Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities
Abstract
:1. Introduction
2. Results
2.1. Extraction Performance
2.2. The Identification of Metabolites in Each Extract
2.2.1. Hexane Extract
2.2.2. Dichloromethane Extract
2.2.3. Methanol Extract
- The metabolites contained in each fraction of the derivatized methanol extract
2.3. Cytotoxic Activity
2.4. Antioxidant Activity
2.5. Total Phenolic Content (TPC)
3. Discussion
3.1. Phytochemical Study
3.2. Biological Activities: Cytotoxicity and Antioxidant Activity
3.3. Limitations
4. Materials and Methods
4.1. Lichen Sample
4.2. Sample Preparation and Obtaining Extracts
4.3. Column Chromatography
4.4. Preparing the Methanol Extract for GC-MS
4.4.1. The Solid-Phase Extraction (SPE) of the Methanol Extract
4.4.2. The Derivatization of the Methanol Extract
4.5. Gas Mass Chromatography (GC-MS)
4.6. The Quantification of Usnic Acid in the Extracts
- Line 1 (y = 0.0317x − 0.0035) with an R2 = 0.98 for low usnic acid concentrations (between 0.02 and 0.004 mg/mL).
- Line 2 (y = 0.1803x − 0.1676) with an R2 = 0.96 for higher usnic acid concentrations (between 0.6 and 0.02 mg/mL)
4.7. Cytotoxic Activity
4.8. Antioxidant Activity: DPPH Free-Radical Scavenging Activity Assay
- The line corresponding to the methanol extract without derivatization was
- The line corresponding to the BHT standard was
4.9. Total Phenolic Content (TPC)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawksworth, D.L. The variety of fungal algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 1988, 93, 3–20. [Google Scholar] [CrossRef]
- García Sancho, L. La vegetación antártica, centinela del cambio climático. An. Real. Acad. Farm. 2020, 86, 269–280. [Google Scholar]
- Nash, T.H. Lichen Biology, 1st ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Ingolfsdottir, K. Usnic acid. Phytochemistry 2002, 61, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Ingelfinger, R.; Henke, M.; Roser, L.; Ulshöfer, T.; Calchera, A.; Singh, G.; Parnham, M.J.; Geisslinger, G.; Fürst, R.; Schmitt, I.; et al. Unraveling the Pharmacological Potential of Lichen Extracts in the Context of Cancer and Inflammation With a Broad Screening Approach. Front. Pharmacol. 2020, 11, 1322. [Google Scholar] [CrossRef] [PubMed]
- El-Massry, K.F.; El-Ghorab, A.H.; Farouk, A. Antioxidant activity and volatile components of Egyptian Artemisia Judaica L. Food Chem. 2002, 79, 331–336. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L. Metodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 2008, 613, 1–19. [Google Scholar] [CrossRef]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Seymour, F.A.; Crittenden, P.D.; Wirtz, N.; Ovstedal, D.O.; Dyer, P.S.; Lumbsch, H.T. Phylogenetic and morphological analysis of Antarctic lichenforming Usnea species in the group Neuropogon. Antarct. Sci. 2007, 19, 71–82. [Google Scholar] [CrossRef]
- Walker, F.J. Lichen Genus Usnea Subgenus Neuropogon, 1st ed.; British Museum (Nat Hist): London, UK, 1985. [Google Scholar]
- Piñeiro, V.; Eguren, G.; Pereira, I.; Zaldúa, N. Líquenes del entorno de la base científica Antártica Artigas, Bahía Collins, Isla Rey Jorge, Antártida: Estudio preliminar. Polibotánica 2012, 33, 105–116. [Google Scholar]
