How the Position of Substitution Affects Intermolecular Bonding in Halogen Derivatives of Carboranes: Crystal Structures of 1,2,3- and 8,9,12-Triiodo- and 8,9,12-Tribromo ortho-Carboranes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Preparation of 8,9,12-Triiodo-ortho-Carborane 8,9,12-I3-1,2-C2B10H9
3.3. Preparation of 8,9,12-Tribromo-ortho-Carborane 8,9,12-Br3-1,2-C2B10H9
3.4. Preparation of 1,2,3-Triiodo-ortho-Carborane 1,2,3-I3-1,2-C2B10H9
3.5. Single-Crystal X-ray Diffraction Study
3.6. Quantum Chemical Calculation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colin, J.J. Sur quelques combinaisons de l’iode. Ann Chim. 1814, 91, 252–272. [Google Scholar]
- Wisniak, J. Jean-Jacques Colin. Rev. CENIC Cienc. Biol. 2017, 48, 112–120. [Google Scholar]
- Guthrie, F. On the iodide of iodammonium. J. Chem. Soc. 1863, 16, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Hassel, O. Structural aspects of interatomic charge-transfer bonding. Science 1970, 170, 497–502. [Google Scholar] [CrossRef]
- Turunen, L.; Hansen, J.H.; Erdélyi, M. Halogen bonding: An Odd chemistry? Chem. Rec. 2021, 21, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Metrangolo, P.; Resnati, G. (Eds.) Halogen Bonding: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, P.J. The halogen bond: Nature and applications. Phys. Sci. Rev. 2017, 2, 20170136. [Google Scholar] [CrossRef]
- Frontera, F.; Bauzá, A. On the importance of σ-hole interactions in crystal structures. Crystals 2021, 11, 1205. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef] [PubMed]
- Lommerse, J.P.M.; Stone, A.J.; Taylor, R.; Allen, F.H. The nature and geometry of intermolecular interactions between halogens and oxygen or nitrogen. J. Am. Chem. Soc. 1996, 118, 3108–3116. [Google Scholar] [CrossRef]
- Metrangolo, P.; Murray, J.S.; Pilati, T.; Politzer, P.; Resnati, G.; Terraneo, G. The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm 2011, 13, 6593–6596. [Google Scholar] [CrossRef] [Green Version]
- Le Questel, Y.-J.; Laurence, C.; Graton, J. Halogen-bond interactions: A crystallographic basicity scale towards iodoorganic compounds. CrystEngComm 2013, 15, 3212–3221. [Google Scholar] [CrossRef]
- Askeröy, C.B.; Baldrighi, M.; Desper, J.; Metrangolo, P.; Resnati, G. Supramolecular hierarchy among halogen-bond donors. Chem. Eur. J. 2013, 19, 16240–16247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Präsang, C.; Whitwood, A.C.; Bruce, D.W. Halogen-bonded cocrystals of 4-(N,N-dimethylamino)pyridine with fluorinated iodobenzenes. Cryst. Growth Des. 2009, 9, 5319–5326. [Google Scholar] [CrossRef]
- Roper, L.C.; Präsang, C.; Kozhevnikov, V.N.; Whitwood, A.C.; Karadakov, P.B.; Bruce, D.W. Experimental and theoretical study of halogen-bonded complexes of DMAP with di- and triiodofluorobenzenes. A complex with a very short N···I halogen bond. Cryst. Growth Des. 2010, 10, 3710–3720. [Google Scholar] [CrossRef]
- Wang, H.; Jin, W.J. Cocrystal assembled by 1,4-diiodotetrafluorobenzene and phenothiazine based on C-I···π/N/S halogen bond and other assisting interactions. Acta Cryst. B 2017, 73, 210–216. [Google Scholar] [CrossRef]
- Christopherson, J.C.; Topic, F.; Barret, C.J.; Friscic, T. Halogen-bonded cocrystals as optical materials: Next generation control over light-matter interactions. Cryst. Growth Des. 2018, 18, 1245–1259. [Google Scholar] [CrossRef]
