Ca-Doped Copper (I) Oxide Deposited via the Spray Coating Technique for Heterojunction Solar Cell Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Resistivity
2.2. X-ray Diffraction
2.3. Hall Measurement
2.4. Morphology Analysis via the SEM and TEM Methods
2.5. Atomic Force Microscopy
2.6. UV-Vis Measurement
2.7. X-ray Photoemission Spectroscopy
2.8. Current-Voltage Measurement
3. Materials and Methods
3.1. Copper Oxide Preparation
3.2. Fabrication of Solar Cells
3.3. Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nunes, D.; Pimentel, A.; Barquinha, P.; Carvalho, P.A.; Fortunato, E.; Martins, R. Cu2O polyhedral nanowires produced by microwave irradiation. J. Mater. Chem. C 2014, 2, 6097–6103. [Google Scholar] [CrossRef]
- Figueiredo, V.; Elangovan, E.; Gonçalves, G.; Franco, N.; Alves, E.; Park, S.H.K. Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature. Phys. Status Solidi 2009, 206, 2143–2148. [Google Scholar] [CrossRef]
- Biccari, F. Defects and Doping in Cu2O: General Properties and Applications. Ph.D. Thesis, University of Rome, Rome, Italy, 2010. [Google Scholar]
- Huang, C.Y.; Yuan, S.H.; Li, T.L.; Tu, W.C. High-performance solution-processed flexible Cu2O photodetector via UV-irradiation. Optik 2021, 247, 167949. [Google Scholar] [CrossRef]
- Tenailleau, C.; Salek, G.; Le, T.L.; Duployer, B.; Demai, J.J.; Dufour, P.; Guillemet-Fritsch, S. Heterojunction p-Cu2O/ZnO-n solar cell fabricated byspark plasma sintering. Mater. Renew. Sustain. Energy 2017, 6, 18. [Google Scholar] [CrossRef]
- Lee, M.Y.S.; Winkler, T.; Siah, S.C.; Brandt, R.; Buonassisi, T. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Appl. Phys. Lett. 2011, 98, 192115. [Google Scholar] [CrossRef]
- Salloom, H.T.; Jasim, R.I.; Habubi, N.F.; Chiad, S.S.; Jadan, M.; Addasi, J.S. Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber. Chin. Phys. B 2021, 30, 068505. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Obstarczyk, A.; Mańkowska, E.; Mazur, M.; Kaczmarek, D.; Zakrzewska, K.; Mazur, P.; Domaradzki, J. Thermal oxidation impact on the optoelectronic and hydrogen sensing properties of p-type copper oxide thin films. Mater. Res. Bull. 2021, 147, 111646. [Google Scholar] [CrossRef]
- Lee, H.; Zhang, X.; Kim, B.; Bae, J.H.; Park, J. Effects of Iodine Doping on Electrical Characteristics of Solution-Processed Copper Oxide Thin-Film Transistors. Materials 2021, 14, 6118. [Google Scholar] [CrossRef]
- Zabed, H.M.; Islam, J.; Chowdhury, F.I.; Zhao, M.; Awasthi, M.K.; Nizami, A.S.; Uddin, J.; Thomas, S.; Qi, X.H. Recent insights into heterometal-doped copper oxide nanostructure-based catalysts for renewable energy conversion and generation. Renew. Sustain. Energy Rev. 2022, 168, 112887. [Google Scholar] [CrossRef]
- Bergerot, L.; Jiménez, C.; Chaix-Pluchery, O.; Rapenne, L.; Deschanvres, J.L. Growth and characterization of Sr-doped Cu2O thin films deposited by metalorganic chemical vapor deposition. Phys. Status Solidi A 2015, 212, 1735–1741. [Google Scholar] [CrossRef]
