Drug Repurposing to Inhibit Histamine N-Methyl Transferase
Abstract
:1. Introduction
2. Results
2.1. Virtual Screening of Compound against HNMT
2.2. Binding Site in Enzyme HNMT by Flexible Docking Studies
2.3. Evaluation of Interactions with the Histamine-Binding Site of HNMT by MD Simulations
2.4. Stability of MD Simulations
2.5. HNMT Inhibition Assay
3. Discussion
4. Materials and Methods
4.1. Selection of Dataset
4.2. HNMT–Ligand Docking Study
4.3. Interaction with HNMT: Molecular Dynamics and Binding Free Energy Calculations
4.4. The HNMT Inhibition Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuutinen, S.; Panula, P. Histamine in neurotransmission and brain diseases. Adv. Exp. Med. Biol. 2010, 709, 95–107. [Google Scholar]
- Yoshikawa, T.; Nakamura, T.; Yanai, K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br. J. Pharmacol. 2021, 178, 750–769. [Google Scholar] [CrossRef]
- Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol. Rev. 2015, 67, 601–655. [Google Scholar] [CrossRef] [Green Version]
- Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol. 2006, 147, S127–S135. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Bonaventure, P.; Thurmond, R.L. The future antihistamines: Histamine H3 and H4 receptor ligands. Adv. Exp. Med. Biol. 2010, 709, 125–140. [Google Scholar]
- Pacifici, G.M.; Donatelli, P.; Giuliani, L. Histamine N-methyl transferase: Inhibition by drugs. Br. J. Clin. Pharmacol. 1992, 34, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Baronio, D.; Gonchoroski, T.; Castro, K.; Zanatta, G.; Gottfried, C.; Riesgo, R. Histaminergic system in brain disorders: Lessons from the translational approach and future perspectives. Ann. Gen. Psychiatry 2014, 13, 34. [Google Scholar] [CrossRef] [Green Version]
- Flores-Clemente, C.; Nicolás-Vázquez, M.I.; Mera-Jiménez, E.; Hernández-Rodríguez, M. Inhibition of Astrocytic Histamine N-Methyltransferase as a Possible Target for the Treatment of Alzheimer’s Disease. Biomolecules 2021, 11, 1408. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Nakamura, T.; Yanai, K. Histamine N-Methyltransferase in the Brain. Int. J. Mol. Sci. 2019, 20, 737. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.; Bao, A.M.; Swaab, D.F. Changes in Histidine Decarboxylase, Histamine N-Methyltransferase and Histamine Receptors in Neuropsychiatric Disorders. Handb. Exp. Pharmacol. 2017, 241, 259–276. [Google Scholar]
- Yokoyama, A.; Mori, S.; Takahashi, H.K.; Kanke, T.; Wake, H.; Nishibori, M. Effect of amodiaquine, a histamine N-methyltransferase inhibitor, on, Propionibacterium acnes and lipopolysaccharide-induced hepatitis in mice. Eur. J. Pharmacol. 2007, 558, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Bigal, M.E.; Tepper, S.J. Ergotamine and dihydroergotamine: A review. Curr. Pain Headache Rep. 2003, 7, 55–62. [Google Scholar] [CrossRef]
- Wang, S.M.; Han, C.; Lee, S.J.; Patkar, A.A.; Masand, P.S.; Pae, C.U. Vilazodone for the Treatment of Depression: An Update. Chonnam Med. J. 2016, 52, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Horton, J.R.; Sawada, K.; Nishibori, M.; Zhang, X.; Cheng, X. Two polymorphic forms of human histamine methyltransferase: Structural, thermal, and kinetic comparisons. Structure 2001, 9, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Horton, J.R.; Sawada, K.; Nishibori, M.; Cheng, X. Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J. Mol. Biol. 2005, 353, 334–344. [Google Scholar] [CrossRef] [Green Version]
- Dalvi, T.; Dewangan, B.; Das, R.; Rani, J.; Shinde, S.D.; Vhora, N.; Jain, A.; Sahu, B. Old Drugs with New Tricks: Paradigm in Drug Development Pipeline for Alzheimer’s Disease. Cent. Nerv. Syst. Agents Med. Chem. 2020, 20, 157–176. [Google Scholar] [CrossRef]
