
- Li, L.; Dong, X.; Li, J.; Wei, J. A short review on NIR-II organic small molecule dyes. Dyes Pigm. 2020, 183, 108756. [Google Scholar]
- Nolting, D.D.; Gore, J.C.; Pham, W. NEAR-INFRARED DYES: Probe Development and Applications in Optical Molecular Imaging. Curr. Org. Synth. 2011, 4, 521–534. [Google Scholar] [CrossRef]
- Simard, B.; Tomanek, B.; van Veggelc, F.C.J.M.; Abulrob, A. Optimal dye-quencher pairs for the design of an “activatable” nanoprobe for optical imaging. Photochem. Photobiol. Sci. 2013, 12, 1824–1829. [Google Scholar] [CrossRef]
- Petrovics, R.; Söveges, B.; Egyed, A.; Knorr, G.; Kormos, A.; Imre, T.; Török, G.; Zeke, A.; Kocsmár, É.; Lotz, G.; et al. A rapid and concise setup for the fast screening of FRET pairs using bioorthogonalized fluorescent dyes. Org. Biomol. Chem. 2018, 16, 2997–3005. [Google Scholar] [CrossRef]
- McKeague, M.; Velu, R.; Hill, K.; Bardóczy, V.; Mészáros, T.; DeRosa, M.C. Selection and Characterization of a Novel DNA Aptamer for Label-Free Fluorescence Biosensing of Ochratoxin A. Toxins 2014, 6, 2435–2452. [Google Scholar]
- Sun, C.; Su, R.; Bie, J.; Sun, H.; Qiao, S.; Ma, X.; Sun, R.; Zhang, T. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes Pigm. 2018, 149, 867–875. [Google Scholar] [CrossRef]
- Mi, L.; Yu, Q.; Karunanayake Mudiyanselage, A.P.K.K.; Wu, R.; Sun, Z.; Zheng, R.; Ren, K.; You, M. Genetically Encoded RNA-Based Bioluminescence Resonance Energy Transfer (BRET) Sensors. ACS Sens. 2023, 8, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Pfleger, K.D.; Eidne, K.A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat. Methods 2006, 3, 165–174. [Google Scholar] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar]
- Martynenko, I.V.; Litvin, A.P.; Purcell-Milton, F.; Baranov, A.V.; Fedorov, A.V.; Gun’ko, Y.K. Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B 2017, 5, 6701–6727. [Google Scholar]
- Ma, F.; Li, C.; Zhang, C. Development of quantum dot-based biosensors: Principles and applications. J. Mater. Chem. B 2018, 6, 6173–6190. [Google Scholar]
- Xu, J.; Hu, R.; Wang, Q.; Wang, P.; Bao, H. Extracellular biosynthesis of biocompatible CdSe quantum dots. IET Nanobiotechnol. 2019, 13, 962–966. [Google Scholar] [CrossRef]
- Lian, S.; Zhang, P.; Gong, P.; Hu, D.; Shi, B.; Zeng, C.; Cai, L. A Universal Quantum Dots-Aptamer Probe for Efficient Cancer Detection and Targeted Imaging. J. Nanosci. Nanotechnol. 2012, 12, 7703–7708. [Google Scholar] [CrossRef]
- Jin, H.; Gui, R.; Gong, J.; Huang, W. Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens. Bioelectron. 2017, 92, 378–384. [Google Scholar] [CrossRef]
- Ayed, Z.; Malhotra, S.; Dobhal, G.; Goreham, R.V. Aptamer Conjugated Indium Phosphide Quantum Dots with a Zinc Sulphide Shell as Photoluminescent Labels for Acinetobacter baumannii. Nanomaterials 2021, 11, 3317. [Google Scholar] [CrossRef]
- Delices, A.; Moodelly, D.; Hurot, C.; Hou, Y.; Ling, W.L.; Saint-Pierre, C.; Gasparutto, D.; Nogues, G.; Reiss, P.; Kheng, K. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 44026–44038. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar]
- Wang, C.; Lia, X.; Zhang, F. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 2016, 141, 3601–3620. [Google Scholar] [CrossRef]
- Bergstrand, J.; Liu, Q.; Huang, B.; Peng, X.; Würth, C.; Resch-Genger, U.; Zhan, Q.; Widengren, J.; Ågren, H.; Liu, H. On the decay time of upconversion luminescence. Nanoscale 2019, 11, 4959–4969. [Google Scholar] [CrossRef]
- Duan, N.; Wu, S.; Zhu, C.; Ma, X.; Wang, Z.; Yu, Y.; Jiang, Y. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal. Chim. Acta 2012, 723, 1–6. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Ali, S.; Haruna, S.A.; He, P.; Li, H.; Ouyang, Q.; Chen, Q. Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021, 122, 107808. [Google Scholar] [CrossRef]
