Phytochemical Analysis and Profiling of Antitumor Compounds of Leaves and Stems of Calystegia silvatica (Kit.) Griseb.
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction and Fractionation
4.2.1. Methanol Extract Preparation
4.2.2. GC-MS Analysis for the Methanol Extract
4.2.3. n-Hexane Sub-Fraction Extract Preparation
4.2.4. GC-MS Analysis for n-Hexane Sub-Fraction Extract
4.2.5. Total Phenolic and Flavonoid Determination
4.2.6. HPLC Analysis of Phenolic Compounds
Standards
Quantitative analysis of phenolic compounds via HPLC
4.3. Antitumor Properties Evaluation
4.3.1. Culturing
4.3.2. MTT Assay
4.3.3. Determination of IC50 Values
4.3.4. Criteria for Antitumor Effect Levels
4.3.5. Selectivity Index
4.3.6. Microscope
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Alshammari, F.O.F.O.; Al-Saraireh, Y.M.; Youssef, A.M.M.; Al-Sarayra, Y.M.; Alrawashdeh, H.M. Cytochrome P450 1B1 Overexpression in Cervical Cancers: Cross-sectional Study. Interact. J. Med. Res. 2021, 10, e31150. [Google Scholar] [CrossRef]
- Al-Saraireh, Y.; Alrawashdeh, F.; Al-Shuneigat, J.; Alsbou, M.; Alnawaiseh, N.; Al-Shagahin, H. Screening of Glypican-3 Expression in Human Normal versus Benign and Malignant Tissues: A Comparative Study Glypican-3 expression in cancers. Biosci. Biotechnol. Res. Asia 2016, 13, 687–692. [Google Scholar]
- Al-Saraireh, Y.M.; Alboaisa, N.S.; Alrawashdeh, H.M.; Hamdan, O.; Al-Sarayreh, S.; Al-Shuneigat, J.M.; Nofal, M.N. Screening of cytochrome 4Z1 expression in human non-neoplastic, pre-neoplastic and neoplastic tissues. Ecancermedicalscience 2020, 14, 1114. [Google Scholar] [CrossRef]
- Al-Saraireh, Y.M.; Alshammari, F.; Youssef, A.M.M.; Al-Sarayreh, S.; Almuhaisen, G.H.; Alnawaiseh, N.; Al Shuneigat, J.M.; Alrawashdeh, H.M. Profiling of CYP4Z1 and CYP1B1 expression in bladder cancers. Sci. Rep. 2021, 11, 5581. [Google Scholar] [CrossRef]
- Yang, C.; Mai, Z.; Liu, C.; Yin, S.; Cai, Y.; Xia, C. Natural Products in Preventing Tumor Drug Resistance and Related Signaling Pathways. Molecules 2022, 27, 3513. [Google Scholar] [CrossRef] [PubMed]
- Al-Saraireh, Y.M.; Alshammari, F.; Youssef, A.M.M.; Al-Sarayra, Y.M.; Al-Saraireh, R.A.; Al-Muhaisen, G.H.; Al-Mahdy, Y.S.; Al-Kharabsheh, A.M.; Abufraijeh, S.M.; Alrawashdeh, H.M. Cytochrome 4Z1 Expression Is Correlated with Poor Prognosis in Patients with Cervical Cancer. Curr. Oncol. Rep. 2021, 28, 3573–3584. [Google Scholar] [CrossRef] [PubMed]
- Al-Saraireh, Y.M.; Alshammari, F.; Youssef, A.M.M.; Al-Sarayreh, S.; Almuhaisen, G.H.; Alnawaiseh, N.; Al-Shuneigat, J.M.; Alrawashdeh, H.M. Cytochrome 4Z1 Expression is Associated with Poor Prognosis in Colon Cancer Patients. OncoTargets Ther. 2021, 14, 5249–5260. [Google Scholar] [CrossRef] [PubMed]