- Halonen, P. Studies on the Lichen Genus Usnea in East Fennoscandia and Pacific North America; Oulu University Library: Oulu, Finland, 2000. [Google Scholar]
- Zelada, B.R.; Pastor de Abram, A. Phytochemistry study from Usnea durietzii mot. (Usneaceae). Rev. Soc. Quím. Perú 2012, 78, 264–276. [Google Scholar]
- Salgado, F.; Albornoz, L.; Cortéz, C.; Stashenko, E.; Urrea-Vallejo, K.; Nagles, E.; Galicia-Virviescas, C.; Cornejo, A.; Ardiles, A.; Simirgiotis, M.; et al. Secondary Metabolite Profiling of Species of the Genus Usnea by UHPLC-ESI-OT-MS-MS. Molecules 2017, 23, 54. [Google Scholar] [CrossRef] [PubMed]
- Paliya, B.S.; Bajpai, R.; Jadaun, V.; Kumar, J.; Kumar, S.; Upreti, D.K.; Singh, B.R.; Nayaka, S.; Joshi, Y.; Singh, B.N. The genus Usnea: A potent phytomedicine with multifarious ethnobotany, phytochemistry and pharmacology. RSC Adv. 2016, 6, 21672–21696. [Google Scholar] [CrossRef]
- Phi, K.; So, J.E.; Kim, J.H.; Koo, M.H.; Kim, J.; Kim, D.; Lee, J.H.; Lee, S.; Youn, U.J. Chemical constituents from the Antarctic lichen Usnea aurantiaco-atra and their chemotaxonomic significance. Biochem. Syst. Ecol. 2023, 106, 104581. [Google Scholar] [CrossRef]
- Ramos, A.; Visozo, A.; Piloto, J.; García, A.; Rodríguez, C.A.; Rivero, R. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Ethnopharmacol. 2003, 87, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Popovici, V.; Bucur, L.A.; Vochita, G.; Gherghel, D.; Mihai, C.T.; Rambu, D.; Calcan, S.I.; Costache, T.; Cucolea, I.E.; Matei, E.; et al. In Vitro Anticancer Activity and Oxidative Stress Biomarkers Status Determined by Usnea barbata (L.) F.H. Wigg. Dry Extracts. Antioxidants 2021, 10, 1141. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.A.; Schröder, V.; Gherghel, D.; Mihai, C.T.; Caraiane, A.; Badea, C.P.; Vochita, G.; Badea, V. Evaluation of the Cytotoxic Activity of the Usnea barbata (L.) F. H. Wigg Dry Extract. Molecules 2020, 25, 1865. [Google Scholar] [CrossRef] [PubMed]
- Cocchietto, M.; Skert, N.; Nimis, P.; Sava, G. A review on usnic acid, an interesting natural compound. Naturwissenschaften 2002, 89, 137–146. [Google Scholar] [CrossRef]
- White, P.A.; Oliveira, R.C.; Oliveira, A.P.; Serafini, M.R.; Araújo, A.A.; Gelain, D.P.; Moreira, J.C.; Almeida, J.R.; Quintans, J.S.; Quintans-Junior, L.J.; et al. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. Molecules 2014, 19, 14496–14527. [Google Scholar] [CrossRef]
- Béni, Z.; Dékány, M.; Sárközy, A.; Kincses, A.; Spengler, G.; Papp, V.; Hohmann, J.; Ványolós, A. Triterpenes and phenolic compounds from the fungus Fuscoporia torulosa: Isolation, structure determination and biological activity. Molecules 2021, 26, 1657. [Google Scholar] [CrossRef]
- Mallanadhani, U.V.; Sudhakar, A.V.S.; Mahapatra, A.; Narasimhan, K.; Thirunavokkarasu, M.; Elix, J.A. Phenolic and steoidal constituents of the lichen. Usn. Longissimi. Biochem. Syst. Ecol. 2004, 32, 95–97. [Google Scholar] [CrossRef]
