Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults
Abstract
:1. Introduction
2. Results
2.1. Profiling of Phytochemical Composition and In Vitro Antioxidant of Extracts
2.2. Analysis of Postprandial Lipid Metabolism In Vivo
2.3. Antioxidant Activity In Vivo
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Determination of the Total Flavone Content (TFC)
4.3. Plant Materials and Extracts Preparation
4.4. Metabolites Extraction
4.5. Profiling of Phytochemical Composition by UHPLC-MS
4.6. The Main Flavonoid Compounds Analysis
4.7. Antioxidant Activity
4.7.1. DPPH Radical Scavenging Activity
4.7.2. ABTS+ Radical Scavenging Activity
4.7.3. Hydroxyl Radical (HR) Scavenging Activity
4.8. Postprandial Lipid Metabolism Activity
4.8.1. Postprandial Lipid Metabolism Activity
4.8.2. Study Subject
4.8.3. Study Design
4.8.4. Laboratory Assessments
4.9. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zheng, J.; Lu, B.; Xu, B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021, 340, 127940. [Google Scholar] [CrossRef]
- Kumari, P.; Ujala; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Food. 2021, 78, 104375. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. Int. J. Food Prop. 2018, 21, 1524–1540. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Mi, K.H.; Hyun, J.C.; Kang, S.; Kim, J.; Gyeong, J.Y.; Young, P.K.; Lee, I.; Han, A. Composition and antioxidant activities of volatile organic compounds in radiation-bred coreopsis cultivars. Plants 2020, 9, 717. [Google Scholar] [CrossRef]
- Stanislav, M.; César, O. Mexican edible flowers: Cultural background, traditional culinary uses, and potential health benefits. Int. J. Gastron. Food Sci. 2020, 21, 100235. [Google Scholar] [CrossRef]
- Villavicencio, A.L.C.H.; Heleno, S.A.; Calhelha, R.C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. The influence of electron beam radiation in the nutritional value, chemical composition and bioactivities of edible flowers of Bauhinia variegata L. Var. candida alba buch.-ham from Brazil. Food Chem. 2018, 241, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Jiang, S.; Liu, Y.; Muhammad, D.; Jian, Y.; Peng, C.; Shen, J.; Liu, S.; Wang, W. The flower head of Chrysanthemum morifolium ramat. (Juhua): A paradigm of flowers serving as chinese dietary herbal medicine. J. Ethnopharmacol. 2020, 261, 113043. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Z.; Wen, X.; Li, M.; Pang, S.; Huang, Y.; Ni, Y. The formation and bioactivities of green substances in Chrysanthemum morifolium tea. Food Chem. 2019, 286, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Chensom, S.; Okumura, H.; Mishima, T. Medicinal value of domiciliary ornamental plants of the asteraceae family. J. Young Pharm. 2020, 12, 3–10. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People‘s Republic of China; Chemical Industry Press: Beijing, China, 2021.
- Cha, J.; Nepali, S.; Lee, H.; Hwang, S.W.; Choi, S.Y.; Yeon, J.M.; Song, B.J.; Kim, D.; Lee, Y.M. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp. Ther. Med. 2018, 15, 5070–5076. [Google Scholar] [CrossRef]
- Hodaei, M.; Rahimmalek, M.; Arzani, A. Variation in bioactive compounds, antioxidant and antibacterial activity of iranian Chrysanthemum morifolium cultivars and determination of major polyphenolic compounds based on hplc analysis. J. Food Sci. Technol. 2021, 58, 1538–1548. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Yong, Y.; Meng, Y.; Zheng-Zhou, H.; Min, W.; Hong-Wu, Z.; Hong-Mei, J.; Zhong-Mei, Z. Anti-inflammatory chemical constituents of flos chrysanthemi indici determined by uplc-ms/ms integrated with network pharmacology. Food Funct. 2020, 11, 6340–6351. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Yuan, Q.; Fu, Y.; Liu, W.; Su, Y.; Liu, H.; Wu, C.; Zhao, L.; Zhang, Q.; Lin, D.; et al. Extraction optimization and effects of extraction methods on the chemical structures and antioxidant activities of polysaccharides from snow chrysanthemum (Coreopsis tinctoria). Polymers 2019, 11, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Ning, Z.; Li, S. Extraction and purification of isochlorogenic acid c from chrysanthemum morifolium using ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system. Food Sci. Nutr. 2018, 6, 2113–2122. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Xu, Z.; Li, M.; Wang, K.; Pang, S.; Ni, Y. The formation process of green substances in Chrysanthemum morifolium tea. Food Chem. 2020, 326, 127028. [Google Scholar] [CrossRef]
- Fang, Z.F.; Zhang, C.; Zhang, H.; Xia, Y.; Xue, G.M.; Yang, L.; Kong, L.Y. Chrysanthemulide a induces apoptosis through dr5 upregulation via jnk-mediated autophagosome accumulation in human osteosarcoma cells. J. Cell. Physiol. 2019, 234, 13191–13208. [Google Scholar] [CrossRef]
- Kim, K.; Oh, T.; Yang, H.; Kim, Y.; Ma, J.; Park, K. Ethanol extract of Chrysanthemum zawadskii herbich induces autophagy and apoptosis in mouse colon cancer cells through the regulation of reactive oxygen species. BMC Complement. Altern. Med. 2019, 19, 274. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Sun, Y.; Li, D.; Chen, Y. Chrysanthemum indicum L.: A comprehensive review of its botany, phytochemistry and pharmacology. Am. J. Chin. Med. 2020, 48, 871–897. [Google Scholar] [CrossRef]
- Lee, J.; Moon, J.; Kim, Y.; Lee, B.; Choi, S.; Song, B.; Kim, D.; Lee, Y. Effect of enzymatic treatment of Chrysanthemum indicum linné extracts on lipid accumulation and adipogenesis in high-fat-diet-induced obese male mice. Nutrients 2019, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Kim, H.; Lee, H.S. Hypoglycemic effect of standardized Chrysanthemum zawadskii ethanol extract in high-fat diet/streptozotocin-induced diabetic mice and rats. Food Sci. Biotechnol. 2018, 27, 1771–1779. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Q.; Yan, Y.; Jia, H.; Zhao, X.; Li, X.; Zheng, L.; Han, G. Antioxidant constituents of chrysanthemum ‘jinsidaju’ cultivated in kaifeng. Fitoterapia 2019, 134, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhen, X.; Yu, Y.; Shi, M.; Cao, J.; Zheng, H.; Ye, L. Chemoinformatics based comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry approach to chemically distinguish chrysanthemum species. Microchem. J. 2021, 168, 106464. [Google Scholar] [CrossRef]
- Le, C.; Yin, L.; Xianju, H.; Yunyun, Z.; Jinxin, L.; Yuhuan, M.; Hongzhi, D.; Dahui, L. Comparison of chemical constituents and pharmacological effects of different varieties of Chrysanthemum flos in China. Chem. Biodivers. 2021, 18. [Google Scholar] [CrossRef]
- Zhu, Z.; Pan, L.; Tang, Y.; Zhang, Y. Structural analysis and antioxidant activity of the glycoside from Imperial chrysanthemum. Bioorg. Med. Chem. Lett. 2018, 28, 1581–1590. [Google Scholar] [CrossRef]
- Zhu, S.; He, S.; Miao, W.; Sun, X.; Shi, C.; Liu, D.; Yang, L. Physical and antioxidant properties of superfine powders of golden Imperial chrysanthemum. Curr. Top. Nutraceutical Res. 2021, 19, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Chunyu, L.; Jie, M.; Jingyi, Q.; Xueqing, G.; Huiqing, S.; Zhenyuan, Z. Structural characterization and prebiotic potential of an acidic polysaccharide from Imperial chrysanthemum. Nat. Prod. Res. 2022, 36, 586–594. [Google Scholar] [CrossRef]