- Bedeković, N.; Stilinović, V.; Friščić, T.; Cinčić, D. Comparison of isomeric meta- and para-diiodotetrafluorobenzene as halogen bond donors in crystal engineering. New J. Chem. 2018, 42, 10584–10591. [Google Scholar] [CrossRef]
- Li, L.; Wu, W.X.; Liu, Z.F.; Jin, W.J. Effect of geometry factors on the priority of σ-hole···π and π-hole···π bond in phosphorescent cocrystals formed by pyrene or phenanthrene and trihaloperfluorobenzenes. New J. Chem. 2018, 42, 10633–10641. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Y.; Zhao, D.; Lu, X.; Lin, Y. Versatile supramolecular binding modes of 1,4-diiodotetrafluorobenzene for molecular cocrystal engineering. J. Mol. Struct. 2019, 1187, 132–137. [Google Scholar] [CrossRef]
- Grosu, I.G.; Pop, L.; Miclǎuş, M.; Hǎdade, N.D.; Terec, A.; Bende, A.; Socaci, C.; Barboiu, M.; Grosu, I. Halogen bonds (N···I) at work: Supramolecular catemeric architectures of 2,7-dipyridylfluorene with ortho-, meta-, or para-diiodotetrafluorobenzene isomers. Cryst. Growth Des. 2020, 20, 3429–3441. [Google Scholar] [CrossRef]
- Uran, E.; Fotović, L.; Bedeković, N.; Stilinović, V.; Cinčić, D. The amine group as halogen bond acceptor in cocrystals of aromatic diamines and perfluorinated iodobenzenes. Crystals 2021, 11, 529. [Google Scholar] [CrossRef]
- Nieland, E.; Komisarek, D.; Hohloch, S.; Wurst, K.; Vasylyeva, V.; Weingart, O.; Schmidt, B.M. Supramolecular networks by imine halogen bonding. Chem. Commun. 2022, 58, 5233–5236. [Google Scholar] [CrossRef]
- Hajjar, C.; Nag, T.; Al Sayed, H.; Ovens, J.S.; Bryce, D.L. Stoichiomorphic halogen-bonded cocrystals: A case study of 1,4-diiodotetrafluorobenzene and 3-nitropyridine. Can. J. Chem. 2022, 100, 245–251. [Google Scholar] [CrossRef]
- Yeo, C.I.; Tan, Y.S.; Kwong, H.C.; Lee, V.S.; Tiekink, E.R.T. I···N halogen bonding in 1: 1 co-crystals formed between 1,4-diiodotetrafluorobenzene and the isomeric n-pyridinealdazines (n = 2, 3 and 4): Assessment of supramolecular association and influence upon solid-state photoluminescence properties. CrystEngComm 2022, 24, 7579–7591. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Wijethunga, T.K.; Desper, J.; Đaković, M. Crystal engineering with iodoethynylnitrobenzenes: A group of highly effective halogen-bond donors. Cryst. Growth Des. 2015, 15, 3853–3861. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Welideniya, D.; Desper, J. Ethynyl hydrogen bonds and iodoethynyl halogen bonds: A case of synthon mimicry. CrystEngComm 2017, 19, 11–13. [Google Scholar] [CrossRef]
- Wijethunga, T.K.; Ðakovic, M.; Desper, J.; Aakeröy, C.B. A new tecton with parallel halogen-bond donors: A path to supramolecular rectangles. Acta Cryst. B 2017, 73, 163–167. [Google Scholar] [CrossRef]
- Fourmigue, M. Coordination chemistry of anions through halogen-bonding interactions. Acta Cryst. B 2017, 73, 138–139. [Google Scholar] [CrossRef] [PubMed]
- Szell, P.M.J.; Gabidullin, B.; Bryce, D.L. 1,3,5-Tri(iodoethynyl)-2,4,6-trifluorobenzene: Halogen-bonded frameworks and NMR spectroscopic analysis. Acta Cryst. B 2017, 73, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Szell, P.M.J.; Siiskonen, A.; Catalano, L.; Cavallo, G.; Terraneo, G.; Priimagi, A.; Bryce, D.L.; Metrangolo, P. Halogen-bond driven self-assembly of triangular macrocycles. New J. Chem. 2018, 42, 10467–10471. [Google Scholar] [CrossRef]
- Bosch, E.; Kruse, S.J.; Groeneman, R.H. Infinite and discrete halogen bonded assemblies based upon 1,2-bis(iodoethynyl)benzene. CrystEngComm 2019, 21, 990–993. [Google Scholar] [CrossRef]
