The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dynamics of Control and Experimental Culture Growth
2.2. Effect of Phenylalanine on the Accumulation of Secondary Metabolites
2.2.1. Accumulation of Phenolic Acids
Control Cultures
Experimental Cultures
2.2.2. Accumulation of Catechin
Control Cultures
Experimental Cultures
2.2.3. Accumulation of Furanocoumarins
Control Cultures
Experimental Cultures
2.2.4. Accumulation of Furoquinolic Alkaloids
Control Cultures
Experimental Cultures
2.2.5. The Influence of Feeding with Phenylalanine
3. Materials and Methods
3.1. Chemicals and Solvents
3.2. In Vitro Cultures
3.3. RP-HPLC Analysis
3.4. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tutin, T.G.; Heywood, V.H.; Burges, N.A. Flora Europea; University Press: Cambridge, UK, 1968; Volume 2. [Google Scholar]
- Giresha, A.S.; Anitha, M.G.; Dharmappa, K.K. Phytochemical composition, antioxidant and in-vitro anti-inflammatory activity of ethanol extract of Ruta graveolens L. leaves. Int. J. Pharm. Pharm. Sci. 2015, 7, 272–276. [Google Scholar]
- Asgarpanah, J.; Khoshkam, R. Phytochemistry and pharmacological properties of Ruta graveolens L. J. Med. Plants Res. 2012, 6, 3942–3949. [Google Scholar] [CrossRef]
- Kostova, I.; Ivanova, A.; Mikhova, B.; Klaiber, I. Alkaloids and Coumarins from Ruta graveolens. Mon. Für Chem. 1999, 130, 703–707. [Google Scholar] [CrossRef]
- Smolarz, H.D.; Sokołowska-Woźniak, A.; Zgórka, G. Phenolic acids from herb of Ruta graveolens L. Acta Pol. Pharm.-Drugs Res. 1997, 54, 161–163. [Google Scholar]
- Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (Rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008, 116, 469–488. [Google Scholar] [CrossRef]
- Roelandts, R. Photo(chemo) therapy for vitiligo. Photodermatol. Photoimmunol. Photomed. 2003, 19, 1–4. [Google Scholar] [CrossRef]
- Wolf, P. Psoralen-ultraviolet A endures as one of the most powerful treatments in dermatology: Reinforcement of this ‘triple-product therapy’ by the 2016 British guidelines. Br. J. Dermatol. 2016, 174, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Ekiert, H.; Czygan, F.C. Secondary metabolites in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. In Biotechnology Secondary Metabolites, 7th ed.; Ramawat, K.G., Merillon, J.M., Eds.; Science Publishers Inc.: Hauppauge, NY, USA, 2007; p. 16. ISBN 978-157-808-428-9. [Google Scholar]
- Diwan, R.; Malpathak, N. Ruta graveolens cultures as screening resources for phyto-pharmaceuticals: Bio-prospecting, metabolic phenotyping and multivariate analysis. Bioremediation Biodivers. Bioavailab. 2001, 5, 1–9. [Google Scholar]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Szopa, A.; Kubica, P.; Komsta, Ł.; Walkowicz-Bożek, A.; Ekiert, H. The effect of feeding culture media with biogenetic precursors on high production of depsides in agitated shoot cultures of black and red aronias. Plant Cell Tissue Organ Cult. 2020, 142, 379–399. [Google Scholar] [CrossRef]
- Szewczyk, A.; Marino, A.; Molinari, J.; Ekiert, H.; Miceli, N. Phytochemical Characterization, and Antioxidant and Antimicrobial Properties of Agitated Cultures of Three Rue Species: Ruta chalepensis, Ruta corsica, and Ruta graveolens. Antioxidants 2022, 11, 592. [Google Scholar] [CrossRef]