- Liu, H.P.; Kuo, Y.H.; Cheng, J.; Chang, L.Z.; Chang, M.S.; Su, L.W.; Chuang, T.N.; Lin, W.Y. Ergosta-7, 9 (11), 22-trien-3β-ol Rescues AD Deficits by Modulating Microglia Activation but Not Oxidative Stress. Molecules 2021, 26, 5338. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Lin, T.Y.; You, Y.J.; Wen, K.C.; Sung, P.J.; Chiang, H.M. Antiinflammatory and antiphotodamaging effects of ergostatrien-3β-ol, isolated from Antrodia camphorata, on hairless mouse skin. Molecules 2016, 21, 1213. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, C.; Zhang, Y.; Lin, R.C.; Sun, W.J. Cytotoxic steroids from Polyporus. Planta Med. 2010, 76, 1755–1758. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Öztürk, M.; Ertaş, A.; Wahab, A.T.; Mansour, R.B.; Choudhary, M.I. Insight into isolation and elucidation of cytotoxic ergostanoids from the mushroom Sarcosphaera crassa (Santi) Pouzar: An edible mushroom. Steroids 2022, 181, 108990. [Google Scholar] [CrossRef] [PubMed]
- Bolker, H.I. Crinosterol: A unique sterol from a comatulid crinoid. Nature 1967, 213, 905–906. [Google Scholar] [CrossRef]
- Rubinstein, I.; Goad, L.J. Occurrence of (24S)-24-methylcholesta-5, 22E-dien-3β-ol in the diatom Phaeodactylum tricornutum. Phytochemistry 1974, 13, 485–487. [Google Scholar] [CrossRef]
- Goad, L.; Holz, G.; Beach, D.H. Identification of (24S)-24-methylcholesta-5, 22-dien-3β-ol as the major sterol of a marine cryptophyte and a marine prymnesiophyte. Phytochemistry 1983, 22, 475–476. [Google Scholar] [CrossRef]
- Murakami, K.; Watanabe, B.; Nishida, R.; Mori, N.; Kuwahara, Y. Identification of crinosterol from astigamatid mites. Insect Biochem. Mol. Biol. 2007, 37, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lin, Y.; Cao, X.; Xiang, L.; Qi, J. Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via Anti-Oxidative Activity. Int. J. Mol. Sci. 2014, 15, 21660–21673. [Google Scholar] [CrossRef]
- Carlin, G. The chemical strains of Usnea lapponica and Usnea glabrescens in Sweden. Graph. Scr. 1986, 1, 29–32. [Google Scholar]
- Yang, B.; Chen, H.; Stanton, C.; Ross, R.P.; Zhang, H.; Chen, Y. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods 2015, 15, 314–325. [Google Scholar] [CrossRef]
- Den Hartigh, L.J. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [PubMed]
- Omotoso, A.E.; Kenneth, E.; Mkparu, K. Chemometric profiling of methanolic leaf extract of Cnidoscolus aconitifolius (Euphorbiaceae) using UV-VIS, FTIR and GC-MS techniques. J. Med. Plants Res. 2014, 2, 6–12. [Google Scholar]
- Pandey, S.; Satpathy, G.; Gupta, R.K. Evaluation of nutritional, phytochemical, antioxidant and antibacterial activity of exotic fruit “Limonia acidissimaâ€. J. Pharmacogn. Phytochem. 2014, 3, 81–88. [Google Scholar]
- Periera, E.C.; Nascimento, S.C.; Lima, R.C.; Silva, N.H.; Oliveira, A.F.; Bandeira, E.; Legaz, M.E. Analysis of Usnea fasciata crude extracts with antineoplastic activity. Tokai J. Exp. Clin. Med. 1994, 19, 47–52. [Google Scholar]
- Kosanić, M.; Ranković, B.; Vukojević, J. Antioxidant properties of some lichen species. J. Food Sci. Technol. 2011, 48, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Popovici, V.; Bucur, L.; Popescu, A.; Schröder, V.; Costache, T.; Rambu, D.; Cucolea, I.E.; Gîrd, C.E.; Caraiane, A.; Gherghel, D.; et al. Antioxidant and cytotoxic activities of Usnea barbata (L.) FH Wigg. dry extracts in different solvents. Plants 2021, 10, 909. [Google Scholar] [CrossRef]