- Reddy, C.M.; Kirchner, M.T.; Gundakaram, R.C.; Padmanabhan, K.A.; Desiraju, G.R. Isostructurality, polymorphism and mechanical properties of some hexahalogenated benzenes: The nature of halogen···halogen interactions. Chem. Eur. J. 2006, 12, 2222–2234. [Google Scholar] [CrossRef]
- Raffo, P.A.; Suarez, S.; Fantoni, A.C.; Baggio, R.; Cukiernik, F.D. Polymorphism of a widely used building block for halogen-bonded assemblies: 1,3,5-trifluoro-2,4,6-triiodobenzene. Acta Cryst. C 2017, 73, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Bartashevich, E.; Sobalev, S.; Matveychuk, Y.; Tsirelson, V. Variations of quantum electronic pressure under the external compression in crystals with halogen bonds assembled in Cl3-, Br3-, I3-synthons. Acta Cryst. B 2020, 76, 514–523. [Google Scholar] [CrossRef]
- Dominikowska, J.; Rybarczyk-Pirek, A.J.; Guerra, C.F. Lack of cooperativity in the triangular X3 halogen-bonded synthon? Cryst. Growth Des. 2021, 21, 597–607. [Google Scholar] [CrossRef]
- Saha, A.; Rather, S.A.; Sharada, D.; Saha, B.K. C–X···X–C vs C–H···X–C, which one is the more dominant interaction in crystal packing (X = halogen)? Cryst. Growth Des. 2018, 18, 6084–6090. [Google Scholar] [CrossRef]
- Lo, R.; Fanfrlík, J.; Lepšík, M.; Hobza, P. The properties of substituted 3D-aromatic neutral carboranes: The potential for σ-hole bonding. Phys. Chem. Chem. Phys. 2015, 17, 20814–20821. [Google Scholar] [CrossRef]
- Fanfrlík, J.; Holub, J.; Růžičková, Z.; Řezáč, J.; Lane, P.D.; Wann, D.A.; Hnyk, D.; Růžička, A.; Hobza, P. Competition between halogen, hydrogen and dihydrogen bonding in brominated carboranes. ChemPhysChem 2016, 17, 3373–3376. [Google Scholar] [CrossRef]
- Beau, M.; Lee, S.; Kim, S.; Han, W.-S.; Jeannin, O.; Fourmigué, M.; Aubert, E.; Espinosa, E.; Jeon, I.-R. Strong σ-hole activation on icosahedral carborane derivatives for a directional halide recognition. Angew. Chem. Int. Ed. 2021, 60, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, V.N.; Ol´shevskaya, V.A. Some aspects of the chemical behavior of icosahedral carboranes. Russ. Chem. Bull. 2008, 57, 815–836. [Google Scholar] [CrossRef]
- Suponitsky, K.Y.; Anisimov, A.A.; Anufriev, S.A.; Sivaev, I.B.; Bregadze, V.I. 1,12-Diiodo-ortho-carborane: A classic textbook example of the dihalogen bond. Crystals 2021, 11, 396. [Google Scholar] [CrossRef]
- Vaca, A.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Viñas, C. A solvent-free regioselective iodination route of ortho-carboranes. Dalton Trans. 2006, 4884–4885. [Google Scholar] [CrossRef] [PubMed]
- Puga, A.V.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Viñas, C. Iodinated ortho-carboranes as versatile building blocks to design intermolecular interactions in crystal lattices. Chem. Eur. J. 2009, 15, 9764–9772. [Google Scholar] [CrossRef]
- Barberà, G.; Viñas, C.; Teixidor, F.; Rosair, G.M.; Welch, A.J. Self-assembly of carborane molecules via C–H···I hydrogen bonding: The molecular and crystal structures of 3-I-1,2-closo-C2B10H11. J. Chem. Soc. Dalton Trans. 2002, 3647–3648. [Google Scholar] [CrossRef]
- Safronov, A.V.; Sevryugina, Y.V.; Jalisatgi, S.S.; Kennedy, R.D.; Barnes, C.L.; Hawthorne, M.F. Unfairly forgotten member of the iodocarborane family: Synthesis and structural characterization of 8-iodo-1,2-dicarba-closo-dodecaborane, its precursors, and derivatives. Inorg. Chem. 2012, 51, 2629–2637. [Google Scholar] [CrossRef]