- Kwiecień, I.; Miceli, N.; D’Arrigo, M.; Marino, A.; Ekiert, H. Antioxidant Potential and Enhancement of Bioactive Metabolite Production in In Vitro Cultures of Scutellaria lateriflora L. by Biotechnological Methods. Molecules 2022, 27, 1140. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak-Pietraszek, E.; Piska, K.; Pietraszek, J. Enhanced production of the pharmaceutically important polyphenolic compounds in Vitex agnus castus L. shoot cultures by precursor feeding strategy. Eng. Life Sci. 2018, 18, 287–297. [Google Scholar] [CrossRef]
- Szewczyk, A.; Kwiecień, I.; Grabowski, M.; Rajek, K.; Cavò, E.; Taviano, M.F.; Miceli, N. Phenylalanine Increases the Production of Antioxidant Phenolic Acids in Ginkgo biloba Cell Cultures. Molecules 2021, 26, 4965. [Google Scholar] [CrossRef] [PubMed]
- Herrman, K.M. The shikimate pathway: Early step in the Biosynthesis of Aromatic Compounds. Plant Cell 1995, 7, 907–919. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.; Salas-Coronado, R.; Hernández-Carlos, B.; Villanueva-Cañongo, C. Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. In Plant Physiological Aspects of Phenolic Compounds; Soto-Hernández, M., García-Mateos, R., Palma-Tenango, M., Eds.; IntechOpen: London, UK, 2019; pp. 35–50. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, P.; Andújar, I.; Vilanova, S.; Plazas, M.; Gramazio, P.; Herraiz, F.J.; Brar, N.S.; Prohens, J. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules 2015, 20, 18464–18481. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Lu, S. Biosynthesis and Regulation of Phenylpropanoids in Plants. CRC Crit. Rev. Plant Sci. 2017, 36, 257–290. [Google Scholar] [CrossRef]
- Ekiert, H.; Chołoniewska, M.; Gomółka, E. Accumulation of furanocoumarins in Ruta graveolens L. shoot culture. Biotechnol. Lett. 2001, 23, 543–545. [Google Scholar] [CrossRef]
- Ekiert, H.; Czygan, F.C. Accumulation of biologically active furanocoumarins in agitated cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. Pharmazie 2005, 60, 623–626. [Google Scholar]
- Ekiert, H.; Szewczyk, A.; Kuś, A. Free phenolic acids in Ruta graveolens L. in vitro culture. Pharmazie 2009, 64, 694–696. [Google Scholar]
- Szopa, A.; Ekiert, H.; Szewczyk, A.; Fugas, E. Production of bioactive phenolic acids and furanocoumarins in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. under different light conditions. Plant Cell Tissue Organ Cult. 2012, 110, 329–336. [Google Scholar] [CrossRef] [Green Version]
- El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Song, X.; Li, L.; Sun, J.; Jaiswal, Y.; Huang, J.; Liu, C.; Yang, W.; Williams, L.; Zhang, H.; et al. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomed Pharmacother. 2019, 111, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Kampa, M.; Alexaki, V.I.; Notas, G.; Nifli, A.P.; Nistikaki, A.; Hatzoglou, A.; Bakogeorgou, E.; Kouimtzoglou, E.; Blekas, G.; Boskou, D.; et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004, 6, R63–R74. [Google Scholar] [CrossRef] [Green Version]
- De Paiva, L.B.; Goldbeck, R.; Santos, W.D.D.; Squina, F.M. Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Braz. J. Pharm. Sci. 2013, 49, 395–411. [Google Scholar] [CrossRef] [Green Version]