- Al-Saraireh, Y.M.; Alshammari, F.; Youssef, A.M.M.; Al-Tarawneh, F.; Al-Sarayreh, S.; Almuhaisen, G.H.; Satari, A.O.; Al-Shuneigat, J.; Alrawashdeh, H.M. Cytochrome 4Z1 Expression is Associated with Unfavorable Survival in Triple-Negative Breast Cancers. Breast Cancer 2021, 13, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.; El-Swaify, Z.; Al-saraireh, Y.; Dalain, S. Cytotoxic activity of methanol extract of Cynanchumacutum L. seeds on human cancer cell lines. Latin Am. J. Pharm 2018, 37, 1997–2003. [Google Scholar]
- Youssef, A.M.M.; El-Swaify, Z.A.S. Anti-Tumour Effect of two Persicaria species seeds on colon and prostate cancers. Biomed. Pharmacol. J. 2018, 11, 635–644. [Google Scholar] [CrossRef]
- Youssef, A.M.M.; El-Swaify, Z.A.S.; Al-Saraireh, Y.M.; Al-Dalain, S.M. Anticancer effect of different extracts of Cynanchum acutum L. seeds on cancer cell lines. Pharmacogn. Mag. 2019, 15, 261. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.-J.; Ding, J. Natural Products in Cancer Therapy: Past, Present and Future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Boulos, L. Flora of Egypt; Al Hadara Publishing: Cairo, Egypt, 1999; Volume 1. [Google Scholar]
- Yadav, S.; Hemke, A.; Umekar, M. Convolvulaceae: A Morning Glory Plant Review. Int. J. Pharm. Sci. Rev. Res 2018, 51, 103–117. [Google Scholar]
- Dehyab, A.S.; Bakar, M.F.A.; AlOmar, M.K.; Sabran, S.F. A review of medicinal plant of Middle East and North Africa (MENA) region as source in tuberculosis drug discovery. Saudi J. Biol. Sci. 2020, 27, 2457–2478. [Google Scholar] [CrossRef] [PubMed]
- Karaköse, M. An ethnobotanical study of medicinal plants in Güce district, north-eastern Turkey. Plant Divers. 2022, 44, 577–597. [Google Scholar] [CrossRef]
- Savo, V.; Giulia, C.; Maria, G.P.; David, R. Folk phytotherapy of the amalfi coast (Campania, Southern Italy). J. Ethnopharmacol. 2011, 135, 376–392. [Google Scholar] [CrossRef]
- Martins, F.M.; Lima, J.F.; Mascarenhas, A.A.S.; Macedo, T.P. Secretory structures of Ipomoea asarifolia: Anatomy and histochemistry. Rev. Bras. Farmacogn. 2012, 22, 13–20. [Google Scholar] [CrossRef]
- Liang, H.; Hu, J.; Li, Z.; Yin, Y. Two new resin glycosides from Calystegia sepium (L.) R. Br. with potential antitumor activity. J. Mol. Struct. 2022, 1257, 132636. [Google Scholar] [CrossRef]
- Cordell, G.A. Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry 2013, 91, 29–51. [Google Scholar] [CrossRef]
- Lv, K.-Q.; Ji, H.-Y.; Du, G.-X.; Peng, S.; Guo, P.-J.; Wang, G.; Zhu, Y.; Wang, Q.; Wang, W.-Q.; Xuan, L.-J. Calysepins I–VII, Hexasaccharide Resin Glycosides from Calystegia sepium and Their Cytotoxic Evaluation. J. Nat. Prod. 2022, 85, 1294–1303. [Google Scholar] [CrossRef]
- Rezadoost, M.H.; Kumleh, H.H.; Ghasempour, A. Cytotoxicity and apoptosis induction in breast cancer, skin cancer and glioblastoma cells by plant extracts. Mol. Biol. Rep. 2019, 46, 5131–5142. [Google Scholar] [CrossRef] [PubMed]
- Suma, A.; Ashika, B.; Roy, C.L.; Naresh, S.; Sunil, K.; Sathyamurthy, B. GCMS and FTIR analysis on the methanolic extract of red Vitis Vinifera seed. World J. Pharm. Res. 2018, 6, 106–113. [Google Scholar]