- Zuo, C.H.; Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small 2015, 11, 5528–5532. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.H.; Chen, Y.H.; Sakalley, S.; Cheng, W.C.; Chan, C.K.; Chen, C.P.; Chen, S.C. Highly Stable and Enhanced Performance of p–i–n Perovskite Solar Cells via Cuprous Oxide Hole-Transport Layers. Nanomaterials 2023, 13, 1363. [Google Scholar] [CrossRef] [PubMed]
- Arjun, V.; Muthukumaran, K.P.; Ramachandran, K.; Nithya, A.; Karuppuchamy, S. Fabrication of efficient and stable planar perovskite solar cell using copper oxide as hole transport material. J. Alloy. Compd. 2022, 923, 166285. [Google Scholar] [CrossRef]
- Green, M.; Ho-Baillie, A. The Emergence of Perovskite Solar Cells. Nat. Photon 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Snaith, H.J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630. [Google Scholar] [CrossRef]
- Bush, K.; Palmstrom, A.; Yu, Z. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009. [Google Scholar] [CrossRef]
- Sutton, R.J.; Eperon, G.E.; Miranda, L.; Parrott, E.S.; Kamino, B.A.; Patel, J.B.; Hörantner, M.T.; Johnston, M.B.; Haghighirad, A.A.; Moore, D.T.; et al. Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Adv. Energy Mater. 2016, 6, 1502458. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Chmiel, F. Heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2, 17135. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Noel, N.K.; Habisreutinger, S.N.; Petrozza, A.; Snaith, H.J. Stability of Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1500963. [Google Scholar] [CrossRef]
- Hubička, Z.; Zlámal, M.; Čada, M.; Kment, Š.; Krýsa, J. Photo-electrochemical stability of copper oxide photocathodes deposited by reactive high power impulse magnetron sputtering. Catal. Today 2019, 328, 29–34. [Google Scholar] [CrossRef]
- Mazanik, A.V.; Kulak, A.I.; Bondarenko, E.A.; Korolik, O.V.; Mahon, N.S.; Streltsov, E.A. Strong room temperature exciton photoluminescence in electrochemically deposited Cu2O films. J. Lumin. 2022, 251, 119227. [Google Scholar] [CrossRef]
- Singh, S.S.; Shougaijam, B.; Alam, M.W.; Singh, N.K. Post-deposition annealing effects of copper oxide (Cu2O) thin film deposited using E-beam evaporation. J. Mater. Sci. Mater. Electron. 2023, 34, 854. [Google Scholar] [CrossRef]
- Starowicz, Z.; Gawlińska Nęcek, K.; Socha, R.P.; Płociński, T.; Zdunek, J.; Szczerba, M.J.; Panek, P. Materials studies of copper oxides obtained by low temperature oxidation of copper sheets. Mater. Sci. Semicond. Process. 2021, 121, 105368. [Google Scholar] [CrossRef]
- Galeazzi Isasmendi, R.; Gonzalez Panzo, I.J.; Morales-Ruiz, C.; Romano Trujillo, R.; Rosendo, E.; García, I.; Coyopol, A.; García-Salgado, G.; Silva-González, R.; Arias, I.O.; et al. Copper Oxide Films Deposited by Microwave Assisted Alkaline Chemical Bath. Crystals 2021, 11, 968. [Google Scholar] [CrossRef]
- Eom, T.; Kim, S.; Agbenyeke, R.E.; Jung, H.; Shin, S.M.; Lee, Y.K.; Kim, C.G.; Chung, T.; Jeon, N.J.; Hejin Park, H.; et al. Copper Oxide Buffer Layers by Pulsed-Chemical Vapor Deposition for Semitransparent Perovskite Solar Cells. Adv. Mater. Interfaces 2021, 8, 2001482. [Google Scholar] [CrossRef]