- Buma, A.G.; Wright, S.W.; van den Enden, R.; van de Poll, W.H.; Davidson, A.T. PAR acclimation and UVBR-induced DNA damage in Antarctic marine microalgae. Mar. Ecol. Prog. Ser. 2006, 315, 33. [Google Scholar] [CrossRef]
- Bézivin, C.; Tomasi, S.; Lohézic-Le Dévéhat, F.; Boustie, J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 2003, 10, 499–503. [Google Scholar] [CrossRef]
- Ranković, B.; Kosanić, M.; Stanojković, T.; Vasiljević, P.; Manojlović, N. Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int. J. Mol. Sci. 2012, 13, 14707–14722. [Google Scholar] [CrossRef]
- Brisdelli, F.; Perilli, M.; Sellitri, D.; Piovano, M.; Garbarino, J.A.; Nicoletti, M.; Bozzi, A.; Amicosante, G.; Celenza, G. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: An in vitro study. Phytother. Res. 2013, 27, 431–437. [Google Scholar] [CrossRef]
- Bačkorová, M.; Bačkor, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. Vitr. 2011, 25, 37–44. [Google Scholar] [CrossRef]
- Kumari, M.; Kamat, S.; Jayabaskaran, C. Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 274, 121098. [Google Scholar] [CrossRef]
- Londoñe-Bailon, P.; Sánchez-Robinet, C.; Alvarez-Guzman, G. In vitro antibacterial, antioxidant and cytotoxic activity of methanol-acetone extracts from Antarctic lichens (Usnea antarctica and Usnea aurantiaco-atra). Polar Sci. 2019, 22, 100477. [Google Scholar] [CrossRef]
- Ivanova, V.; Backor, M.; Dahse, H.-M.; Graefe, U. Molecular structural studies of lichen substances with antimicrobial, antiproliferative, and cytotoxic effects from Parmelia subrudecta. Prep. Biochem. Biotechnol. 2010, 40, 377–388. [Google Scholar] [CrossRef]
- Manojlović, N.; Ranković, B.; Kosanić, M.; Vasiljević, P.; Stanojković, T. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 2012, 19, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.T.; Hamid, H.; Ali, M.; Ansari, S.H.; Alam, M.S. Two new terpenes from the lichen Parmelia perlata. Indian J. Chem. Sect. B Org. Incl. Med. 2007, 46, 173. [Google Scholar] [CrossRef]
- Itharat, A.; Houghton, P.J.; Eno-Amooquaye, E.; Burke, P.J.; Sampson, J.H.; Raman, A. In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer. J. Ethnopharmacol. 2004, 90, 33–38. [Google Scholar] [CrossRef]
- Behera, B.C. Optimization of culture conditions for lichen Usnea ghattensis G. Awasthi to increase biomass and antioxidant metabolite production. Food Technol. Biotechnol. 2009, 47, 7–12. [Google Scholar]
- Hidalgo, E.; Demple, B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J. 1994, 13, 138. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant. Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Mitrović, T.; Stamenković, S.; Cvetković, V.; Tošić, S.; Stanković, M.; Radojević, I.; Stefanović, O.; Čomić, L.; Đačić, D.; Ćurčić, M.; et al. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species. Int. J. Mol. Sci. 2011, 12, 5428–5448. [Google Scholar] [CrossRef]
- Barták, M.; Hájek, J.; Vráblíková, H.; Dubová, J. High-light stress and photoprotection in Umbilicaria antarctica monitored by chlorophyll fluorescence imaging and changes in zeaxanthin and glutathione. Plant Biol. 2004, 6, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Weissman, L.; Garty, J.; Hochman, A. Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl. Environ. Microbiol. 2005, 71, 6508–6514. [Google Scholar] [CrossRef] [PubMed]
