One-Step Fabrication of Recyclable Konjac Glucomannan-Based Magnetic Nanoparticles for Highly Efficient Cr(VI) Adsorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of KGM-Fe3O4 NPs
2.2. Removal of Cr(VI) Ions by KGM-Based Fe3O4 Adsorbent
3. Materials and Methods
3.1. Chemical Reagents
3.2. Preparation of KGM-Fe3O4 NPs
3.3. Batch Adsorption Experiments
3.4. Desorption Test
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Phan, D.N.; Khan, M.Q.; Nguyen, N.T.; Phan, T.T.; Ullah, A.; Khatri, M.; Kien, N.N.; Kim, I.S. A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydr. Polym. 2021, 252, 117175. [Google Scholar] [CrossRef] [PubMed]
- Fenti, A.; Chianese, S.; Iovino, P.; Musmarra, D.; Salvestrini, S. Cr(VI) Sorption from Aqueous Solution: A Review. Appl. Sci. 2020, 10, 6477. [Google Scholar] [CrossRef]
- Fu, R.B.; Zhang, X.; Xu, Z.; Guo, X.P.; Bi, D.S.; Zhang, W. Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron: Influencing factors, kinetics and mechanism. Sep. Purif. Technol. 2017, 174, 362–371. [Google Scholar] [CrossRef]
- Yuan, P.; Fan, M.D.; Yang, D.; He, H.P.; Liu, D.; Yuan, A.H.; Zhu, J.X.; Chen, T.H. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solution. J. Hazard. Mater. 2009, 166, 821–829. [Google Scholar] [CrossRef]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef]
- Ying, Y.L.; Liu, Y.; Wang, X.Y.; Mao, Y.Y.; Cao, W.; Hu, P.; Peng, X.S. Two-Dimensional Titanium Carbide for Efficiently Reductive Removal of Highly Toxic Chromium(VI) from Water. ACS Appl. Mater. Interfaces 2015, 7, 1795–1803. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250, 272–291. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of Hexavalent Chromium-Contaminated Water and Wastewater: A Review. Water Air Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- Edebali, S.; Pehlivan, E. Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution. Chem. Eng. J. 2010, 161, 161–166. [Google Scholar] [CrossRef]
- Mohebali, S.; Nazari, M.; Rahbar-Kelishami, A.; Davoodi-Nasab, P. Performance of sunflower oil as green solvent for Cr(VI) extraction using supported liquid membrane. Desalin. Water Treat. 2017, 64, 173–178. [Google Scholar] [CrossRef]
- Chen, K.Y.; Tzou, Y.M.; Chan, Y.T.; Wu, J.J.; Teah, H.Y.; Liu, Y.T. Removal and simultaneous reduction of Cr(VI) by organo-Fe(III) composites produced during coprecipitation and coagulation processes. J. Hazard. Mater. 2019, 376, 12–20. [Google Scholar] [CrossRef]
- Liang, H.X.; Song, B.; Peng, P.; Jiao, G.J.; Yan, X.; She, D. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(VI). Chem. Eng. J. 2019, 367, 9–16. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, Y.; Liu, Z.; Li, B.; Liu, Q. Monodispersed hierarchical aluminum/iron oxides composites micro/nanoflowers for efficient removal of As(V) and Cr(VI) ions from water. J. Alloys Compd. 2016, 662, 421–430. [Google Scholar] [CrossRef]
- Sun, X.T.; Yang, L.R.; Li, Q.; Zhao, J.M.; Li, X.P.; Wang, X.Q.; Liu, H.Z. Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): Synthesis and adsorption studies. Chem. Eng. J. 2014, 241, 175–183. [Google Scholar] [CrossRef]
- Jamshidifard, S.; Koushkbaghi, S.; Hosseini, S.; Rezaei, S.; Karamipour, A.; Rad, A.J.; Irani, M. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. J. Hazard. Mater. 2019, 368, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, S.A.L.; Davila, I.V.J.; Calvete, T.; Feris, L.A. Adsorption of Cr (VI) on lignocellulosic wastes adsorbents: An overview and further perspective. Int. J. Environ. Sci. Technol. 2022, 19, 12727–12748. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 15438–15462. [Google Scholar]
- Gu, S.Q.; Kang, X.N.; Wang, L.; Lichtfouse, E.; Wang, C.Y. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015, 22, 15386–15415. [Google Scholar]