- Ekiert, H.; Gomółka, E. Effect of light on contents of coumarin compounds in shoots of Ruta graveolens L. cultivated in vitro. Acta Soc. Bot. Pol. 1999, 68, 197–200. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Kumirska, J. Identification of Ruta graveolens L. metabolites accumulated in the presence of abiotic elicitors. Biotechnol. Prog. 2008, 24, 128–133. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Paszkiewicz, M.; Maliński, E.; Kumirska, J.; Siedlecka, E.M.; Łojkowska, E.; Stepnowski, P. Applicationof chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnol. Appl. Biochem. 2008, 51, 91–96. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Malinski, E. Effective biotic elicitation of Ruta graveolens L. shoot cultures by lysates from Pectobacterium atrosepticum and Bacillus sp. Biotechnol. Lett. 2007, 30, 541–545. [Google Scholar] [CrossRef]
- Milesi, S.; Massot, B.; Gontier, E.; Bourgaud, F.; Guckert, A. Ruta graveolens L.: A promising species for the production of furanocoumarins. Plant Sci. 2001, 161, 189–199. [Google Scholar] [CrossRef]
- Adamska-Szewczyk, A.; Głowniak, K.; Baj, T. Furochinoline alkaloids in plants from Rutaceae family—A review. Curr. Issues Pharm. Med. Sci. 2016, 29, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Ekiert, H.; Kisiel, W. Coumarins and alkaloids in shoot culture of Ruta graveolens L. Acta Soc. Bot. Pol. 1997, 66, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Sutini; Widiwurjani; Ardianto, C.; Khotib, J.; Purwanto, D.A.; Muslihatin, W. Production of the secondary metabolite catechin by in vitro cultures of Camellia sinensis L. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190357. [Google Scholar] [CrossRef]
- Rattan, S.; Kumar, D.; Warghat, A.R. The influence of phenylalanine feeding on cell growth, antioxidant activity, phenylpropanoids content, and yield in cell suspension culture of Rhodiola imbricata (Edgew.). Plant Cell Tissue Organ Cult. (PCTOC) 2022, 151, 347–359. [Google Scholar] [CrossRef]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009, 3, 1222–1239. [Google Scholar]
- Linsmaier, E.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Physiologically active compounds in four species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [CrossRef] [PubMed]
Growth Period | Dry Weight [g] | ||
---|---|---|---|
Week | Day after Addition of PheAla | PheAla | Control |
4 | 2 | 2.684 ± 0.025 abc | 2.533 ± 0.068 abcdef |
4 | 4 | 2.595 ± 0.150 abcdef | 2.611 ± 0.070 abcdf |
4 | 7 | 2.527 ± 0.054 abcdef | 2.565 ± 0.105 abcdef |
5 | 2 | 2.524 ± 0.058 abcdef | 2.416 ± 0.040 bcdef |
5 | 4 | 2.350 ± 0.088 bcdefgh | 2.389 ± 0.107 bcdefh |
5 | 7 | 2.123 ± 0.099 egh | 2.132 ± 0.116 efgh |
Metabolite | Growth Period | Content [mg/100 g DW] | ||
---|---|---|---|---|
Week | Day | PheAla | Control | |
p-Coumaric acid | 4 | 2 | 64.280 ± 2.383 ab | 46.822 ± 10.067 abc |
4 | 4 | 64.203 ± 4.690 ab | 48.956 ± 11.022 abc | |
4 | 7 | 64.087 ± 12.045 ab | 56.736 ± 1.674 abc | |
5 | 2 | 62.736 ± 1.327 ab | 58.277 ± 6.128 abc | |
5 | 4 | 55.010 ± 6.630 abc | 46.716 ± 12.286 abc | |
5 | 7 | 53.412 ± 4.403 abc | 38.927 ± 2.009 bc | |
Ferulic acid | 4 | 2 | 35.573 ± 1.935 ac | 25.339 ± 2.787 bcdeg |
4 | 4 | 31.464 ± 1.557 abc | 18.827 ± 3.174 bdefghi | |
4 | 7 | 24.796 ± 1.532 bdegh | 18.014 ± 2.621 dfghi | |
5 | 2 | 22.515 ± 2.503 bdefgh | 17.476 ± 2.887 dfghi | |
