Lysozyme Inhibitors as Tools for Lysozyme Profiling: Identification and Antibacterial Function of Lysozymes in the Hemolymph of the Blue Mussel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of c-Lys-, g-Lys-, and i-Lys-Trap Columns for Lysozyme Profiling
2.2. Lysozyme Profiling of Mussel Hemolymph Plasma
2.3. Remaining Bacteriolytic Activity in Mussel Hemolymph Plasma after Lysozyme Removal by the Lys-Trap
2.4. Role of i-Type Lysozyme and Its Bacterial Inhibitor PliI in the Survival of A. hydrophila in Mussel Hemolymph
2.5. Role of g-Type Lysozyme and Its Bacterial Inhibitor PliG on the Survival of E. coli in Mussel Hemolymph and Plasma
3. Materials and Methods
3.1. Strains and Plasmids Used
3.2. Lysozymes and Determination of Lysozyme Enzymatic Activity
3.3. Construction of Affinity Matrices with Immobilized Lysozyme Inhibitors
3.4. Collection of Mussel Hemolymph
3.5. Lysozyme Profiling by Fast Protein Liquid Chromatography (FPLC)
3.6. Pronase Treatment
3.7. In Vitro Survival of Bacteria in Mussel Hemolymph and Plasma
3.8. Bioinformatic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ferraboschi, P.; Ciceri, S.; Grisenti, P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics 2021, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Callewaert, L.; Michiels, C.W. Lysozymes in the animal kingdom. J. Biosci. 2010, 35, 127–160. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Xiao, Y.; Xiao, Z.; Liu, T.; Li, J.; Li, P.; Han, F. Lysozymes in fish. J. Agric. Food Chem. 2021, 69, 15039–15051. [Google Scholar] [CrossRef] [PubMed]
- Ford, S.A.; Drew, G.C.; King, K.C. Immune-mediated competition benefits protective microbes over pathogens in a novel host species. Heredity 2022, 129, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, H.; Xu, K.-K.; Hu, D.-M.; Yang, W.-J. Two lysozymes are involved in the larva-to-pupa transition and the antibacterial immunity of Lasioderma serricorne (coleoptera: Anobiidae). J. Stored Prod. Res. 2021, 90, 101753. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Y. Enhancing aquaculture disease resistance: Antimicrobial peptides and gene editing. Rev. Aquac. 2023. [Google Scholar] [CrossRef]
- Monchois, V.; Abergel, C.; Sturgis, J.; Jeudy, S.; Claverie, J.-M. Escherichia coli ykfE ORFan gene encodes a potent inhibitor of C-type lysozyme. J. Biol. Chem. 2001, 276, 18437–18441. [Google Scholar] [CrossRef] [PubMed]
- Callewaert, L.; Aertsen, A.; Deckers, D.; Vanoirbeek, K.G.A.; Vanderkelen, L.; Van Herreweghe, J.M.; Masschalck, B.; Nakimbugwe, D.; Robben, J.; Michiels, C.W. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog. 2008, 4, e1000019. [Google Scholar] [CrossRef]
- Ragland, S.A.; Humbert, M.V.; Christodoulides, M.; Criss, A.K. Neisseria gonorrhoeae employs two protein inhibitors to evade killing by human lysozyme. PLoS Pathog. 2018, 14, e1007080. [Google Scholar] [CrossRef]
- Vanderkelen, L.; Van Herreweghe, J.M.; Vanoirbeek, K.G.; Baggerman, G.; Myrnes, B.; Declerck, P.J.; Nilsen, I.W.; Michiels, C.W.; Callewaert, L. Identification of a bacterial inhibitor against g-type lysozyme. Cell. Mol. Life Sci. 2011, 68, 1053–1064. [Google Scholar] [CrossRef]