- Hussein, H.M. Analysis of trace heavy metals and volatile chemical compounds of Lepidium sativum using atomic absorption spectroscopy, gas chromatography-mass spectrometric and fourier-transform infrared spectroscopy. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2529–2555. [Google Scholar]
- Hameed, I.H.; Hussein, H.J.; Kareem, M.A.; Hamad, N.S. Identification of five newly described bioactive chemical compounds in methanolic extract of Mentha viridis by using gas chromatography-mass spectrometry (GC-MS). J. Pharmacogn. Phytother. 2015, 7, 107–125. [Google Scholar]
- Adegoke, A.S.; Jerry, O.V.; Ademola, O.G. GC-MS analysis of phytochemical constituents in methanol extract of wood bark from Durio zibethinus Murr. Int. J. Med. Plants Nat. Prod. 2019, 5, 1–11. [Google Scholar]
- Selvamangai, G.; Bhaskar, A. Analysis of phytocomponents in the methanolic extract of Eupatorium triplinerve by GC-MS method. Int. J. Drug Dev. Res. 2013, 5, 384–391. [Google Scholar]
- Reza, A.A.; Haque, M.A.; Sarker, J.; Nasrin, M.S.; Rahman, M.M.; Tareq, A.M.; Khan, Z.; Rashid, M.; Sadik, M.G.; Tsukahara, T. Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. in cancer cell line. Food Sci. Nutr. 2021, 9, 3777–3805. [Google Scholar] [CrossRef]
- Rajeswari, G.; Murugan, M.; Mohan, V. GC-MS analysis of bioactive components of Hugonia mystax L.(Linaceae). Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 301–308. [Google Scholar]
- Arora, S.; Kumar, G. Gas Chromatography-Mass Spectrometry (GC-MS) determination of bioactive constituents from the methanolic and ethyl acetate extract of Cenchrus setigerus Vahl (Poaceae). J. Pharm. Innov. 2017, 2, 635–640. [Google Scholar]
- VanderSluis, L.; Mazurak, V.C.; Damaraju, S.; Field, C.J. Determination of the relative efficacy of eicosapentaenoic acid and docosahexaenoic acid for anti-cancer effects in human breast cancer models. Int. J. Mol. Sci. 2017, 18, 2607. [Google Scholar] [CrossRef] [PubMed]
- Raina, S.; Sharma, V.; Sheikh, Z.N.; Kour, N.; Singh, S.K.; Zari, A.; Zari, T.A.; Alharby, H.F.; Hakeem, K.R. Anticancer Activity of Cordia dichotoma against a Panel of Human Cancer Cell Lines and Their Phytochemical Profiling via HPLC and GCMS. Molecules 2022, 27, 2185. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, R.; Khan, A. GC-MS analysis of Sapindus marginatus seed extract in petroleum ether. South Asian J. Exp. Biol. 2022, 12, 767–773. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, R.; Jiang, Y.; Yang, Z.; Yang, J.; Zhao, Q.; Lu, Y. Induction of apoptosis in human promyelocytic leukemia HL60 cells by panaxynol and panaxydol. Molecules 2011, 16, 5561–5573. [Google Scholar] [CrossRef]
- Rubab, M.; Chelliah, R.; Saravanakumar, K.; Barathikannan, K.; Wei, S.; Kim, J.-R.; Yoo, D.; Wang, M.-H.; Oh, D.-H. Bioactive Potential of 2-Methoxy-4-vinylphenol and Benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on Oxidative and Microbiological Stability of Beef Meat. Foods 2020, 9, 568. [Google Scholar] [PubMed]