- Ouyang, Q.; Yang, Y.; Ali, S.; Wang, L.; Li, H.; Chen, Q. Upconversion nanoparticles-based FRET system for sensitive detection of Staphylococcus aureus. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 255, 119734. [Google Scholar] [CrossRef]
- Swierczewska, M.; Lee, S.; Chen, X. The design and application of fluorophore-gold nanoparticle activatable probes. Phys. Chem. Chem. Phys. 2011, 13, 9929–9941. [Google Scholar] [CrossRef]
- Guo, X.; Wen, F.; Qiao, Q.; Zheng, N.; Saive, M.; Fauconnier, M.-L.; Wang, J. A Novel Graphene Oxide-Based Aptasensor for Amplified Fluorescent Detection of Aflatoxin M1 in Milk Powder. Sensors 2019, 19, 3840. [Google Scholar] [CrossRef]
- Lu, Z.; Jiang, Y.; Wang, P.; Xiong, W.; Qi, B.; Zhang, Y.; Xiang, D.; Zhai, K. Bimetallic organic framework-based aptamer sensors: A new platform for fluorescence detection of chloramphenicol. Anal. Bioanal. Chem. 2020, 412, 5273–5281. [Google Scholar] [CrossRef]
- Zhang, W.-H.; Hu, X.; Zhang, X. Dye-Doped Fluorescent Silica Nanoparticles for Live Cell and In Vivo Bioimaging. Nanomaterials 2016, 6, 81. [Google Scholar] [CrossRef]
- Gubala, V.; Giovannini, G.; Kunc, F.; Monopoli, M.P.; Moore, C.J. Dye-doped silica nanoparticles: Synthesis, surface chemistry and bioapplications. Cancer Nanotechnol. 2020, 11, 1. [Google Scholar] [CrossRef]
- Hu, Z.; Tan, J.; Lai, Z.; Zheng, R.; Zhong, J.; Wang, Y.; Li, X.; Yang, N.; Li, J.; Yang, W.; et al. Aptamer Combined with Fluorescent Silica Nanoparticles for Detection of Hepatoma Cells. Nanoscale Res. Lett. 2017, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.; Ouldridge, T.E.; Sulc, P.; Schaeffer, J.M.; Yurke, B.; Louis, A.A.; Doye, J.P.; Winfree, E. On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res. 2013, 22, 10641–10658. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Choi, H.M.; Calvert, C.R.; Pierce, N.A. Programming biomolecular self-assembly pathways. Nature 2008, 451, 318–322. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, Q.; Huang, Z.; Xiong, H.; Yang, B.; Chen, H.; Kong, J. Aptamer-Initiated Catalytic Hairpin Assembly Fluorescence Assay for Universal, Sensitive Exosome Detection. Anal. Chem. 2022, 94, 5723–5728. [Google Scholar] [CrossRef]
- Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Zhang, Y.; He, J.; Li, M.; Huang, W.; Yuan, R.; Xu, W. Modular DNA Tetrahedron Nanomachine-Guided Dual-Responsive Hybridization Chain Reactions for Discernible Bivariate Assay and Cell Imaging. Anal. Chem. 2023, 95, 10337–10345. [Google Scholar] [CrossRef]
- VanGuilder, H.D.; Vrana, K.E.; Freeman, W.M. Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 2008, 44, 619–626. [Google Scholar] [CrossRef]
- Cavallo, F.R.; Mirza, K.B.; de Mateo, S.; Nikolic, K.; Rodriguez-Manzano, J.; Toumazou, C. Aptasensor for Quantification of Leptin Through PCR Amplification of Short DNA-Aptamers. ACS Sens. 2021, 6, 709–715. [Google Scholar] [CrossRef]
- Lizardi, P.M.; Huang, X.H.; Zhu, Z.R.; Ward, P.B.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 1998, 19, 225–232. [Google Scholar] [CrossRef]
- Bialy, R.M.; Ali, M.M.; Li, Y.; Brennan, J.D. Protein-Mediated Suppression of Rolling Circle Amplification for Biosensing with an Aptamer-Containing DNA Primer. Chem. Eur. J. 2020, 26, 5085. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, C.; He, S.; Xu, D. An Ultrasensitive Fluorescence Aptasensor for SARS-CoV-2 Antigen Based on Hyperbranched Rolling Circle Amplification. Talanta 2023, 255, 124221. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Aubret, M.; Savonnet, M.; Laurent, P.; Roupioz, Y.; Cubizolles, M.; Buhot, A. Development of an Innovative Quantification Assay Based on Aptamer Sandwich and Isothermal Dumbbell Exponential Amplification. Anal. Chem. 2022, 94, 3376–3385. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Hao, L.; Ye, H.; Ma, P.; Wang, Z. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Microchim. Acta 2021, 188, 118. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Li, B.; Du, J.; Yang, Z. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Microchim. Acta 2020, 187, 46. [Google Scholar] [CrossRef]