- Ramteke, L.P.; Gogate, P.R. Treatment of water containing heavy metals using a novel approach of immobilized modified sludge biomass based adsorbents. Sep. Purif. Technol. 2016, 163, 215–227. [Google Scholar] [CrossRef]
- Zhou, N.; Zheng, S.X.; Xie, W.Z.; Cao, G.Y.; Wang, L.; Pang, J. Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. J. Appl. Polym. Sci. 2021, 139, 57180–57195. [Google Scholar] [CrossRef]
- Luo, X.G.; Liu, F.; Deng, Z.F.; Lin, X.Y. Removal of copper(II) from aqueous solution in fixed-bed column by carboxylic acid functionalized deacetylated konjac glucomannan. Carbohydr. Polym. 2011, 86, 753–759. [Google Scholar] [CrossRef]
- Liu, F.; Luo, X.G.; Lin, X.Y.; Liang, L.L.; Chen, Y. Removal of copper and lead from aqueous solution by carboxylic acid functionalized deacetylated konjac glucomannan. J. Hazard. Mater. 2009, 171, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.M.; Wu, W.H.; Wang, Z.; Li, S.M.; Wang, J.Q. Adsorption of heavy metal ions from aqueous solution by crosslinked carboxymethyl konjac glucomannan. J. Hazard. Mater. 2007, 141, 209–214. [Google Scholar] [CrossRef]
- Ye, S.X.; Jin, W.P.; Huang, Q.; Hu, Y.; Li, Y.; Li, B. KGM-based magnetic carbon aerogels matrix for the uptake of methylene blue and methyl orange. Int. J. Biol. Macromol. 2016, 92, 1169–1174. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.H.; Xu, H.; Fan, Q.L.; Zhu, C.Y.; Liu, J.H.; Zhu, M.C.; Wang, X.; Niu, A.Q. Preparation and Application of Magnetic Composites Using Controllable Assembly for Use in Water Treatment: A Review. Molecules 2023, 28, 5799. [Google Scholar] [CrossRef]
- Poudel, M.B.; Kim, H.J. Confinement of Zn-Mg-Al-layered double hydroxide and α-Fe2O3 nanorods on hollow porous carbon nanofibers: A free-standing electrode for solid-state symmetric supercapacitors. Chem. Eng. J. 2022, 429, 132345. [Google Scholar] [CrossRef]
- Xu, X.; Li, B.; Kennedy, J.F.; Xie, B.J.; Huang, M. Characterization of konjac glucomannan-gellan gum blend films and their suitability for release of nisin incorporated therein. Carbohydr. Polym. 2007, 70, 192–197. [Google Scholar] [CrossRef]
- Fan, H.L.; Zhou, S.F.; Jiao, W.Z.; Qi, G.S.; Liu, Y.Z. Removal of heavy metal ions by magnetic chitosan nanoparticles prepared continuously via high-gravity reactive precipitation method. Carbohydr. Polym. 2017, 174, 1192–1200. [Google Scholar] [CrossRef]
- Fan, H.L.; Ma, X.Z.; Zhou, S.F.; Huang, J.; Liu, Y.Q.; Liu, Y.Z. Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydr. Polym. 2019, 213, 39–49. [Google Scholar] [CrossRef]
- Lu, J.; Wang, X.D.; Xiao, C.B. Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films. Carbohydr. Polym. 2008, 73, 427–437. [Google Scholar] [CrossRef]
- Ma, Z.; Guan, Y.; Liu, H. Synthesis and characterization of micron sized monodisperse superparamagnetic polymer particles with amino groups. J. Polym. Sci. Polym. Chem. 2005, 43, 3433–3439. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.B.; Awasthi, G.P.; Kim, H.J. Novel insight into the adsorption of Cr(VI) and Pb(II) ions by MOF derived Co-Al layered double hydroxide @hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312–129324. [Google Scholar] [CrossRef]
- Zhou, S.F.; Gao, J.J.; Wang, S.Z.; Fan, H.L.; Huang, J.; Liu, Y.Q. Highly efficient removal of Cr(VI) from water based on graphene oxide incorporated flower-like MoS2 nanocomposite prepared in situ hydrothermal synthesis. Environ. Sci. Pollut. Res. 2020, 27, 13882–13894. [Google Scholar] [CrossRef]
- Li, X.Y.; Ai, L.H.; Jiang, J. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance. Chem. Eng. J. 2016, 288, 789–797. [Google Scholar] [CrossRef]