- Van Herreweghe, J.M.; Vanderkelen, L.; Callewaert, L.; Aertsen, A.; Compernolle, G.; Declerck, P.J.; Michiels, C.W. Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cell. Mol. Life Sci. 2010, 67, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Vanderkelen, L.; Van Herreweghe, J.M.; Callewaert, L.; Michiels, C.W. Goose-type lysozyme inhibitor (PliG) enhances survival of Escherichia coli in goose egg albumen. Appl. Environ. Microbiol. 2011, 77, 4697–4699. [Google Scholar] [CrossRef] [PubMed]
- Vanderkelen, L.; Ons, E.; Van Herreweghe, J.M.; Callewaert, L.; Goddeeris, B.M.; Michiels, C.W. Role of lysozyme inhibitors in the virulence of avian pathogenic Escherichia coli. PLoS ONE 2012, 7, e45954. [Google Scholar] [CrossRef] [PubMed]
- Li, M.F.; Wang, C.; Sun, L. Edwardsiella tarda MliC, a lysozyme inhibitor that participates in pathogenesis in a manner that parallels Ivy. Infect. Immun. 2015, 83, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Zielke, R.A.; Le Van, A.; Baarda, B.I.; Herrera, M.F.; Acosta, C.J.; Jerse, A.E.; Sikora, A.E. SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathog. 2018, 14, e1007081. [Google Scholar] [CrossRef] [PubMed]
- Daigle, F.; Graham, J.E.; Curtis, R., III. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol. Microbiol. 2008, 41, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Grinchenko, A.V.; Kumeiko, V.V. Bivalves humoral immunity: Key molecules and their functions. Russ. J. Mar. Biol. 2022, 48, 399–417. [Google Scholar] [CrossRef]
- Olsen, O.M.; Nilsen, I.W.; Sletten, K.; Myrnes, B. Multiple invertebrate lysozymes in blue mussel (Mytilus edulis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003, 136, 107–115. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Mu, C.; Wu, H.; Zhang, L.; Zhao, J. A novel C-type lysozyme from Mytilus galloprovincialis: Insight into innate immunity and molecular evolution of invertebrate C-type lysozymes. PLoS ONE 2013, 8, e67469. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Zhao, J.; You, L.; Wu, H. Two goose-type lysozymes in Mytilus galloprovincialis: Possible function diversification and adaptive evolution. PLoS ONE 2012, 7, e45148. [Google Scholar] [CrossRef]
- González, R.; González, D.; Stambuk, F.; Ramírez, F.; Guzmán, F.; Mercado, L.; Rojas, R.; Henríquez, C.; Brokordt, K.; Schmitt, P.A. g-type lysozyme from the scallop Argopecten purpuratus participates in the immune response and in the stability of the hemolymph microbiota. Fish Shellfish Immunol. 2022, 123, 324–334. [Google Scholar] [CrossRef]
- De Silva, L.A.D.S.; Wickramanayake, M.V.K.S.; Heo, G.-J. Virulence and antimicrobial resistance potential of Aeromonas spp. associated with shellfish. Lett. Appl. Microbiol. 2021, 73, 176–186. [Google Scholar] [CrossRef]
- Ally, C.A.; Reshma, S.; Divya, P.S.; Aneesa, P.A.; Bini, F.; Ajith, J.C.; Midhun, S.H.; Umesh, B.T.; Joy, G.; Mohamed, H.A. Faecal contamination and prevalence of pathogenic E. coli in shellfish growing areas along south-west coast of India. Reg. Stud. Mar. Sci. 2021, 44, 101774. [Google Scholar] [CrossRef]
- Takeshita, K.; Hashimoto, Y.; Thujihata, Y.; So, T.; Ueda, T.; Iomoto, T. Determination of the complete cDNA sequence, construction of expression systems, and elucidation of fibrinolytic activity for Tapes japonica lysozyme. Protein Expr. Purif. 2004, 36, 254–262. [Google Scholar] [CrossRef]