5 | 4 | 18.219 ± 2.067 defghi | 14.148 ± 1.589 dfhi | |
5 | 7 | 16.546 ± 2.572 dfghi | 13.903 ± 0.305 dfhi | |
p-OH-benzoic acid | 4 | 2 | 3.476 ± 0.931 abcdefi | 2.532 ± 0.540 abefi |
4 | 4 | 6.172 ± 0.931 acdghi | 1.834 ± 0.426 abefi | |
4 | 7 | 5.349 ± 1.414 acdegi | 2.326 ± 0.475 abefi | |
5 | 2 | 2.587 ± 0.652 abdefi | 1.081 ± 0.198 abef | |
5 | 4 | 6.300 ± 1.153 cdghi | 2.526 ± 1.168 abefi | |
5 | 7 | 8.170 ± 1.819 cgh | 4.161 ± 0.100 abcdegi | |
Protocatechuic acid | 4 | 2 | 4.635 ± 1.201 ace | 2.251 ± 0.491 bcde |
4 | 4 | 4.440 ± 1.463 abce | 1.882 ± 0.438 bde | |
4 | 7 | 4.515 ± 1.230 ace | 3.601 ± 0.525 abcde | |
5 | 2 | 3.656 ± 0.477 abcde | 2.583 ± 0.451 abcde | |
5 | 4 | 3.305 ± 0.532 abcde | 2.190 ± 0.476 bde | |
5 | 7 | 1.676 ± 0.429 bde | 1.472 ± 0.266 bde | |
Gallic acid | 4 | 2 | 1.481 ± 0.383 abd | 0.988 ± 0.400 ab |
4 | 4 | 3.023 ± 0.314 cd | 1.483 ± 0.341 abd | |
4 | 7 | 1.693 ± 0.289 abd | 1.119 ± 0.222 ab | |
5 | 2 | 2.320 ± 0.265 acd | 1.371 ± 0.364 ab | |
5 | 4 | 1.368 ± 0.419 ab | 0.864 ± 0.111 ab | |
5 | 7 | 1.371 ± 0.323 ab | 0.914 ± 0.062 ab | |
Syringic acid | 4 | 2 | 0.170 ± 0.067 abcd | 0.049 ± 0.034 abc |
4 | 4 | 0.118 ± 0.021 abcd | 0.031 ± 0.016 abc | |
4 | 7 | 0.240 ± 0.071 acd | 0.044 ± 0.029 abc | |
5 | 2 | 0.141 ± 0.034 abcd | 0.018 ± 0.004 bc | |
5 | 4 | 0.130 ± 0.020 abcd | 0.041 ± 0.021 abc | |
5 | 7 | 0.204 ± 0.126 acd | 0.034 ± 0.019 abc | |
Total phenolic acids | 4 | 2 | 109.615 ± 1.197 ade | 77.982 ± 11.992 bcdefg |
4 | 4 | 109.419 ± 2.530 ade | 73.013 ± 9.719 bcefg | |
4 | 7 | 100.681 ± 11.683 abde | 81.839 ± 1.981 bcdefg | |
5 | 2 | 93.957 ± 4.184 abcde | 80.807 ± 7.586 bcdefg | |
5 | 4 | 84.333 ± 9.989 bcdef | 66.485 ± 11.688 bcefg | |
5 | 7 | 81.380 ± 4.282 bcdefg | 59.410 ± 1.503 bcfg | |
Catechin | 4 | 2 | 48.894 ± 2.140 abd | 35.666 ± 5.471 ab |
4 | 4 | 65.911 ± 6.213 cd | 45.896 ± 5.963 abd | |
4 | 7 | 65.322 ± 8.856 cd | 48.374 ± 5.563 abd | |
5 | 2 | 51.297 ± 2.323 acd | 39.603 ± 1.034 abd | |
5 | 4 | 52.994 ± 3.067 acd | 40.732 ± 2.493 abd | |
5 | 7 | 47.667 ± 4.010 abd | 43.187 ± 7.987 abd |
Metabolite | Growth Period | Content [mg/100 g DW] | ||
---|---|---|---|---|
Week | Day | PheAla | Control | |
Xanthotoxin | 4 | 2 | 394.131 ± 15.658 a–j | 407.724 ± 25.454 a–i |
4 | 4 | 305.047 ± 15.315 acdefhj | 347.801 ± 19.053 abcdefhij | |
4 | 7 | 291.519 ± 21.246 bcdehj | 362.567 ± 20.296 abcdefhij | |
5 | 2 | 392.355 ± 48.182 abcdfhij | 482.470 ± 24.150 abdgi | |
5 | 4 | 361.163 ± 50.342 abcdefhij | 397.132 ± 14.004 abdfghij | |
5 | 7 | 308.183 ± 53.323 acdefhij | 398.559 ± 15.831 abdfghi | |
Bergapten | 4 | 2 | 123.491 ± 6.170 abd | 156.366 ± 12.296 abcd |
4 | 4 | 229.479 ± 48.314 bcdeg | 216.975 ± 14.859 abcde | |
4 | 7 | 303.376 ± 40.991 cdefg | 307.338 ± 52.316 cdefg | |
5 | 2 | 345.300 ± 49.028 efg | 330.286 ± 16.630 cefg | |
5 | 4 | 392.606 ± 39.558 efg | 351.777 ± 38.942 efg | |
5 | 7 | 369.260 ± 46.468 efg | 339.258 ± 11.359 efg | |
Isopimpinellin | 4 | 2 | 57.371 ± 15.222 abc | 65.932 ± 12.874 abcd |
4 | 4 | 77.971 ± 6.558 abcdh | 84.550 ± 1.399 bcdgh | |
4 | 7 | 85.765 ± 2.499 bcdgh | 89.718 ± 3.069 bcdgh | |
5 | 2 | 115.485 ± 1.410 gh | 155.122 ± 13.326 f | |
5 | 4 | 108.179 ± 6.982 degh | 108.141 ± 8.868 degh | |
5 | 7 | 99.471 ± 7.609 cdegh | 107.366 ± 9.646 degh | |