- Zhu, H.X.; Jia, S.R.; Wan, T.; Jia, Y.Y.; Yang, H.J.; Li, J.; Yan, L.; Zhong, C. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr. Polym. 2011, 86, 1558–1564. [Google Scholar] [CrossRef]
- Habiba, U.; Afifi, A.M.; Salleh, A.; Ang, B.C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017, 322, 182–194. [Google Scholar] [CrossRef]
- Qiu, B.; Xu, C.X.; Sun, D.Z.; Wei, H.G.; Zhang, X.; Guo, J.; Wang, Q.; Rutman, D.; Guo, Z.H.; Wei, S.Y. Polyaniline Coating on Carbon Fiber Fabrics for Improved Hexavalent Chromium Removal. RSC Adv. 2014, 4, 29855–29865. [Google Scholar] [CrossRef]
- Hu, J.; Irene, M.C.; Chen, G. Fast Removal and Recovery of Cr(VI) Using Surface-Modified Jacobsite (MnFe2O4) Nanoparticles. Langmuir 2005, 21, 11173–11179. [Google Scholar] [CrossRef]
- Zhu, J.H.; Gu, H.B.; Guo, J.; Chen, M.J.; Wei, H.G. Mesoporous Magnetic Carbon Nanocomposite Fabrics for Highly Efficient Cr(VI) Removal. J. Mater. Chem. A 2014, 2, 2256–2265. [Google Scholar] [CrossRef]
- Putz, A.-M.; Ciopec, M.; Negrea, A.; Grad, O.; Ianăşi, C.; Ivankov, O.I.; Milanović, M.; Stijepović, I.; Almásy, L. Comparison of Structure and Adsorption Properties of Mesoporous Silica Functionalized with Aminopropyl Groups by the Co-Condensation and the Post Grafting Methods. Materials 2021, 14, 628. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhao, D.L.; Wu, C.N.; Xie, R. Sulfidized Nanoscale Zerovalent Iron Supported by Oyster Powder for Efficient Removal of Cr (VI): Characterization, Performance, and Mechanisms. Materials 2022, 15, 3898. [Google Scholar] [CrossRef] [PubMed]
Adsorbent Samples | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm,cal (mg·g−1) | KL (L·mg−1) | R2 | KF | n | R2 | |
Fe3O4 | 29.70 | 0.2164 | 0.9313 | 13.47 | 5.882 | 0.8241 |
KGM-Fe3O4 | 41.67 | 0.3234 | 0.9585 | 18.26 | 5.211 | 0.8624 |
Adsorbents | Adsorption Capacity (mg·g−1) | Ref. |
---|---|---|
NZVI/GNS | 21.72 | [36] |
Fe3O4/bacterial cellulose nanocomposite | 25 | [37] |
Chitosan/PVA/zeolite nanofiber | 8.84 | [38] |
Montmorillonite-supported magnetite nanoparticles | 15.3 | [4] |
polyaniline coating on carbon fiber | 18.2 | [39] |
Modified jacobsite (MnFe2O4) nanoparticles | 31.6 | [40] |
mesoporous magnetic carbon nanocomposite | 3.74 | [41] |
Functionalized Mesoporous Materials A-10-PG | 11.5 | [42] |
sulfurized nanoscale zerovalent iron (S-nZVI) supported by oyster shell (OS) powder (S-nZVI@OS) | 164.7 | [43] |
KGM-Fe3O4 NPs | 41.67 | This work |
Adsorbents | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|
qe,cal (mg·g−1) | k1 (min−1) | R2 | qe,cal (mg·g−1) | k2 (mg·g−1·min−1) | R2 | |
Fe3O4 | 33.80 | 0.1232 | 0.8900 | 35.74 | 5.540 × 10−3 | 0.9837 |
KGM-Fe3O4 | 48.15 | 0.1912 | 0.6549 | 50.23 | 6.240 × 10−3 | 0.9044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ren, H.; Fan, H.; Zhou, S.; Huang, J. One-Step Fabrication of Recyclable Konjac Glucomannan-Based Magnetic Nanoparticles for Highly Efficient Cr(VI) Adsorption. Molecules 2023, 28, 7100. https://doi.org/10.3390/molecules28207100
Zhang J, Ren H, Fan H, Zhou S, Huang J. One-Step Fabrication of Recyclable Konjac Glucomannan-Based Magnetic Nanoparticles for Highly Efficient Cr(VI) Adsorption. Molecules. 2023; 28(20):7100. https://doi.org/10.3390/molecules28207100
Chicago/Turabian StyleZhang, Jianjuan, Huiyun Ren, Honglei Fan, Shaofeng Zhou, and Jin Huang. 2023. "One-Step Fabrication of Recyclable Konjac Glucomannan-Based Magnetic Nanoparticles for Highly Efficient Cr(VI) Adsorption" Molecules 28, no. 20: 7100. https://doi.org/10.3390/molecules28207100
APA StyleZhang, J., Ren, H., Fan, H., Zhou, S., & Huang, J. (2023). One-Step Fabrication of Recyclable Konjac Glucomannan-Based Magnetic Nanoparticles for Highly Efficient Cr(VI) Adsorption. Molecules, 28(20), 7100. https://doi.org/10.3390/molecules28207100