- Mohammed, G.J.; Omran, A.M.; Hussein, H.M. Antibacterial and phytochemical analysis of Piper nigrum using gas chromatography-mass Spectrum and Fourier-transform infrared spectroscopy. Int. J. Pharmacogn. Phytochem. 2016, 8, 977–996. [Google Scholar]
- Anand, T.; Gokulakrishnan, K. Phytochemical analysis of Hybanthus enneaspermus using UV, FTIR and GC-MS. IOSR J. Pharm. 2012, 2, 520–524. [Google Scholar] [CrossRef]
- Gopinath, S.; Sakthidevi, G.; Muthukumaraswamya, S.; Mohan, V. GC-MS analysis of bioactive constituents of Hypericum mysorense (Hypericaceae). J. Chem. Pharm. Sci 2013, 3, 6–15. [Google Scholar]
- El-Sayed, O.H.; Asker, M.M.; Shash, S.M.; Hamed, S.R. Isolation, structure elucidation and biological activity of Di-(2-ethylhexyl) phthalate produced by Penicillium janthinellum 62. Int. J. Chem.Tech. Res. 2015, 8, 58–66. [Google Scholar]
- Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M. The story of beta-sitosterol-a review. Eur. J. Med. Plants 2014, 4, 590. [Google Scholar] [CrossRef]
- Sudha, T.; Chidambarampillai, S.; Mohan, V. GC-MS analysis of bioactive components of aerial parts of Fluggea leucopyrus Willd.(Euphorbiaceae). J. Appl. Pharm. Sci. 2013, 3, 126–130. [Google Scholar]
- Bao, X.; Zhang, Y.; Zhang, H.; Xia, L. Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression. Front. Oncol. 2022, 12, 926975. [Google Scholar] [CrossRef]
- Novotny, L.; Abdel-Hamid, M.; Hunakova, L. Anticancer potential of β-sitosterol. Int. J. Clin. Pharmacol. Pharmacother. 2017, 2, 129. [Google Scholar] [CrossRef]
- Aghaei, M.; Yazdiniapour, Z.; Ghanadian, M.; Zolfaghari, B.; Lanzotti, V.; Mirsafaee, V. Obtusifoliol related steroids from Euphorbia sogdiana with cell growth inhibitory activity and apoptotic effects on breast cancer cells (MCF-7 and MDA-MB231). Steroids 2016, 115, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Bębenek, E.; Chrobak, E.; Marciniec, K.; Kadela-Tomanek, M.; Trynda, J.; Wietrzyk, J.; Boryczka, S. Biological activity and in silico study of 3-modified derivatives of betulin and betulinic aldehyde. Int. J. Mol. Sci. 2019, 20, 1372. [Google Scholar] [CrossRef] [PubMed]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential oils of Pinus halepensis and P. heldreichii: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crop. Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
- Choudhury, D.K.; Barman, T.; Rajbongshi, J. Qualitative phytochemical screening and GC-MS analysis of Musa sapientum Spadix. J. Pharmacogn. Phytochem. 2019, 8, 2456–2460. [Google Scholar]
- Hussein, H.J.; Hameed, I.H.; Hadi, M.Y. Using gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive compounds of methanolic leaves extract of Lepidium sativum. Res. J. Pharm. Technol. 2017, 10, 3981–3989. [Google Scholar] [CrossRef]
- Hasan, A.; Artika, I.; Kuswandi, T. Analysis of active components of Trigona spp. propolis from Pandeglang Indonesia. Glob. J. Biol. Agric. Health Sci. 2014, 3, 215–219. [Google Scholar]