- Barbera, G.; Vaca, A.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Viñas, C. Designed synthesis of new ortho-carborane derivatives: From mono- to polysubstituted frameworks. Inorg. Chem. 2008, 47, 7309–7316. [Google Scholar] [CrossRef]
- Ramachandran, B.M.; Knobler, C.B.; Hawthorne, M.F. Synthesis and structural characterization of symmetrical closo-4,7-I2-1,2-C2B10H10 and [(CH3)3NH][nido-2,4-I2-7,8-C2B9H10]. Inorg. Chem. 2006, 45, 336–340. [Google Scholar] [CrossRef]
- Batsanov, A.S.; Fox, M.A.; Howard, J.A.K.; Hughes, A.K.; Johnson, A.L.; Martindale, S.J. 9,12-Diiodo-1,2-dicarba-closo-dodecaborane(12). Acta Cryst. A 2003, 59, O74–O76. [Google Scholar] [CrossRef] [PubMed]
- Rudakov, D.A.; Kurman, P.V.; Potkin, V.I. Synthesis and deborination of polyhalo-substituted ortho-carboranes. Russ. J. Gen. Chem. 2011, 81, 1137–1142. [Google Scholar] [CrossRef]
- Zheng, Z.; Jiang, W.; Zinn, A.A.; Knobler, C.B.; Hawthorne, M.F. Facile electrophilic iodination of icosahedral carboranes. Synthesis of carborane derivatives with boron-carbon bonds via the palladium-catalyzed reaction of diiodocarboranes with Grignard reagents. Inorg. Chem. 1995, 34, 2095–2100. [Google Scholar] [CrossRef]
- Struchkov, Y.T.; Stanko, V.I.; Klimova, A.I.; Kon’kova, G.S. X-ray data on some derivatives of barene and neobarene. J. Struct. Chem. 1965, 8, 888–890. [Google Scholar] [CrossRef]
- Zefirov, Y.V.; Zorky, P.M. New applications of van der Waals radii in chemistry. Russ. Chem. Rev. 1995, 64, 415–428. [Google Scholar] [CrossRef]
- Smith, H.D.; Knowles, T.A.; Schroeder, H. Chemistry of decaborane-phosphorus compounds. V. Bromocarboranes and their phosphination. Inorg. Chem. 1965, 4, 107–111. [Google Scholar] [CrossRef]
- Zhidkova, O.B.; Druzina, A.A.; Anufriev, S.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis and crystal structure of 9,12-dibromo-ortho-carborane. Molbank 2022, 2022, M1347. [Google Scholar] [CrossRef]
- Puga, A.V.; Teixidor, F.; Sillanpää, R.; Kivekäs, R.; Arca, M.; Barbera, G.; Viñas, C. From mono- to poly-substituted frameworks: A way of tuning the acidic character of Cc-H in o-carborane derivatives. Chem. Eur. J. 2009, 15, 9755–9763. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Anufriev, S.A.; Shmalko, A.V. How substituents at boron atoms affect the CH-acidity and the electron-withdrawing effect of the ortho-carborane cage: A close look on the 1H NMR spectra. Inorg. Chim. Acta 2023, 547, 121339. [Google Scholar] [CrossRef]
- Potenza, J.A.; Lipscomb, W.N. Molecular structure of carboranes. Molecular and crystal structure of o-B10Br3H7C2H2. Inorg. Chem. 1966, 5, 1478–1482. [Google Scholar] [CrossRef]
- Potenza, J.A.; Lipscomb, W.N. Molecular structure of carboranes. Molecular and crystal structure of o-B10Br4H6C2(CH3)2. Inorg. Chem. 1966, 5, 1483–1488. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Timofeev, S.V.; Zhidkova, O.B.; Suponitsky, K.Y.; Sivaev, I.B. Synthesis, crystal structure, and some transformations of 9,12-dichloro-ortho-carborane. Crystals 2022, 12, 1251. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; University of Western Australia: Perth, WA, Australia, 2017. [Google Scholar]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Rozas, I.; Elguero, J.; Molins, E. About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem. Phys. Lett. 2001, 336, 457–461. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll, Version 15.05.18; TK Gristmill Software: Overland Park, KS, USA, 2015. [Google Scholar]