- Iivonen, T.; Heikkilä, M.J.; Popov, P.; Nieminen, H.E.; Kaipio, M.; Kemell, M.; Mattinen, M.; Meinander, K.; Mizohata, K.; Räisänen, J.; et al. Atomic Layer Deposition of Photoconductive Cu2O Thin Films. ACS Omega 2019, 4, 11205–11214. [Google Scholar] [CrossRef]
- Paredes-Sanchez, C.; Sanchez-Alarcon, R.I.; Hernandez-Silva, O.; Lartundo-Rojas, L.; Alarcon-Flores, G.; Perez-Cappe, E.; Mosqueda-Laffita, Y.; Mesa-Perez, G.; Falcony, C.; Garduno-Wilches, I.A. Ultrasonic spray pyrolyzed copper oxide and copper-aluminum oxide thin films: Optical, structural and electronic properties. Mater. Res. Express 2019, 6, 026424. [Google Scholar] [CrossRef]
- Prabu, R.D.; Valanarasu, S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Kathalingam, A. Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray-coated Cu2O thin films. Surf. Interface Anal. 2018, 50, 346–353. [Google Scholar] [CrossRef]
- Kosugi, T.; Kaneko, S. Novel spray-pyrolysis deposition of cuprous oxide thin films. J. Am. Ceram. Soc. 1998, 81, 3117–3124. [Google Scholar] [CrossRef]
- Prabu, R.D.; Valanarasu, S.; Ganesh, V.; Shkir, M.; Kathalingam, A.; AlFaify, S. Effect of spray pressure on optical, electrical and solar cell efficiency of novel Cu2O thin films. Surf. Coat. Technol. 2018, 347, 164–172. [Google Scholar] [CrossRef]
- Papadimitriou, L.; Dimitriadis, C.A.; Dozsa, L. Trap centers in cuprous oxide. Solid State Electron. 1988, 31, 1477–1482. [Google Scholar] [CrossRef]
- Nolan, M.; Elliott, S.D. Tuning the electronic structure of the transparent conducting oxide Cu2O. Thin Solid Film. 2008, 516, 1468–1472. [Google Scholar] [CrossRef]
- Kardarian, K.; Nunes, D.; Sberna, P.M.; Ginsburg, A.; Keller, D.A.; Vaz Pinto, J.; Deuermeier, J.; Anderson, A.Y.; Zaban, A.; Martins, R.; et al. Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 27–36. [Google Scholar] [CrossRef]
- Nyborg, M.; Azarov, A.; Bergum, K.; Monakhov, E. Deposition and characterization of lithium doped direct current magnetron sputtered Cu2O films. Thin Solid Film. 2021, 722, 138573. [Google Scholar] [CrossRef]
- Pastor, L.H.; Díaz Becerril, T.; Arellano, M.G.; Sierra, R.P. Sodium doping of Cu2O layers by reactive annealing of Cu2O covered with a NaCl nano-film in a low-oxygen atmosphere. Thin Solid Film. 2020, 693, 137711. [Google Scholar] [CrossRef]
- Elfadill, N.G.; Hashim, M.R.; Chahrour, K.M.; Mohammed, S.A. Electrochemical deposition of Na-doped p-type Cu2O film on n type Si for photovoltaic application. J. Electroanal. Chem. 2016, 767, 7–12. [Google Scholar] [CrossRef]
- Zang, Z.; Nakamura, A.; Temmyo, J. Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Mater. Lett. 2013, 92, 188–191. [Google Scholar] [CrossRef]
- Li, B.; Lin, L.; Shen, H.L.; Boafo, F.E.; Chen, Z.F.; Liu, B.; Zhang, R. Effect of chloride ions on the structural, optical, morphological, and electrochemical properties of Cu2O films electrodeposited on fluorine-doped tin oxide substrate from a DMSO solution. Eur. Phys. J. Appl. Phys. 2012, 58, 20303. [Google Scholar] [CrossRef]