- Adeoye-Isijola, M.O.; Olajuyigbe, O.O.; Jonathan, S.G.; Coopoosamy, R.M. Bioactive compounds in ethanol extract of Lentinus squarrosulus Mont-a Nigerian medicinal macrofungus. Afr. J. Tradit. Complement. Altern. Med. 2018, 15, 42–50. [Google Scholar] [CrossRef]
- Al-Marzoqi, A.H.; Hameed, I.H.; Idan, S.A. Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). Afr. J. Biotechnol. 2015, 14, 2812–2830. [Google Scholar]
- El-Fayoumy, E.A.; Shanab, S.M.; Gaballa, H.S.; Tantawy, M.A.; Shalaby, E.A. Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions. BMC Complement. Med. Ther. 2021, 21, 51. [Google Scholar] [CrossRef] [PubMed]
- Baky, M.H.; Shawky, E.M.; Elgindi, M.R.; Ibrahim, H.A. Comparative Volatile Profiling of Ludwigia stolonifera Aerial Parts and Roots Using VSE-GC-MS/MS and Screening of Antioxidant and Metal Chelation Activities. ACS Omega 2021, 6, 24788–24794. [Google Scholar] [CrossRef]
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.-j.; Duan, B.-z.; Huang, L.-f. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 2021, 28, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Azarcoya-Barrera, J.; Wollin, B.; Veida-Silva, H.; Makarowski, A.; Goruk, S.; Field, C.J.; Jacobs, R.L.; Richard, C. Egg-Phosphatidylcholine Attenuates T-Cell Dysfunction in High-Fat Diet Fed Male Wistar Rats. Front. Nutr. 2022, 9, 811469. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of catechins and their applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; Da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, J.K.; Kim, D.W.; Hwang, H.S.; Eum, W.S.; Park, J.; Han, K.H.; Oh, J.S.; Choi, S.Y. Antitumor activity of methyl gallate by inhibition of focal adhesion formation and Akt phosphorylation in glioma cells. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 4017–4029. [Google Scholar] [CrossRef]
- Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Ddietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric. 2016, 96, 2952–2962. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.U. A recent overview on the biological and pharmacological activities of ferulic acid. EXCLI J. 2019, 18, 132–138. [Google Scholar]
- Azaat, A.; Babojian, G.; Nizar, I. Phytochemical Screening, Antioxidant and Anticancer Activities of Euphorbia hyssopifolia L. against MDA-MB-231 Breast Cancer Cell Line. J. Turkish Chem. Soc. 2022, 9, 295–310. [Google Scholar] [CrossRef]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Vanillin: A review on the therapeutic prospects of a popular flavouring molecule. Adv. Trad. Med. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Ascacio, A.; Rodríguez-Herrera, R.; Aguilera-Carbó, A.; Aguilar, C.N. Ellagic acid: Biological properties and biotechnological development for production processes. Afr. J. Biotechnol. 2011, 10, 4518–4523. [Google Scholar]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxid. Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef] [PubMed]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Youssef, A.M.; Maaty, D.A.; Al-Saraireh, Y.M. Phytochemistry and Anticancer Effects of Mangrove (Rhizophora mucronata Lam.) Leaves and Stems Extract against Different Cancer Cell Lines. Pharmaceuticals 2023, 16, 4. [Google Scholar] [CrossRef]