- Suponitsky, K.Y.; Burakov, N.I.; Kanibolotsky, A.L.; Mikhailov, V.A. Multiple noncovalent bonding in halogen complexes with oxygen organics. I. Tertiary amides. J. Phys. Chem. A 2016, 120, 4179–4190. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Bregadze, V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]-. Some evidences of BH···X hydride-halogen bonds in 9- XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I). J. Organomet. Chem. 2017, 849–850, 315–323. [Google Scholar] [CrossRef]
- Dmitrienko, A.O.; Karnoukhova, V.A.; Potemkin, A.A.; Struchkova, M.I.; Kryazhevskikh, I.A.; Suponitsky, K.Y. The influence of halogen type on structural features of compounds containing α-halo-α,α-dinitroethyl moieties. Chem. Heterocycl. Comp. 2017, 53, 532–539. [Google Scholar] [CrossRef]
- Gidaspov, A.A.; Zalomlenkov, V.A.; Bakharev, V.V.; Parfenov, V.E.; Yurtaev, E.V.; Struchkova, M.I.; Palysaeva, N.V.; Suponitsky, K.Y.; Lempertd, D.B.; Sheremetev, A.B. Novel trinitroethanol derivatives: High energetic 2-(2,2,2-trinitroethoxy)-1,3,5-triazines. RSC Adv. 2016, 6, 34921–34934. [Google Scholar] [CrossRef] [Green Version]
- Palysaeva, N.V.; Gladyshkin, A.G.; Vatsadze, I.A.; Suponitsky, K.Y.; Dmitriev, D.E.; Sheremetev, A.B. N-(2-Fluoro-2,2-dinitroethyl)azoles: Novel assembly of diverse explosophoric building block-s for energetic compounds design. Org. Chem. Front. 2019, 6, 249–255. [Google Scholar] [CrossRef]
- Zhao, D.; Xie, Z. [3-N2-o-C2B10H11][BF4]: A useful synthon for multiple cage boron functionalizations of o-carborane. Chem. Sci. 2016, 7, 5635–5639. [Google Scholar] [CrossRef] [Green Version]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2009. [Google Scholar] [CrossRef]
- APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2014.
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Kudin, K.N., Jr.; Burant, J.C.; Millam, J.M.; et al. Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford, UK, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suponitsky, K.Y.; Anufriev, S.A.; Sivaev, I.B. How the Position of Substitution Affects Intermolecular Bonding in Halogen Derivatives of Carboranes: Crystal Structures of 1,2,3- and 8,9,12-Triiodo- and 8,9,12-Tribromo ortho-Carboranes. Molecules 2023, 28, 875. https://doi.org/10.3390/molecules28020875
Suponitsky KY, Anufriev SA, Sivaev IB. How the Position of Substitution Affects Intermolecular Bonding in Halogen Derivatives of Carboranes: Crystal Structures of 1,2,3- and 8,9,12-Triiodo- and 8,9,12-Tribromo ortho-Carboranes. Molecules. 2023; 28(2):875. https://doi.org/10.3390/molecules28020875
Chicago/Turabian StyleSuponitsky, Kyrill Yu., Sergey A. Anufriev, and Igor B. Sivaev. 2023. "How the Position of Substitution Affects Intermolecular Bonding in Halogen Derivatives of Carboranes: Crystal Structures of 1,2,3- and 8,9,12-Triiodo- and 8,9,12-Tribromo ortho-Carboranes" Molecules 28, no. 2: 875. https://doi.org/10.3390/molecules28020875
APA StyleSuponitsky, K. Y., Anufriev, S. A., & Sivaev, I. B. (2023). How the Position of Substitution Affects Intermolecular Bonding in Halogen Derivatives of Carboranes: Crystal Structures of 1,2,3- and 8,9,12-Triiodo- and 8,9,12-Tribromo ortho-Carboranes. Molecules, 28(2), 875. https://doi.org/10.3390/molecules28020875