Determination of Free Histidine in Complex Hair Care Products with Minimum Sample Preparation Using Cation-Exchange Chromatography and Post Column Derivatization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Investigation of the Separation Conditions
2.2. Investigation of the Extraction Conditions
2.3. Analytical Figures of Merit
2.4. Study of the Matrix Effect
2.5. Analysis of Real Samples
3. Materials and Methods
3.1. Instrumentation
3.2. Reagents and Solutions
3.3. HPLC-PCD Procedure
3.4. Preparation of Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nogueira, A.C.S.; Dicelio, L.E.; Joekes, I. About Photo-Damage of Human Hair. Photochem. Photobiol. Sci. 2006, 5, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Nogueira, A.C.; Joekes, I. Hair Color Changes and Protein Damage Caused by Ultraviolet Radiation. J. Photochem. Photobiol. B Biol. 2004, 74, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.M.; Iveson, R.; Flagler, M.J.; Davis, M.G.; Newland, A.B.; Greis, K.D.; Sun, Y.; Chaudhary, T.; Aistrup, E.R. Role of Copper in Photochemical Damage to Hair. Int. J. Cosmet. Sci. 2014, 36, 32–38. [Google Scholar] [CrossRef]
- Worasith, N.; Goodman, B.A. Determination of the Coordination Environment of Cu(II) in Human Hair and Its Possible Relevance to Health and Hair Care Treatments. Int. J. Cosmet. Sci. 2013, 35, 424–429. [Google Scholar] [CrossRef]
- Kizawa, K.; Inoue, T.; Yamaguchi, M.; Kleinert, P.; Troxler, H.; Heizmann, C.W.; Iwamoto, Y. Dissimilar Effect of Perming and Bleaching Treatments on Cuticles: Advanced Hair Damage Model Based on Elution and Oxidation of S100A3 Protein. Int. J. Cosmet. Sci. 2005, 27, 355. [Google Scholar] [CrossRef]
- Marsh, J.M.; Davis, M.G.; Flagler, M.J.; Sun, Y.; Chaudhary, T.; Mamak, M.; McComb, D.W.; Williams, R.E.A.; Greis, K.D.; Rubio, L.; et al. Advanced Hair Damage Model from Ultra-Violet Radiation in the Presence of Copper. Int. J. Cosmet. Sci. 2015, 37, 532–541. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.Y.; Liu, Y.Z. XAFS Study of Coordination Structure of Cu(L-His)2 in Solution. Chin. J. Chem. Phys. 2013, 24, 451. [Google Scholar] [CrossRef] [Green Version]
- Drommi, M.; Rulmont, C.; Esmieu, C.; Hureau, C. Hybrid Bis-Histidine Phenanthroline-Based Ligands to Lessen Aβ-Bound Cu ROS Production: An Illustration of Cu(I) Significance. Molecules 2021, 26, 7630. [Google Scholar] [CrossRef]
- Abedi, G.; Talebpour, Z. Modified QuEChERS as a Novel Sample Preparation Method for Analysis of: N -Nitrosodiethanolamine in Shampoo by High Performance Liquid Chromatography. Anal. Methods 2017, 9, 5165–5173. [Google Scholar] [CrossRef]
- Bielemann, N.J.; Novo, D.L.R.; Pereira, R.M.; Mello, J.E.; Costa, V.C.; Mesko, M.F. Determinação De Enxofre Em Shampoo Por Espectrofotometria Uv-Vis: Avaliação De Métodos De Preparo De Amostras. Quim. Nova 2017, 40, 785–790. [Google Scholar] [CrossRef]
- Egurrola, G.E.; Mazabel, A.P.; García, J. Development and Validation of a Complexometric and Potentiometric Titration Method for the Quantitative Determination of Zinc Pyrithione in Shampoo. J. Anal. Methods Chem. 2021, 2021, 4. [Google Scholar] [CrossRef] [PubMed]
- Islam, D.J. Determination of Heavy Metals and Trace Elements in Worldwide Branded Shampoo Available in Local Market of Bangladesh by Atomic Absorption Spectrometry. Asian J. Chem. 2015, 27, 3756. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Hashemi, S.H.; Andarz, F.; Piri, A.; Sargazi, G.; Boczkaj, G. Chromium-Based Metal Organic Framework for Pipette Tip Micro-Solid Phase Extraction: An Effective Approach for Determination of Methyl and Propyl Parabens in Wastewater and Shampoo Samples. BMC Chem. 2021, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Shrestha, A.; Hoang, N.H.; Huong, N.L.; Park, J.W. Ultra-Performance Liquid Chromatography with Electrospray Ionization Tandem Mass Spectrometry for the Determination of Ketoconazole in Anti-Dandruff Shampoo. Anal. Lett. 2014, 47, 1465–1475. [Google Scholar] [CrossRef]
- Kim, T.H.; Jung, G.H.; Lee, E.H.; Park, H.R.; Lee, J.K.; Kim, H.G. Development and Validation of Liquid Chromatography–Tandem Mass Spectrometry Method for Simultaneous Determination of Zinc Pyrithione and Pyrithione in Shampoos. Acta Chromatogr. 2018, 30, 200–205. [Google Scholar] [CrossRef]
- Šatínský, D.; Kameníčková, D.; Chocholouš, P.; Solich, P. Fast HPLC Method for Determination of Fenoxycarb and Permethrin in Antiparasitic Veterinary Shampoo Using Fused-Core Column. Chromatographia 2013, 76, 1559–1564. [Google Scholar] [CrossRef]