- Youssef, A.M.M.; EL-Swaify, Z.A.S.; Maaty, D.A.; Youssef, M.M. Phytochemistry and Antiviral Properties of Two Lotus Species Growing in Egypt. Vitae 2021, 28, e7. [Google Scholar] [CrossRef]
- Youssef, A.; El-Swaify, Z.; Maaty, D.; Youssef, M. Comparative study of two Lotus species: Phytochemistry, cytotoxicity and antioxidant capacity. J. Pharm. Pharmacogn. Res 2020, 8, 537–548. [Google Scholar]
- Al-saraireh, Y.M.; Youssef, A.M.; Alshammari, F.O.; Al-Sarayreh, S.A.; Al-Shuneigat, J.M.; Alrawashdeh, H.M.; Mahgoub, S.S. Phytochemical characterization and anti-cancer properties of extract of Ephedra foeminea (Ephedraceae) aerial parts. Trop. J. Pharm. Res. 2021, 20, 1675–1681. [Google Scholar] [CrossRef]
- Al-Saraireh, Y.M.; Youssef, A.M.; Alsarayreh, A.; Al Hujran, T.A.; Al-Sarayreh, S.; Al-Shuneigat, J.M.; Alrawashdeh, H.M. Phytochemical and anti-cancer properties of Euphorbia hierosolymitana Boiss. crude extracts. J. Pharm. Pharmacogn. Res 2021, 9, 13–23. [Google Scholar] [CrossRef] [PubMed]
No. | Leaves | Stems | ||||||
---|---|---|---|---|---|---|---|---|
Compounds | MW | M.F. | Category | Rt | RA% | Rt | RA% | |
1 | 2-nonanone, O-methyloxime | 171 | C10H21NO | Ketone | 5.88 | 1.16 | ||
2 | 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl | 144 | C6H8O4 | Aromatic organic compound | 10.04 | 5.4 | ||
3 | 2,3-dihydro-benzofuran | 120 | C8H8O | Benzofurans derivatives | 12.12 | 5.53 | ||
4 | 2-Methoxy-4-vinylphenol | 150 | C9H10O2 | Phenol aromatic organic compound | 13.32 | 8.93 | ||
5 | 2,5-cyclohexadiene-1,4-dione | 180 | C10H12O3 | Aromatic organic compound | 19.49 | 1.46 | ||
6 | Tetraacetyl-d-xylonic nitrile | 343 | C14H17NO9 | Aromatic nitro compound | 26.22 | 0.59 | ||
7 | Hexadecanoic acid, Methyl ester | 270 | C17H34O2 | Fatty acid methyl ester | 26.65 | 2.08 | 26.65 | 3.60 |
8 | Hexadecanoic acid | 256 | C16H32O2 | Fatty acid | 28.21 | 6.26 | 28.23 | 6.30 |
9 | 9,12-Octadecadienoic acid, methyl Ester | 294 | C19H34O2 | Fatty acid methyl ester | 29.78 | 1.92 | 29.80 | 4.63 |
10 | 9-Octadecenoic acid, methyl ester | 296 | C19H36O2 | Fatty acid methyl ester | 29.95 | 24.53 | 29.96 | 18.64 |
11 | Octadecanoic acid, Methyl ester | 298 | C19H38O2 | Fatty acid methyl ester | 30.39 | 1.05 | 30.39 | 0.87 |
12 | trans-13-Octadecenoic acid | 282 | C18H34O2 | Fatty acid | 31.52 | 25.06 | ||
13 | Octadecanoic acid | 284 | C18H36O2 | Fatty acid | 31.85 | 10.71 | 31.85 | 6.77 |
14 | 9,10-secocholesta-5,7,10(19) -triene-3,24,25-triol | 416 | C27H44O3 | Sterol | 32.00 | 0.57 | ||
15 | Tributyl citrate | 360 | C18H32O7 | Carbonyl compound | 32.49 | 8.05 | ||
16 | Proceroside | 548 | C29H40O10 | Iridoid glycoside | 6.62 | 0.72 | ||
17 | 9-Oxabicyclo [3.3.1]nonan-2-one, 5-hydroxy | 156 | C8H12O3 | Bicyclo aromatic compound | 7.52 | 0.66 | ||