- Kyomuhendo, P.; Nilsen, I.; Brandsdal, B.; Smalås, A. Structural evidence for lack of inhibition of fish goose-type lysozymes by a bacterial inhibitor of lysozyme. J. Mol. Model. 2008, 14, 777–788. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
Strain | Bacterial Count * | |
---|---|---|
0 h | 24 h | |
A. hydrophila (pFAJ1702) wild-type | 2.3 ± 1.3 × 108 | 1.5 ± 0.6 × 108 |
A. hydrophila (pFAJ1702) ΔpliI::aph | 1.5 ± 0.5 × 108 | 1.5 ± 1.0 × 108 |
A. hydrophila ΔpliI::aph pFAJ1702-pliI | 1.9 ± 1.0 × 108 | 1.1 ± 0.21 × 108 |
Strain or Plasmid | Description | Reference or Source |
---|---|---|
A. hydrophila ATCC7966 | Wild-type strain | American Type Culture Collection |
A. hydrophila ∆pliI::aph | pliI gene replaced by aph gene; KmR | [11] |
pFAJ1702-pliI | broad-host range vector pFAJ1702 carrying pliI with its own promotor; TcR | [11] |
E. coli MG1655 | Wild-type strain | |
E. coli ∆pliG | Markerless deletion of g-type lysozyme inhibitor gene pliG in E. coli MG1655 | [10] |
E. coli ∆pliG PBAD-pliG | E. coli ∆pliG with a chromosomal copy of pliG replacing the araBAD genes to bring pliG under control of the chromosomal arabinose-inducible PBAD promotor | [10] |
Escherichia coli BL21 (DE3) | Expression host for pET series vectors, containing IPTG inducible T7 RNA polymerase gene | Merck Life Science |
Escherichia coli XL1-blue | Expression host, containing IPTG inducible T5 RNA polymerase gene | Agilent Technologies, Waldbronn, Germany |
pET26b(+) (PT7-pliI) | pliI from A. hydrophila under control of PT7 promotor in pET26b(+); KmR | [11] |
pET28b(+) (PT7-pliG) | pliG from E. coli under control of PT7 promotor in pET28b(+); KmR | [10] |
pQE-0220 (PT5-ivy) | ivy from E. coli under control of PT5 promotor in pQE-60; AmpR | [7] |
Pichia pastoris YJT46 | Expression host for invertebrate lysozyme VpL of Venerupis philippinarum (Tapes japonica), methanol inducible | [24] |
pQM64 | Expression plasmid for g-type lysozyme SalG from the Atlantic salmon under control of PT5 promotor in pQE-02; KmR | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanderkelen, L.; Van Herreweghe, J.M.; Michiels, C.W. Lysozyme Inhibitors as Tools for Lysozyme Profiling: Identification and Antibacterial Function of Lysozymes in the Hemolymph of the Blue Mussel. Molecules 2023, 28, 7071. https://doi.org/10.3390/molecules28207071
Vanderkelen L, Van Herreweghe JM, Michiels CW. Lysozyme Inhibitors as Tools for Lysozyme Profiling: Identification and Antibacterial Function of Lysozymes in the Hemolymph of the Blue Mussel. Molecules. 2023; 28(20):7071. https://doi.org/10.3390/molecules28207071
Chicago/Turabian StyleVanderkelen, Lise, Joris M. Van Herreweghe, and Chris W. Michiels. 2023. "Lysozyme Inhibitors as Tools for Lysozyme Profiling: Identification and Antibacterial Function of Lysozymes in the Hemolymph of the Blue Mussel" Molecules 28, no. 20: 7071. https://doi.org/10.3390/molecules28207071
APA StyleVanderkelen, L., Van Herreweghe, J. M., & Michiels, C. W. (2023). Lysozyme Inhibitors as Tools for Lysozyme Profiling: Identification and Antibacterial Function of Lysozymes in the Hemolymph of the Blue Mussel. Molecules, 28(20), 7071. https://doi.org/10.3390/molecules28207071