- Odabasoglu, F.; Aslan, A.; Cakir, A.; Suleyman, H.; Karagoz, Y.; Halici, M.; Bayir, Y.; Wiley, J. Comparison of Antioxidant Activity and Phenolic Content of Three Lichen Species. Phytother. Res. 2004, 18, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Kosanic, M.; Ranković, B.; Stanojković, T. Antioxidant, antimicrobial, anticancer activity of 3 Umbilicaria species. J. Food Sci. 2012, 77, T20–T25. [Google Scholar] [CrossRef] [PubMed]
- Escrig-Doménech, A.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M.; Ramis-Ramos, G. Derivatization of hydroxyl functional groups for liquid chromatography and capillary electroseparation. J. Chromatogr. A 2013, 1296, 140–156. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
Lichen (30 g) | Extraction Efficiency (g) |
---|---|
Hexane extract | 1.04 ± 0.26 * |
Dichloromethane extract | 0.73 ± 0.15 * |
Methanol extract | 4.58 ± 1.02 * |
Extract | Usnic Acid in the Extract (mg) | Usnic Acid (µg)/Extract (mg) |
---|---|---|
Hexane 130 mg | 109.81 | 844.66 |
Dichloromethane 69 mg | 5.99 | 86.77 |
Methanol 337.5 mg | 3.63 | 10.75 |
HEXANE EXTRACT (130 mg) | AREA/TOTAL A.% | ||||||||
---|---|---|---|---|---|---|---|---|---|
T.R. | METABOLITE | F0 (83.8 mg) | F1 (5.5 mg) | F2 (5.6 mg) | F3 (4 mg) | F4 (8.38 mg) | F5 (3.2 mg) | F6 (12.5 mg) | F7 (5.2 mg) |
5.31 | 2,4-decadienal | 6.48 | 22.83 | ||||||
7.65 | Long-chain unsaturated hydrocarbon | 17.22 | 2.08 | ||||||
8.71 | Unsaturated alcohol | 9.37 | |||||||
9.55 | Hexadecanoic or Palmitic Acid | 5.50 | 5.98 | ||||||
10.80 | Unsaturated hydrocarbon | 5.41 | |||||||
10.88 | Linoleic acid | 47.24 | 76.34 | ||||||
11.00 | Stearic acid | 13.04 | |||||||
11.04 | Myristic acid | 5.59 | |||||||
12.70 | Saturated long-chain acid | 5.48 | 2.19 | ||||||
12.79 | Unsaturated hydrocarbon | 12.05 | |||||||
15.99 | Unsaturated hydrocarbon | 2.65 | |||||||
16.65 | Usnic acid | 99.45 | 95.54 | 86.3 | |||||
17.55 | 3α,5-cycle-5α-ergosta-6,8(14),22-triene | 7.52 | |||||||
21.21 | Ergosta-5,22-dien-3-ol (3β,22Є,24Ѕ) | 8.08 | |||||||
21.34 | Triterpene | 3.55 | |||||||
21.51 | Triterpene | 1.79 | |||||||
28.05–28.07 | Aromatic hydrocarbons | 24.60 | 40.30 | 71.85 | 16.09 | 4.84 | 2.30 | 12.09 | |
% TOTAL | 99.45 | 73.32 | 72.80 | 83.90 | 95.29 | 92.76 | 97.84 | 98.34 |
DICHLOROMETHANE EXTRACT (69 mg) | AREA/TOTAL A.% | ||||||
---|---|---|---|---|---|---|---|
T.R. | METABOLITE | F1 (4.7 mg) | F2 (1.8 mg) | F3 (4.3 mg) | F4 (37.4 mg) | F5 (6.1 mg) | F6 (4.4 mg) |
5.06 | 2-Decennial | 6.32 | |||||
5.55 | Unsaturated ester-type hydrocarbon | 3.94 | 6.07 | ||||
8.38 | Unsaturated ester-type hydrocarbon | 12.04 | 15.14 | ||||
9.52 | Palmitic acid | 16.08 | 5.82 | ||||
10.05 | Unsaturated alcohol | 6.82 | 7.29 | ||||
10.40 | Unsaturated hydrocarbon | 5.01 | |||||
10.42 | Oleantrile | 13.68 | |||||
10.97 | Stearic acid | 3.78 | |||||
11.16 | Oxalic acid | 5.02 | |||||
11.38 | Aromatic alcohol-type compound | 3.16 | 3.24 | ||||
16.45 | Usnic acid | 75.64 | 97.83 | 32.27 | 31.01 | ||
17.13 | Ester-type aromatic compound | 30.85 | |||||
21.17 | Ergosta-5,22-dien-3-ol(3β.22Є.24Ѕ) | 3.58 | |||||
21.33 | Triterpene | 1.15 | 2.3 | ||||
28.1 | Aromatic hydrocarbons | 45.43 | 54.17 | 2.56 | 26.72 | 27.38 | |