18 | 3,5-Heptadienal, 2-ethylidene-6-methyl | 150 | C10H14O | Essential oil | 13.26 | 2.82 | ||
19 | (S,Z)-Heptadeca-1,9-dien-4,6-diyn-3-ol | 244 | C17H24O | Polyacetylene | 13.79 | 0.40 | ||
20 | 1,2-dihydro-1,5,8-trimethyl Naphthalene | 172 | C13H16 | Naphthalenes derivatives | 15.31 | 0.47 | ||
21 | Cedran-diol, 8S,13 | 238 | C15H26O2 | Sesquiterpene | 20.46 | 0.35 | ||
22 | cis-Vaccenic acid | 282 | C18H34O2 | Omega-7 fatty acid | 31.55 | 38.32 | ||
23 | cis-5,8,11,14,17-Eicosapentaenoic Acid | 302 | C20H30O2 | Fatty acid | 31.99 | 0.80 |
No. | Leaves | Stems | ||||||
---|---|---|---|---|---|---|---|---|
Compounds | MW | M.F. | Category | Rt | RA% | Rt | RA% | |
1 | Undecane | 156 | C11H24 | Alkane hydrocarbon | 12.16 | 0.10 | 12.15 | 1.58 |
2 | Methyl undecane | 170 | C12H26 | Branched alkane hydrocarbon | 14.02 | 0.29 | 14.15 | 1.85 |
3 | Methyl dodecane | 184 | C13H28 | Branched alkane hydrocarbon | 17.16 | 0.10 | 17.16 | 1.99 |
4 | 2-Phenyl decane | 218 | C16H26 | Benzene | 23.50 | 10.11 | 24.60 | 2.72 |
5 | 6-phenyl decane | 232 | C18H3O | Benzene | 25.73 | 0.28 | 20.17 | 1.71 |
6 | 7-phenyl eicosane | 358 | C26H46 | Eicosyl benzene | 25.93 | 0.99 | ||
7 | Phenyl undecane | 232 | C17H28 | Benzene | 26.78 | 16.21 | 26.91 | 4.65 |
8 | 2-phenyl tridecane | 260 | C19H32 | Benzene | 33.15 | 4.30 | 33.07 | 1.15 |
9 | Octadecenoic acid, 12 hydroxy, methyl ester | 312 | C19H36O3 | Fatty acid methyl ester | 40.34 | 0.44 | ||
10 | 9,12,octadecadienoic acid, 2 hydroxy-1(hydroxy methyl) ethyl ester | 354 | C21H38O4 | Fatty acid ethyl ester | 46.81 | 0.91 | ||
11 | Hexadecenoic acid, methyl ester | 270 | C17H34O2 | Fatty acid methyl ester | 33.42 | 1.12 | 33.38 | 2.90 |
12 | Nonadec-1-ene | 266 | C19H38 | Essential oil | 34.69 | 0.24 | 34.7 | 0.50 |
13 | 9,12, octadecanoic acid, methyl ester | 294 | C19H34O2 | Fatty acid methyl ester | 36.85 | 0.10 | 36.73 | 4.12 |
14 | 3,7,11,15-tetramethyl-2-hexadeca-1-ol | 296 | C10H40O | Diterpene | 37.10 | 0.53 | 37.08 | 8.10 |
15 | Hexadecenoic acid, 2-hydroxyl-1-(hydroxy methyl) ethyl ester | 330 | C19H38O4 | Fatty acid ethyl ester | 43.99 | 1.12 | ||
16 | Bis(2-ethylhexyl) phthalate | 390 | C24H38O4 | Phthalate ester | 44.62 | 0.1 | 44.6 | 2.11 |
17 | Lanostan-3-yl-acetate | 472 | C32H56O2 | Triterpenoid | 51.39 | 1.1 | ||
18 | Campesterol | 400 | C28H48O | Sterol | 54.60 | 0.79 | ||
19 | Stigmasterol | 454 | C29H48O | Sterol | 55.09 | 0.35 | ||
20 | Obtusifiol | 426 | C30H50O | Sterol | 55.66 | 0.41 | ||
21 | Beta-sitosterol acetate | 456 | C31H52O2 | Sterol | 56.00 | 0.10 | 56.05 | 2.69 |
22 | Cholest-5-en-3-ol, 24-propylidene, (3 beta) | 426 | C30H50O | Sterol | 56.37 | 0.40 | ||
23 | Ergost-25-ene-3,5,6,12-tetrol, (3.beta.,5.apha.,6.beta.,12.beta.) | 448 | C28H48O | Sterol | 57.6 | 0.25 | 56.74 | 0.76 |
24 | 9,19-Cyclolanost-24-en-3-ol, (3.beta.) | 426 | C30H50O | Triterpene | 57.45 | 1.05 | ||
25 | Betulinaldehyde | 440 | C30H48O2 | Triterpenes | 59.64 | 4.24 | ||
26 | Longifolenaldehyde | 220 | C15H24O | Oxygenated sesquiterpenes | 60.19 | 1.08 | ||