Psoralen | 4 | 2 | 89.095 ± 6.306 abc | 115.023 ± 11.123 ab |
4 | 4 | 97.699 ± 9.206 ab | 84.760 ± 35.761 abc | |
4 | 7 | 52.828 ± 11.108 acd | 58.771 ± 6.269 acd | |
5 | 2 | 42.372 ± 2.999 cd | 54.565 ± 3.980 acd | |
5 | 4 | 39.010 ± 2.987 cd | 46.799 ± 9.714 cd | |
5 | 7 | 27.906 ± 3.390 cd | 34.680 ± 2.350 cd | |
Isoimperatorin | 4 | 2 | 27.817 ± 3.217 abde | 34.852 ± 2.172 abefg |
4 | 4 | 16.435 ± 2.491 cd | 16.958 ± 2.710 cd | |
4 | 7 | 21.480 ± 1.123 acd | 28.619 ± 1.515 abdef | |
5 | 2 | 36.234 ± 2.890 befg | 37.424 ± 5.333 bfg | |
5 | 4 | 27.746 ± 2.793 abde | 27.788 ± 1.920 abde | |
5 | 7 | 22.851 ± 1.514 acde | 27.359 ± 1.007 abde | |
Total furanocoumarins | 4 | 2 | 691.904 ± 31.895 abc | 779.898 ± 22.242 abcde |
4 | 4 | 726.631 ± 51.849 abc | 751.044 ± 34.123 abce | |
4 | 7 | 754.967 ± 51.666 abce | 847.013 ± 59.924 abcde | |
5 | 2 | 931.745 ± 85.260 bde | 1059.867 ± 39.735 de | |
5 | 4 | 928.703 ± 53.616 bde | 931.637 ± 36.830 bde | |
5 | 7 | 827.671 ± 100.914 abcde | 907.222 ± 8.184 bcde |
Metabolite | Growth Period | Content [mg/100 g DW] | ||
---|---|---|---|---|
Week | Day | PheAla | Control | |
Skimmianine | 4 | 2 | 57.045 ± 6.269 abcf | 67.562 ± 3.212 abcdf |
4 | 4 | 50.343 ± 7.391 abcg | 57.730 ± 10.786 abcf | |
4 | 7 | 63.643 ± 5.420 abcf | 69.631 3.540 abcdf | |
5 | 2 | 86.473 ± 6.840 bdef | 101.427 ± 4.746 de | |
5 | 4 | 71.415 ± 5.959 abdf | 65.430 ± 10.416 abcf | |
5 | 7 | 34.319 ± 1.966 cg | 55.418 ± 9.433 abcf | |
γ-Fagarine | 4 | 2 | 64.779 ± 2.068 abcefg | 55.283 ± 4.184 abce |
4 | 4 | 69.472 ± 5.161 abcefgi | 66.130 ± 8.776 abcefg | |
4 | 7 | 85.365 ± 5.773 cdefghi | 68.100 ± 6.356 abcdefg | |
5 | 2 | 77.548 ± 1.013 acdefghi | 74.775 ± 1.572 acdefgi | |
5 | 4 | 94.516 ± 4.008 dfhi | 72.591 ± 7.443 abcdefgi | |
5 | 7 | 87.309 ± 8.098 cdfghi | 72.116 ± 12.477 abcdefgi | |
7-Isopentenyloxy-γ-fagarine | 4 | 2 | 6.413 ± 0.015 abce | 5.831 ± 1.114 abcde |
4 | 4 | 4.970 ± 1.035 abcd | 4.101 ± 0.454 bcd | |
4 | 7 | 7.085 ± 0.120 abe | 5.552 ± 0.223 abcde | |
5 | 2 | 9.892 ± 0.164 f | 9.369 ± 0.242 f | |
5 | 4 | 5.385 ± 0.683 abcde | 4.196 ± 0.185 bcd | |
5 | 7 | 4.065 ± 1.186 bcd | 5.481 ± 0.943 abcde | |
Total furoquinolic alkaloids | 4 | 2 | 128.237 ± 4.549 abcgh | 128.676 ± 7.718 abcgh |
4 | 4 | 124.785 ± 5.537 abcgh | 127.962 ± 16.726 abcgh | |
4 | 7 | 156.094 ± 0.897 abcdefgh | 143.284 ± 8.889 abcdfgh | |
5 | 2 | 173.913 ± 7.439 bcdef | 185.571 ± 4.433 bdef | |
5 | 4 | 171.316 ± 10.184 bcdefg | 142.216 ± 16.881 abcfgh | |
5 | 7 | 125.694 ± 9.875 abcgh | 133.015 ± 18.048 abcgh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk, A.; Paździora, W.; Ekiert, H. The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. Molecules 2023, 28, 727. https://doi.org/10.3390/molecules28020727
Szewczyk A, Paździora W, Ekiert H. The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. Molecules. 2023; 28(2):727. https://doi.org/10.3390/molecules28020727
Chicago/Turabian StyleSzewczyk, Agnieszka, Wojciech Paździora, and Halina Ekiert. 2023. "The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L." Molecules 28, no. 2: 727. https://doi.org/10.3390/molecules28020727
APA StyleSzewczyk, A., Paździora, W., & Ekiert, H. (2023). The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. Molecules, 28(2), 727. https://doi.org/10.3390/molecules28020727