- Tada, A.; Rodrigues-Silva, C.; Rath, S. On-Line Solid Phase Extraction-Ultra-High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Determination of N-Nitrosodiethanolamine in Baby Shampoo. J. Pharm. Biomed. Anal. 2021, 202, 114132. [Google Scholar] [CrossRef]
- Weiss, C.L.; Fairchild, M.R.; Stanton, B.; Nshime, B.S.; Parkanzky, P.D. Innovative Method for the Analysis of Dexpanthenol in Hair Care Products. J. AOAC Int. 2019, 102, 633–637. [Google Scholar] [CrossRef]
- Alevridis, A.; Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. Fluorimetric Method for the Determination of Histidine in Random Human Urine Based on Zone Fluidics. Molecules 2020, 25, 1665. [Google Scholar] [CrossRef] [Green Version]
- Stampina, E.; Tsiasioti, A.; Klimatsaki, K.; Zacharis, C.K.; Tzanavaras, P.D. Determination of Histidine in Human Serum and Urine by Cation Exchange Chromatography Coupled to Selective On-Line Post Column Derivatization. J. Chromatogr. B 2021, 1173, 122697. [Google Scholar] [CrossRef]
- Kumagai, M.; Kato, S.; Arakawa, N.; Otsuka, M.; Hamano, T.; Kashiwagi, N.; Yabuki, A.; Yamato, O. Quantification of Histidine-Containing Dipeptides in Dolphin Serum Using a Reversed-Phase Ion-Pair High-Performance Liquid Chromatography Method. Separations 2021, 8, 128. [Google Scholar] [CrossRef]
- Gkantiri, A.M.; Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. HPLC Method with Post-Column Derivatization for the Analysis of Endogenous Histidine in Human Saliva Validated Using the Total-Error Concept. Amino Acids 2022, 54, 399–409. [Google Scholar] [CrossRef] [PubMed]
Analyte(s) | Analytical Technique | Sample Preparation/Cleanup | Reference |
---|---|---|---|
Methyl and propyl parabens | UV spectrophotometry | Pipette tip micro-solid-phase extraction using chromium-based metal organic framework | [9] |
N-nitrosodiethanolamine | Ultra-High-Pressure LC | Online solid-phase extraction using Oasis HLB | [10] |
Zinc Pyrithione | Complexometric titration | Heating with HCl and H2O2 | [11] |
Dexpanthenol | Ultra-High-Pressure LC-MS | Dissolution–filtration–dilution | [12] |
Zinc Pyrithione and Pyrithione | HPLC-MS/MS | Solvent extraction with chloroform/MeOH | [13] |
N-nitrosodiethanolamine | HPLC-UV | Modified QuEChERS | [14] |
Sulfur | UV-vis spectrophotometry | Dry ashing/wet digestion | [15] |
Heavy metals | Atomic absorption spectrometry | Dry ashing/wet digestion | [16] |
Ketoconazole | Ultra-High-Pressure LC-MS/MS | Solid-phase extraction using Oasis HLB | [17] |
Fenoxycarb and Permethrin | HPLC-UV | Dissolution–filtration | [18] |
Histidine | HPLC-PCD | Dissolution–filtration–dilution | This study |
Slope | ME % | |
---|---|---|
Aqueous Curve | 279.15 (±0.85) | |
Shampoo Matrix | 276.02 (±4.35) | −1.1% |
Conditioner Matrix | 287.42 (±3.65) | +3.0% |
Shampoo Samples | Histidine (mgkg−1) (±S.D.) |
Sample 1 a | 70 (±5) |
Sample 2 a | 75 (±3) |
Sample 3 b | N.D. |
Conditioner Samples | Histidine (mg kg−1) (±S.D.) |
Sample 1 c | 270 (±10) |
Sample 2 c | 145 (±5) |
Sample 3 c | 300 (±12) |
Sample 4 c | 535 (±13) |
Sample 5 b | N.D. |
Shampoo Samples | Spiked (mg kg−1) | % Recovery |
Sample 1 | 5.0 | 103.5 |
10.0 | 99.7 | |
Sample 2 | 5.0 | 83.5 |
10.0 | 91.4 | |
Sample 3 | 5.0 | 97.3 |
10.0 | 98.7 | |
Conditioner Samples | Spiked (mg kg−1) | % Recovery |
Sample 1 | 5.0 | 95.3 |
10.0 | 98.0 | |
Sample 2 | 5.0 | 110.3 |
10.0 | 114.8 | |
Sample 3 | 5.0 | 102.1 |
10.0 | 97.0 | |
Sample 4 | 5.0 | 95.3 |
10.0 | 101.0 | |
Sample 5 | 5.0 | 101.5 |
10.0 | 102.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. Determination of Free Histidine in Complex Hair Care Products with Minimum Sample Preparation Using Cation-Exchange Chromatography and Post Column Derivatization. Molecules 2023, 28, 888. https://doi.org/10.3390/molecules28020888
Tsiasioti A, Zacharis CK, Tzanavaras PD. Determination of Free Histidine in Complex Hair Care Products with Minimum Sample Preparation Using Cation-Exchange Chromatography and Post Column Derivatization. Molecules. 2023; 28(2):888. https://doi.org/10.3390/molecules28020888
Chicago/Turabian StyleTsiasioti, Apostolia, Constantinos K. Zacharis, and Paraskevas D. Tzanavaras. 2023. "Determination of Free Histidine in Complex Hair Care Products with Minimum Sample Preparation Using Cation-Exchange Chromatography and Post Column Derivatization" Molecules 28, no. 2: 888. https://doi.org/10.3390/molecules28020888
APA StyleTsiasioti, A., Zacharis, C. K., & Tzanavaras, P. D. (2023). Determination of Free Histidine in Complex Hair Care Products with Minimum Sample Preparation Using Cation-Exchange Chromatography and Post Column Derivatization. Molecules, 28(2), 888. https://doi.org/10.3390/molecules28020888