- Athar, T.; Balushi, K.A.; Khan, S.A. Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol. Biol. Rep. 2021, 48, 5629–5645. [Google Scholar] [CrossRef]
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019, 24, 2076–2085. [Google Scholar] [CrossRef]
- Malmberg-Aiello, P.; Ipponi, A.; Bartolini, A.; Schunack, W. Antiamnesic effect of metoprine and of selective histamine H(1) receptor agonists in a modified mouse passive avoidance test. Neurosci. Lett. 2000, 288, 1–4. [Google Scholar] [CrossRef]
- Provensi, G.; Costa, A.; Izquierdo, I.; Blandina, P.; Passani, M.B. Brain histamine modulates recognition memory: Possible implications in major cognitive disorders. Br. J. Pharmacol. 2020, 177, 539–556. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, G.; Velasco, I.; García-López, G.; Solís, K.H.; Flores-Herrera, H.; Díaz, N.F.; Molina-Hernández, A. Histamine is required during neural stem cell proliferation to increase neuron differentiation. Neuroscience 2012, 216, 10–17. [Google Scholar] [CrossRef]
- Patel, A.; Vasanthan, V.; Fu, W.; Fahlman, R.P.; MacTavish, D.; Jhamandas, J.H. Histamine induces the production of matrix metalloproteinase-9 in human astrocytic cultures via H1-receptor subtype. Brain Struct. Funct. 2016, 221, 1845–1860. [Google Scholar] [CrossRef]
- Herowati, R.; Widodo, G.P. Molecular docking studies of chemical constituents of tinospora cordifolia on glycogen phosphorylase. Procedia Chem. 2014, 13, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.F. Flexible receptor docking for drug discovery. Expert Opin. Drug Discov. 2015, 10, 1189–1200. [Google Scholar] [CrossRef]
- Villalón, C.M.; Centurión, D.; Valdivia, L.F.; de Vries, P.; Saxena, P.R. Migraine: Pathophysiology, pharmacology, treatment and future trends. Curr. Vasc. Pharmacol. 2003, 1, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Tfelt-Hansen, P. Ergotamine, dihydroergotamine: Current uses and problems. Curr. Med. Res. Opin. 2001, 17, s30-4. [Google Scholar] [CrossRef]
- Hough, L.B.; Khandelwal, J.K.; Green, J.P. Inhibition of brain histamine metabolism by metoprine. Biochem. Pharmacol. 1986, 35, 307–310. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, Y.J. Effects of brain histamine on memory deficit induced by nucleus basalis-lesion in rats. Acta Pharmacol. Sin. 2002, 23, 66–70. [Google Scholar]
- Samotaeva, I.S.; Birioukova, L.M.; Midzyanovskaya, I.S.; Kuznetsova, G.D.; Bazyan, A.S.; Tuomisto, L. Metoprine induced behavioral modifications and brain regional histamine increase in WAG/Rij and Wistar rats. Epilepsy Res. 2012, 101, 148–156. [Google Scholar] [CrossRef]
- Jones, B.R.; Gordon, C.S.; Umans, J.; Reidenberg, M.M.; Young, C.W. Kinetics of metoprine, a lipid-soluble antifolate. Br. J. Clin. Pharmacol. 1981, 12, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Cavallito, J.C.; Nichol, C.A.; Brenckman, W.D., Jr.; Deangelis, R.L.; Stickney, D.R.; Simmons, W.S.; Sigel, C.W. Lipid-soluble inhibitors of dihydrofolate reductase. I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab. Dispos. 1978, 6, 329–337. [Google Scholar]
- Boinpally, R.; Alcorn, H.; Adams, M.H.; Longstreth, J.; Edwards, J. Pharmacokinetics of vilazodone in patients with mild or moderate renal impairment. Clin. Drug Investig. 2013, 33, 199–206. [Google Scholar] [CrossRef]
- Barthel, W. Venous tonus-modifying effect, pharmacokinetics and undesired effects of dihydroergotamine. Z. Fur Die Gesamte Inn. Med. Und Ihre Grenzgeb. 1984, 39, 417–428. [Google Scholar]
- Piechal, A.; Blecharz-Klin, K.; Joniec-Maciejak, I.; Pyrzanowska, J.; Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Dihydroergotamine affects spatial behavior and neurotransmission in the central nervous system of Wistar rats. Ann. Agric. Environ. Med. 2021, 28, 437–445. [Google Scholar] [CrossRef]