- Peng, A.; Lin, L.; Zhao, M.; Sun, B. Classification of edible chrysanthemums based on phenolic profiles and mechanisms underlying the protective effects of characteristic phenolics on oxidatively damaged erythrocyte. Food Res. Int. 2019, 123, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Z.; Chen, L.; Sun, G. Hypolipidemic effects and preliminary mechanism of chrysanthemum flavonoids, its main components luteolin and luteoloside in hyperlipidemia rats. Antioxidants 2021, 10, 1309. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Lin, C.; Xia, H.; Yang, L.; Wang, S.; Sun, G. The hypolipidemic mechanism of chrysanthemum flavonoids and its main components, luteolin and luteoloside, based on the gene expression profile. Front. Nutr. 2022, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Huang, Y.; Wen, X.; Wu, Y.; Zhao, Y.; Ni, Y. Extraction, purification, and hydrolysis behavior of apigenin-7-o-glucoside from Chrysanthemum morifolium tea. Molecules 2018, 23, 2933. [Google Scholar] [CrossRef]
- Cui, H.; Bai, M.; Sun, Y.; Abdel-Samie, M.A.; Lin, L. Antibacterial activity and mechanism of chuzhou chrysanthemum essential oil. J. Funct. Food. 2018, 48, 159–166. [Google Scholar] [CrossRef]
- Zhang, N.; He, Z.; He, S.; Jing, P. Insights into the importance of dietary chrysanthemum flower (Chrysanthemum morifolium cv. Hangju)-wolfberry (lycium barbarum fruit) combination in antioxidant and anti-inflammatory properties. Food Res. Int. 2019, 116, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhou, N.; Xu, R.; Cao, Y.; Zhang, Y.; Liu, Z.; Zheng, X.; Feng, W. A metabolomic study on the anti-depressive effects of two active components from chrysanthemum morifolium. Artif. Cells Nanomed. Biotechnol. 2020, 48, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Trinh, P.; Thao, L.; Ha, H.; Nguyen, T. Dpph-scavenging and antimicrobial activities of asteraceae medicinal plants on uropathogenic bacteria. Evid.-Based Complement Altern. Med. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Salem, G.A.; Alamyel, F.B.; Abushaala, F.A.; Hussain, M.S.; Elnory, K.A.; Abusheba, H.; Sahu, R.P. Evaluation of the hepatoprotective, anti-inflammatory, antinociceptive and antiepileptic activities of Chrysanthemum trifurcatum. Biomed. Pharmacother. 2019, 117, 109123. [Google Scholar] [CrossRef]
- Han, A.; Nam, B.; Kim, B.; Lee, K.; Song, B.; Kim, S.; Kim, J.; Jin, C. Phytochemical composition and antioxidant activities of two different color chrysanthemum flower teas. Molecules 2019, 24, 329. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Yuan, F.; Pan-Yin, X.; Li, Z.; Sheng-Peng, W.; Qing, Z.; Yun-Tao, L.; Wen, Q.; De-Qiang, L.; Ding-Tao, W. Structural characterization, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas. RSC Adv. 2019, 9, 35443. [Google Scholar] [CrossRef] [Green Version]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.; Choi, I.; Kim, G. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Polley, K.R.; Oswell, N.J.; Pegg, R.B.; Cooper, J.A. Tart cherry consumption with or without prior exercise increases antioxidant capacity and decreases triglyceride levels following a high-fat meal. Appl. Physiol. Nutr. Metab. 2019, 44, 1209–1218. [Google Scholar] [CrossRef]
- Schell, J.; Betts, N.M.; Lyons, T.J.; Basu, A. Raspberries improve postprandial glucose and acute and chronic inflammation in adults with type 2 diabetes. Ann. Nutr. Metab. 2019, 74, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Thilavech, T.; Adisakwattana, S.; Channuwong, P.; Radarit, K.; Jantarapat, K.; Ngewlai, K.; Sonprasan, N.; Chusak, C. Clitoria ternatea flower extract attenuates postprandial lipemia and increases plasma antioxidant status responses to a high-fat meal challenge in overweight and obese participants. Biology 2021, 10, 975. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yang, L.; Shu, G.; Lu, H.; Sun, G. Effects of the n-6/n-3 polyunsaturated fatty acids ratio on postprandial metabolism in hypertriacylglycerolemia patients. Lipids Health Dis. 2013, 12, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Gong, J.; Han, H.; He, L.; Teng, Y.; Tetley, T.; Sinharay, R.; Chung, K.F.; Islam, T.; Gilliland, F.; et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J. Thorac. Dis. 2018, 10, 3088–3197. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, P.; Jiang, C.; Ma, L.; Zhang, Z.; Zeng, X. Preliminary characterization, antioxidant activity in vitro and hepatoprotective effect on acute alcohol-induced liver injury in mice of polysaccharides from the peduncles of Hovenia dulcis. Food Chem. Toxicol. 2012, 50, 2964–2970. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, Q.; Pan, K.; Xu, X. Protective effect of Chrysanthemum morifolium ramat. Ethanol extract on lipopolysaccharide induced acute lung injury in mice. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Mou, X.; Zhou, D.; Zhou, D.; Shou, C. Extraction of flavonoids from Chrysanthemum morifolium and antitumor activity in vitro. Exp. Ther. Med. 2018, 15, 1203–1210. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Zhang, L.; Jiang, Z.; Wang, Y.; Tan, J.; Tang, S. Radical scavenging activities and composition identification of phenolic compounds from crowndaisy seeds by offline hplc combined with lC–ESI–MS/MS. Eur. Food Res. Technol. 2020, 246, 1073–1080. [Google Scholar] [CrossRef]
- Gong, J.; Chu, B.; Gong, L.; Fang, Z.; Zhang, X.; Qiu, S.; Wang, J.; Xiang, Y.; Xiao, G.; Yuan, H.; et al. Comparison of phenolic compounds and the antioxidant activities of fifteen Chrysanthemum morifolium ramat cv. ‘hangbaiju’ in China. Antioxidants 2019, 8, 325. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.X.; Hu, D.J.; Lam, S.C.; Ge, L.; Wu, D.; Zhao, J.; Long, Z.R.; Yang, W.J.; Fan, B.; Li, S.P. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2′-azinobis (3-ethylbenzthiazoline-sulfonic acid) diammonium salt-based assay. J. Chromatogr. A 2016, 1428, 134–142. [Google Scholar] [CrossRef]
- Meng, L.; Sun, S.; Li, R.; Shen, Z.; Wang, P.; Jiang, X. Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics. Carbohydr. Polym. 2015, 117, 452–457. [Google Scholar] [CrossRef] [PubMed]
Parameters | IC-E | IC-P | p |
---|---|---|---|
DPPH (IC50 trolox μg/mL FW) | 939.6 ± 1.93 | 617.5 ± 1.46 | <0.05 |
ABTS (IC50 trolox μg/mL FW) | 588.6 ± 2.44 | 567.2 ± 2.94 | |
HR (IC50 trolox μg/mL FW) | 6697 ± 8.60 | 6425 ± 4.63 |
Control Group (n = 18) | IC Group (n = 19) | p | |
---|---|---|---|
Sex (male/female) | 6/12 | 7/12 | NS |
Age | 25.22 ± 2.44 | 25.26 ± 2.75 | NS |
Height/m | 165.08 ± 6.602 | 166.21 ± 7.729 | NS |
Weight/kg | 56.43 ± 6.690 | 58.82 ± 7.434 | NS |
BMI/kg/m2 | 20.65 ± 1.471 | 21.09 ± 1.506 | NS |
TC/mmol/L | 4.52 ± 0.844 | 4.30 ± 0.878 | NS |
TG/mmol/L | 0.70 ± 0.230 | 0.75 ± 0.227 | NS |
HDL-C/mmol/L | 1.61 ± 0.300 | 1.51 ± 0.250 | NS |
LDL-C/mmol/L | 2.29 ± 0.560 | 2.25 ± 0.642 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Sun, J.; Pan, Z.; Lu, Y.; Wang, Z.; Yang, L.; Sun, G. Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules 2023, 28, 579. https://doi.org/10.3390/molecules28020579
Chen L, Sun J, Pan Z, Lu Y, Wang Z, Yang L, Sun G. Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules. 2023; 28(2):579. https://doi.org/10.3390/molecules28020579
Chicago/Turabian StyleChen, Lin, Jihan Sun, Zhengyu Pan, Yifei Lu, Zhaodan Wang, Ligang Yang, and Guiju Sun. 2023. "Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults" Molecules 28, no. 2: 579. https://doi.org/10.3390/molecules28020579
APA StyleChen, L., Sun, J., Pan, Z., Lu, Y., Wang, Z., Yang, L., & Sun, G. (2023). Analysis of Chemical Constituents of Chrysanthemum morifolium Extract and Its Effect on Postprandial Lipid Metabolism in Healthy Adults. Molecules, 28(2), 579. https://doi.org/10.3390/molecules28020579