TOTAL % | 95 | 76.57 | 92.52 | 97.83 | 89.96 | 92.43 |
METHANOL EXTRACT WITHOUT DERIV. (337.5 mg) | AREA/TOTAL A.% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T.R. | METABOLITE | F1 (8 mg) | F2 (2.4 mg) | F3 (7.4 mg) | F4 (13.8 mg) | F5 (72 mg) | F6 (2.5 mg) | F7 (10.3 mg) | F8 (5 mg) | F9 (23.1 mg) |
3.88 | Succinic acid | 3.92 | 1.38 | |||||||
3.93 | Fumaric acid | 2.12 | 13.11 | 2.09 | ||||||
5.06 | 2-Decennial | 5.10 | ||||||||
5.59 | Unsaturated alcohol | 11.48 | ||||||||
5.86 | Proline-5-oxo-2-pyrrolidine carboxilate | 5.44 | 48.61 | 8.50 | 3.29 | 2.05 | 3.38 | |||
7.54 | Polyalcohol | 6.07 | ||||||||
7.82 | Phenolic Compound | 5.01 | ||||||||
8.39 | Long-chain hydrocarbon | 1.31 | 2.90 | 17.83 | ||||||
8.66 | Polyalcohol | 18.53 | ||||||||
9.53 | Palmitic acid | 1.40 | 7.59 | |||||||
10.43 | Oxalic acid | 5.03 | ||||||||
10.51 | Linoleic acid | 13.27 | 10.41 | 6.13 | ||||||
10.55 | Methylester linoleic acid | 11.88 | ||||||||
10.57 | Stearic acid | 9.3 | ||||||||
10.94 | Stearic acid | 5.01 | ||||||||
11.02 | Alcohol-type unsaturated hydrocarbon | 5.01 | 5.01 | |||||||
13.05 | Phenolic compound | 5.64 | ||||||||
16.15 | Usnic acid | 3.11 | 0.60 | 0.41 | 3.00 | 16.12 | 3.61 | |||
21.17 | Triterpene | 1.02 | ||||||||
21.31 | Unsaturated alcohol | 0.55 | ||||||||
21.93 | Triterpene | 0.62 | ||||||||
24.60 | Phenolic compound | 23.47 | 29.07 | 3.39 | 11.02 | |||||
28.25 | Aromatic hydrocarbons | 65.64 | 63.61 | 68.29 | 5.92 | 48.64 | 58.68 | 46.59 | 37.19 | 13.83 |
TOTAL % | 78.91 | 85.90 | 90.18 | 92.96 | 78.78 | 87.16 | 83.68 | 77.94 | 76.68 |
IC50 µg/mL * | |
---|---|
Hexane Extract | 5.73 ± 1.19 |
F4 of Hexane Extract | 0.54 ± 1.05 |
DCM Extract | 27.02 ± 1.21 |
MeOH Extract | 293.3 ± 1.17 |
Usnic Acid | 52.18 ± 1.03 |
EXTRACT | TPC (Gallic Acid mg/g of Extract) * |
---|---|
MeOH without derivatization | 68.61 ± 0.01 |
MeOH SP1 (Water 100%) | 64.28 ± 0.02 |
MeOH SP3 (MeOH 100%) | 67.15 ± 0.02 |
MeOH SP4 (AcOEt 100%) | 66.92 ± 0.03 |
Concentration of hexane extract in each cell well plate | 150 μg/mL | 100 μg/mL | 75 μg/mL | 25 μg/mL | 0.1 μg/ml |
Corresponding terpene concentration in F4 in each well plate | 1.29 μg/mL | 0.86 μg/mL | 0.64 μg/mL | 0.29 μg/mL | 8.6 × 10−4 μg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Bello, M.J.; Moreno, M.L.; Estellés-Leal, R.; Hernández-Andreu, J.M.; Prieto-Ruiz, J.A. Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities. Molecules 2023, 28, 7317. https://doi.org/10.3390/molecules28217317
Vega-Bello MJ, Moreno ML, Estellés-Leal R, Hernández-Andreu JM, Prieto-Ruiz JA. Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities. Molecules. 2023; 28(21):7317. https://doi.org/10.3390/molecules28217317
Chicago/Turabian StyleVega-Bello, María Jesús, Mari Luz Moreno, Rossana Estellés-Leal, José Miguel Hernández-Andreu, and Jesús A. Prieto-Ruiz. 2023. "Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities" Molecules 28, no. 21: 7317. https://doi.org/10.3390/molecules28217317
APA StyleVega-Bello, M. J., Moreno, M. L., Estellés-Leal, R., Hernández-Andreu, J. M., & Prieto-Ruiz, J. A. (2023). Usnea aurantiaco-atra (Jacq) Bory: Metabolites and Biological Activities. Molecules, 28(21), 7317. https://doi.org/10.3390/molecules28217317