27 | Thunbergol | 290 | C20H34O | Diterpene | 60.62 | 0.85 |
Leaves | Stems | |||||||
---|---|---|---|---|---|---|---|---|
No. | Compounds | MW | M.F. | Category | Rt | mg/100 g D. W | Rt | mg/100 g D. W |
1 | Gallic acid | 170 | C7H6O5 | Phenolic acids | 3.31 | 1.05 | 3.31 | 0.50 |
2 | Chlorogenic acid | 354 | C16H18O9 | Phenylacrylate polyphenol compound | 4.03 | 1.78 | 4.04 | 0.42 |
3 | Catechin | 290 | C15H14O6 | Polyphenol | 4.57 | 0.19 | 4.63 | 0.24 |
4 | Methyl gallate | 184 | C8H8O5 | Gallate ester | 5.66 | 0.06 | 5.71 | 0.10 |
5 | Caffeic acid | 180 | C9H8O4 | Polyphenol | 6.14 | 0.01 | 6.14 | 0.003 |
6 | Pyrocatechol | 110 | C6H6O2 | Phenolic compounds | 6.69 | 3.14 | 6.69 | 0.36 |
7 | Ellagic acid | 302 | C14H6O8 | Tannins | 8.23 | 0.69 | 8.46 | 0.21 |
8 | Coumaric acid | 164 | C9H8O3 | Phenolic compound | 8.82 | 2.40 | 8.81 | 0.19 |
9 | Vanillin | 152 | C8H8O3 | Benzaldehydes | 9.71 | 0.07 | 9.69 | 0.02 |
10 | Ferulic acid | 194 | C10H10O4 | Phenolic acid | 10.22 | 0.28 | 10.21 | 0.06 |
11 | Naringenin | 580.5 | C27H32O14 | Flavanones | 10.43 | 0.67 | 10.44 | 0.08 |
12 | Quercetin | 302 | C15H10O7 | Flavonoid | 12.72 | 0.05 | ||
Daidzein | 254 | C15H10O4 | Isoflavone | 11.905 | 0.05 | |||
13 | Cinnamic acid | 148 | C9H8O2 | Monocarboxylic acid | 14.01 | 0.01 | 13.51 | 0.001 |
a IC50 (µg/mL) | |||
---|---|---|---|
Cell Lines | Leaves | Stems | Doxorubicin (Positive Control) |
b CaCo2 | 682 ± 55 *** | 353 ± 19 *** | 70.1 ± 1 |
c HeLa | 208 ± 13 *** | 114 ± 5 *** | 40 ± 2 |
d PC3 | 336 ± 57 *** | 137 ± 18 * | 38 ± 2 |
e MCF7 | 324 ± 17 *** | 172 ± 15 *** | 36 ± 6 |
f HepG2 | 593 ± 22 *** | 236 ± 17 *** | 44 ± 3 |
g WI38 | 543 ± 33 *** | 408 ± 4 *** | 51 ± 4 |
a SI | |||||
---|---|---|---|---|---|
Extract | b Caco2 | c HeLa | d PC3 | e MCF7 | f HepG2 |
Leaves | 0.8 | 2 | 1.6 | 1.6 | 0.9 |
Stem | 1.1 | 3.5 | 3 | 2.3 | 1.7 |
Doxorubicin | 0.7 | 1.2 | 1.3 | 1.4 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, A.M.M.; Maaty, D.A.M.; Al-Saraireh, Y.M. Phytochemical Analysis and Profiling of Antitumor Compounds of Leaves and Stems of Calystegia silvatica (Kit.) Griseb. Molecules 2023, 28, 630. https://doi.org/10.3390/molecules28020630
Youssef AMM, Maaty DAM, Al-Saraireh YM. Phytochemical Analysis and Profiling of Antitumor Compounds of Leaves and Stems of Calystegia silvatica (Kit.) Griseb. Molecules. 2023; 28(2):630. https://doi.org/10.3390/molecules28020630
Chicago/Turabian StyleYoussef, Ahmed M. M., Doaa A. M. Maaty, and Yousef M. Al-Saraireh. 2023. "Phytochemical Analysis and Profiling of Antitumor Compounds of Leaves and Stems of Calystegia silvatica (Kit.) Griseb." Molecules 28, no. 2: 630. https://doi.org/10.3390/molecules28020630
APA StyleYoussef, A. M. M., Maaty, D. A. M., & Al-Saraireh, Y. M. (2023). Phytochemical Analysis and Profiling of Antitumor Compounds of Leaves and Stems of Calystegia silvatica (Kit.) Griseb. Molecules, 28(2), 630. https://doi.org/10.3390/molecules28020630