- Zhong, Z.-T.; Ashraf, G.; Chen, W.; Song, L.-B.; Zhang, S.-J.; Liu, B.; Zhao, Y.-D. A new strategy based on duplex-specific nuclease and DNA aptamer with modified hairpin structure for various analytes detection. Microchem. J. 2022, 179, 107510. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.L.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.B.; Jiang, W.Y.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Makhawi, A.M. SHERLOCK and DETECTR: CRISPR-Cas Systems as Potential Rapid Diagnostic Tools for Emerging Infectious Diseases. J. Clin. Microbiol. 2021, 59, e02459-20. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, J.; Liu, G.; Yin, L.; Ren, S.; Man, S.; Ma, L. CRISPR-Cas12a based aptasensor for sensitive and selective ATP detection. Sens. Actuators B Chem. 2020, 320, 128164. [Google Scholar] [CrossRef]
- Feng, Z.-Y.; Liu, R.; Li, X.; Zhang, J. Harnessing the CRISPR-Cas13d System for Protein Detection by Dual-Aptamer-Based Transcription Amplification. Chem. Eur. J. 2023, 29, e202202693. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Tang, D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal. Chim. Acta 2021, 1171, 338523. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, M.; Li, B. DNAzyme-powered DNA walking machine for ultrasensitive fluorescence aptasensing of kanamycin. Microchim. Acta 2020, 187, 678. [Google Scholar] [CrossRef] [PubMed]
- Modh, H.; Scheper, T.; Walter, J.-G. Aptamer-Modified Magnetic Beads in Biosensing. Sensors 2018, 18, 1041. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Pan, Z.; Zhu, X.; Yang, R.; Yang, R.; Yang, T.; Hu, D.; Jing, A.; Liang, G. Mesoporous magnetic nanoparticles conjugated aptamers for exosomes capture and detection of Alzheimer’s disease. Eng. Regen. 2023, 4, 349–356. [Google Scholar] [CrossRef]
- He, X.; Zhao, Y.; He, D.; Wang, K.; Xu, F.; Tang, J. ATP-Responsive Controlled Release System Using Aptamer-Functionalized Mesoporous Silica Nanoparticles. Langmuir 2012, 28, 12909–12915. [Google Scholar] [CrossRef]
- Tan, H.; Ma, L.; Guo, T.; Zhou, H.; Chen, L.; Zhang, Y.; Dai, H.; Yu, Y. A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Anal. Chim. Acta 2019, 1068, 87–95. [Google Scholar] [CrossRef]
- Tam, F.; Goodrich, G.P.; Johnson, B.R.; Halas, N.J. Plasmonic Enhancement of Molecular Fluorescence. Nano Lett. 2007, 7, 496–501. [Google Scholar] [CrossRef]
- Sundaresan, S.M.; Fothergill, S.M.; Tabish, T.A.; Ryan, M.; Xie, F. Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool. Appl. Phys. Rev. 2021, 8, 041311. [Google Scholar] [CrossRef]
- Pang, Y.; Rong, Z.; Wang, J.; Xiao, R.; Wang, S. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens. Bioelectron. 2015, 66, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015, 20, 11959–11980. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Shin, S.; Kim, S.; Park, N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules 2023, 28, 7327. https://doi.org/10.3390/molecules28217327
Lee M, Shin S, Kim S, Park N. Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules. 2023; 28(21):7327. https://doi.org/10.3390/molecules28217327
Chicago/Turabian StyleLee, Minhyuk, Seonhye Shin, Sungjee Kim, and Nokyoung Park. 2023. "Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors" Molecules 28, no. 21: 7327. https://doi.org/10.3390/molecules28217327
APA StyleLee, M., Shin, S., Kim, S., & Park, N. (2023). Recent Advances in Biological Applications of Aptamer-Based Fluorescent Biosensors. Molecules, 28(21), 7327. https://doi.org/10.3390/molecules28217327