- Chafi, F.Z.; Fares, B.; Hadri, A.; Nassiri, C.; Laaneb, L.; Hassanain, N.; Mzerd, A. Fe-doped CuO deposited by spray pyrolysistechnique. In Proceedings of the 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 10–13 December 2015. [Google Scholar]
- Jacob, S.S.K.; Kulandaisamy, I.; Valanarasu, S.; Arulanantham, A.M.S.; Shkir, M.; Kathalingam, A.; Soundaram, N. Improving the conductivity of cuprous oxide thin films by doping Calcium via feasible nebulizer spray technique for solar cell (FTO/ZnO/Ca-Cu2O). Mater. Res. Express 2019, 6, 046405. [Google Scholar] [CrossRef]
- Eichhorn, K.D.; Kirfel, A. Acta Crystallographica. Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Cryst. 1990, 46, 271–284. [Google Scholar]
- Moliterni, A.G.G.; Altomare, A.; Bini, M.; Capsoni, D.; Massarotti, V. X-ray powder diffraction ab initio structure solution of materials from solid state synthesis: The copper oxide case. Z. Fuer Krist. 1998, 213, 259–265. [Google Scholar]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
Bragg Angle θ (°) | β (radians × 10−2) | Crystal Size D (nm) | ||
---|---|---|---|---|
Scherrer | Monshi–Scherrer | |||
REF:CuOx | 21.24 | 1.66 | 10.42 | 23 |
4Ca:CuOx | 21.24 | 1.95 | 8.84 | 8.9 |
A:CuOx | 20.84 | 2.79 | 6.17 | 10 |
Name | Resistivity (Ωcm) | Concentration [cm−3] | Mobility (cm2/(Vs)) |
---|---|---|---|
REF:CuOx | 21 | 2.99 × 1016 | 3.44 |
4Ca:CuOx | 12 | 8.48 × 1016 | 1.55 |
A:CuOx | 23.2 | - | - |
C | O | Ca | Cu | ||||||
---|---|---|---|---|---|---|---|---|---|
Binding energy [eV] | 285.0 | 286.4 | 288.1 | 289.2 | 530.6 | 531.9 | 347.6 | 932.7 | 935 |
Groups/ Oxidation state | C-C | C-O | O-C-O C=O | O-C=O | O-Cu O=C | O-Cu O-C -OH | Ca2+ | Cu2O | CuO |
REF:CuOx | 18.7 | 6.6 | 2.1 | 1.5 | 20.4 | 17.7 | 0.0 | 26.7 | 6.5 |
4Ca:CuOx | 19.2 | 5.5 | 1.8 | 3.5 | 16.9 | 22.9 | 2.3 | 23.5 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawlińska-Nęcek, K.; Starowicz, Z.; Woźny, J.; Nuckowski, P.M.; Musztyfaga-Staszuk, M.; Panek, P. Ca-Doped Copper (I) Oxide Deposited via the Spray Coating Technique for Heterojunction Solar Cell Application. Molecules 2023, 28, 7324. https://doi.org/10.3390/molecules28217324
Gawlińska-Nęcek K, Starowicz Z, Woźny J, Nuckowski PM, Musztyfaga-Staszuk M, Panek P. Ca-Doped Copper (I) Oxide Deposited via the Spray Coating Technique for Heterojunction Solar Cell Application. Molecules. 2023; 28(21):7324. https://doi.org/10.3390/molecules28217324
Chicago/Turabian StyleGawlińska-Nęcek, Katarzyna, Zbigniew Starowicz, Janusz Woźny, Paweł M. Nuckowski, Małgorzata Musztyfaga-Staszuk, and Piotr Panek. 2023. "Ca-Doped Copper (I) Oxide Deposited via the Spray Coating Technique for Heterojunction Solar Cell Application" Molecules 28, no. 21: 7324. https://doi.org/10.3390/molecules28217324
APA StyleGawlińska-Nęcek, K., Starowicz, Z., Woźny, J., Nuckowski, P. M., Musztyfaga-Staszuk, M., & Panek, P. (2023). Ca-Doped Copper (I) Oxide Deposited via the Spray Coating Technique for Heterojunction Solar Cell Application. Molecules, 28(21), 7324. https://doi.org/10.3390/molecules28217324