- Li, Y.; Sanchez, C.; Gulinello, M. Distinct Antidepressant-Like and Cognitive Effects of Antidepressants with Different Mechanisms of Action in Middle-Aged Female Mice. Int. J. Neuropsychopharmacol. 2017, 20, 510–515. [Google Scholar] [CrossRef]
- Chen, X.F.; Jin, Z.L.; Gong, Y.; Zhao, N.; Wang, X.Y.; Ran, Y.H.; Zhang, Y.Z.; Zhang, L.M.; Li, Y.F. 5-HT6 receptor agonist and memory-enhancing properties of hypidone hydrochloride (YL-0919), a novel 5-HT1A receptor partial agonist and SSRI. Neuropharmacology 2018, 138, 1–9. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Durán, L.A.; Rosales-Hernández, M.C.; Hernández-Rodríguez, M.; Mendieta-Wejebe, J.E.; Trujillo-Ferrara, J.; Correa-Basurto, J. Mapping myeloperoxidase to identify its promiscuity properties using docking and molecular dynamics simulations. Curr. Pharm. Des. 2013, 19, 2204–2215. [Google Scholar] [CrossRef]
- BIOVIA; Dassault Systèmes. Discovery Studio 2021; Dassault Systèmes: San Diego, CA, USA, 2021. [Google Scholar]
- Koska, J.R.; Spassov, V.Z.; Maynard, A.J.; Yan, L.; Austin, N.; Flook, P.K.; Venkatachalam, C.M. Fully automated molecular mechanics based induced fit protein−ligand docking method. J. Chem. Inf. Mod. 2008, 48, 1965–1973. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Pittsburgh, PA, USA, 2016. [Google Scholar]
- Breneman, C.M.; Wiberg, K.B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling in formamide conformational analysis. J. Comput. Chem. 1990, 11, 361–373. [Google Scholar] [CrossRef]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. Charmm—A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Sagui, C.; Darden, T.A. Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 155–179. [Google Scholar] [CrossRef] [Green Version]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Cheatham, T.E., 3rd. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef]
∆G (kcal/mol) | Drug | Amino Acid Residues |
---|---|---|
−13.41 | Dihydroergotamine | Glu-89, Gln-94, Tyr-147, Tyr-146, Cys-196, Gln-197, Phe-19, Phe-9, Val-173, Phe-22, Phe-243, Trp-183, Tyr-198. |
−12.86 | Vilazodone | Leu-8, Phe-9, Glu-246, Phe-243, Trp-179, Tyr-147, Pro-191, Asp-193, Trp-183, Cys-196, Tyr-198, Cys-196, Gln-197, Val-173, Tyr-146. |
−12.58 | Ergotamine | Glu-89, Gln-94, Tyr-147, Cys-196, Gln-197, Phe-9, Gln-143, Tyr-146, Phe-19, Phe-22, Phe-243, Trp-183, Tyr-198. |
−9.08 | Metoprine | Tyr-147, Phe-9, Cys-196, Tyr-146, Tyr-198, Gln-143, Trp-183, Val-173, Trp-179, Glu-28, Asn-283. |
Complex | ∆Gbind [kcal/mol] |
---|---|
Dihydroergotamine | −55.45 |
Vilazodone | −89.42 |
Metoprine | −98.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, E.M.; Żołek, T.; Hernández Perez, P.G.; Miranda Ruvalcaba, R.; Nicolás-Vázquez, M.I.; Hernández-Rodríguez, M. Drug Repurposing to Inhibit Histamine N-Methyl Transferase. Molecules 2023, 28, 576. https://doi.org/10.3390/molecules28020576
Jiménez EM, Żołek T, Hernández Perez PG, Miranda Ruvalcaba R, Nicolás-Vázquez MI, Hernández-Rodríguez M. Drug Repurposing to Inhibit Histamine N-Methyl Transferase. Molecules. 2023; 28(2):576. https://doi.org/10.3390/molecules28020576
Chicago/Turabian StyleJiménez, Elvia Mera, Teresa Żołek, Paola Gabriela Hernández Perez, Rene Miranda Ruvalcaba, María Inés Nicolás-Vázquez, and Maricarmen Hernández-Rodríguez. 2023. "Drug Repurposing to Inhibit Histamine N-Methyl Transferase" Molecules 28, no. 2: 576. https://doi.org/10.3390/molecules28020576
APA StyleJiménez, E. M., Żołek, T., Hernández Perez, P. G., Miranda Ruvalcaba, R., Nicolás-Vázquez, M. I., & Hernández-Rodríguez, M. (2023). Drug Repurposing to Inhibit Histamine N-Methyl Transferase. Molecules, 28(2), 576. https://doi.org/10.3390/molecules28020576