Small Molecule Drugs That Inhibit Phagocytosis
Abstract
:1. Introduction
2. Results
2.1. Selection of Compounds for In Vitro Screening
2.2. Monocyte Monolayer Assay (MMA)
2.3. LDH Release and MTT Assays
2.4. Dose-Dependent Inhibition
2.5. Additional Toxicity Testing
2.6. Apoptosis Assays
3. Discussion
4. Materials and Methods
4.1. Selection of Compounds for Preliminary In Vitro Screening
4.2. Characterization by 1H-NMR
4.3. Characterization by UHPLC-HRMS/MS
4.4. % Purity and Characterization by PDA
4.5. Spectroscopic Data
4.6. Primary Cells and Cell Lines
4.7. Phagocytosis Assay
4.8. Cell Viability Assays
4.9. Apoptosis Assay
4.10. Dose-Inhibitory Response and IC50
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilliland, B.C.; Evans, R.S. The immune cytopenias. Postgrad. Med. 1973, 54, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Petz, L.D.; Garratty, G. Immune Hemolytic Anemias, 2nd ed.; Petz, L.D., Garratty, G., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2004. [Google Scholar] [CrossRef]
- Connell, N.T.; Berliner, N. Fostamatinib for the treatment of chronic immune thrombocytopenia. Blood 2019, 133, 2027–2030. [Google Scholar] [CrossRef]
- Zuercher, A.W.; Spirig, R.; Baz Morelli, A.; Rowe, T.; Käsermann, F. Next generation Fc receptor-targeting biologics for au-toimmune diseases. Autoimmun. Rev. 2019, 18, 102366. [Google Scholar] [CrossRef]
- Purohit, M.K.; Scovell, I.; Neschadim, A.; Katsman, Y.; Branch, D.R.; Kotra, L.P. Disulfide linked pyrazole derivatives inhibit phagocytosis of opsonized blood cells. Bioorg. Med. Chem. Lett. 2013, 23, 2324–2327. [Google Scholar] [CrossRef] [PubMed]
- Purohit, M.K.; Chakka, S.K.; Scovell, I.; Neschadim, A.; Bello, A.M.; Salum, N.; Katsman, Y.; Bareau, M.C.; Branch, D.R.; Kotra, L.P. Structure-activity relationships of pyrazole derivatives as potential therapeutics for immune thrombocytopenias. Bioorg. Med. Chem. 2014, 22, 2739–2752. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.N.; Branch, D.R. Use of a Monocyte Monolayer Assay to Evaluate Fcγ Receptor-mediated Phagocytosis. J. Vis. Exp. 2017, 119, 55039. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.N.; Cen, S.; Branch, D.R. The Monocyte Monolayer Assay: Past, Present and Future. Transfus. Med. Rev. 2019, 33, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Nance, S.J.; Arndt, P.; Garratty, G. Predicting the clinical significance of red cell alloantibodies using a monocyte monolayer assay. Transfusion 1987, 27, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harb. Protoc. 2018, 2018, pdb-prot095497. [Google Scholar] [CrossRef] [PubMed]
- Rampersad, G.C.; Suck, G.; Sakac, D.; Fahim, S.; Foo, A.; Denomme, G.A.; Langler, R.F.; Branch, D.R. Chemical compounds that target thiol-disulfide groups on mononuclear phagocytes inhibit immune mediated phagocytosis of red blood cells. Transfusion 2005, 45, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Branch, D.R.; Guilbert, L.J. Practical in vitro assay systems for the measurement of hematopoietic growth factors. J. Tissue Cult. Methods 1986, 10, 101–107. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Ghanima, W.; Godeau, B.; Cines, D.B.; Bussel, J.B. How I treat immune thrombocytopenia: The choice between splenectomy or a medical therapy as a second-line treatment. Blood 2012, 120, 960–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.C.; Klima, J.; Despotovic, J.M.; O’Brien, S.H. Anti-D immunoglobulin therapy for pediatric ITP: Before and after the FDA’s black box warning. Pediatr. Blood Cancer 2013, 60, E149–E151. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Kalish, L.A.; Neufeld, E.J.; Grace, R.F. Trends in anti-D immune globulin for childhood immune thrombocytopenia: Usage, response rates, and adverse effects. Am. J. Hematol. 2012, 87, 315–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braselmann, S.; Taylor, V.; Zhao, H.; Wang, S.; Sylvain, C.; Baluom, M.; Qu, K.; Herlaar, E.; Lau, A.; Young, C.; et al. R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J. Pharmacol. Exp. Ther. 2006, 319, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- McKeage, K.; Lyseng-Williamson, K.A. Fostamatinib in chronic immune thrombocytopenia: A profile of its use in the USA. Drugs Ther. Perspect. 2018, 34, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Cheloff, A.Z.; Al-Samkari, H. Avatrombopag for the treatment of immune thrombocytopenia and thrombocytopenia of chronic liver disease. J. Blood Med. 2019, 10, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohn, C.S.; Bussel, J.B. Romiplostim: A second-generation thrombopoietin agonist. Drugs Today 2009, 45, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Ingersoll, M.A.; Spanbroek, R.; Lottaz, C.; Gautier, E.L.; Frankenberger, M.; Hoffmann, R.; Lang, R.; Haniffa, M.; Collin, M.; Tacke, F.; et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010, 115, e10–e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Compound | PI 1-Average | Inhibition% |
---|---|---|
KB-151 | 17 | 80 |
KB-167 | 14 | 53 |
KB-175 | 15 | 50 |
KB-178 | 29 | 53 |
KB-179 | 14 | 53 |
KB-181 | 37 | 45 |
KB-182 | 28 | 55 |
KB-186 | 28 | 55 |
KB-189 | 30 | 52 |
KB-190 | 27 | 56 |
KB-198 | 9 | 75 |
KB-199 | 40 | 40 |
KB-205 | 19 | 47 |
KB-206 | 18 | 50 |
KB-208 | 7 | 81 |
KB-209 | 18 | 50 |
KB-210 | 11 | 69 |
KB-212 | 19 | 47 |
KB-213 | 13 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loriamini, M.; Lewis-Bakker, M.M.; Frias Boligan, K.; Wang, S.; Holton, M.B.; Kotra, L.P.; Branch, D.R. Small Molecule Drugs That Inhibit Phagocytosis. Molecules 2023, 28, 757. https://doi.org/10.3390/molecules28020757
Loriamini M, Lewis-Bakker MM, Frias Boligan K, Wang S, Holton MB, Kotra LP, Branch DR. Small Molecule Drugs That Inhibit Phagocytosis. Molecules. 2023; 28(2):757. https://doi.org/10.3390/molecules28020757
Chicago/Turabian StyleLoriamini, Melika, Melissa M. Lewis-Bakker, Kayluz Frias Boligan, Siming Wang, Mairead B. Holton, Lakshmi P. Kotra, and Donald R. Branch. 2023. "Small Molecule Drugs That Inhibit Phagocytosis" Molecules 28, no. 2: 757. https://doi.org/10.3390/molecules28020757
APA StyleLoriamini, M., Lewis-Bakker, M. M., Frias Boligan, K., Wang, S., Holton, M. B., Kotra, L. P., & Branch, D. R. (2023). Small Molecule Drugs That Inhibit Phagocytosis. Molecules, 28(2), 757. https://doi.org/10.3390/molecules28020757