Structural Analysis, Multi-Conformation Virtual Screening and Molecular Simulation to Identify Potential Inhibitors Targeting pS273R Proteases of African Swine Fever Virus
Abstract
:1. Introduction
2. Results
2.1. Conformation Sampling and Structure Analysis
2.2. Virtual Screening and Calculation of MDockScore
2.3. The Analysis of Molecular Dynamic Simulation Based on the Top Five pS273R–Drug Ligand Complexes
2.4. Binding Affinity Calculations Using MM/PB(GB)SA
2.5. Similarity between Candidate Molecules and Known Inhibitors
3. Discussion
4. Materials and Methods
4.1. Sampling and Clustering of Protein Targets Conformations
4.2. Virtual Screening
4.3. Molecular Dynamics Simulations
4.4. Binding-Free Energy of the Protein–Ligand Complexes
4.5. Fingerprint Calculation and Similarity Comparison of Candidate Molecules
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karger, A.; Perez-Nunez, D.; Urquiza, J.; Hinojar, P.; Alonso, C.; Freitas, F.B.; Revilla, Y.; Le Potier, M.F.; Montoya, M. An Update on African Swine Fever Virology. Viruses 2019, 11, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, D.; Sun, D.; Liu, Y.; Wei, S.; Yang, Z.; An, T.; Shan, F.; Chen, Z.; Liu, J. One year of African swine fever outbreak in China. Acta Trop. 2020, 211, 105602. [Google Scholar] [CrossRef]
- Zhou, X.; Li, N.; Luo, Y.; Liu, Y.; Miao, F.; Chen, T.; Zhang, S.; Cao, P.; Li, X.; Tian, K.; et al. Emergence of African Swine Fever in China, 2018. Transbound. Emerg. Dis. 2018, 65, 1482–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andres, G.; Alejo, A.; Simon-Mateo, C.; Salas, M.L. African swine fever virus protease, a new viral member of the SUMO-1-specific protease family. J. Biol. Chem. 2001, 276, 780–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrés, G.; Alejo, A.; Salas, J.; Salas, M.L. African swine fever virus polyproteins pp220 and pp62 assemble into the core shell. J. Virol. 2002, 76, 12473–12482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Liu, X.; Yang, M.; Zhang, G.; Wang, Z.; Guo, K.; Gao, Y.; Jiao, P.; Sun, J.; Chen, C.; et al. Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. J. Virol. 2020, 94, e02125-19. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Cui, Y.; Lu, G.; Wei, S.; Yang, Z.; Du, F.; An, T.; Liu, J.; Shen, G.; Chen, Z. Small molecule inhibitor E-64 exhibiting the activity against African swine fever virus pS273R. Bioorg. Med. Chem. 2021, 35, 116055. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, J.; Ni, J.; Jiang, S.; Xia, N.; Guo, Y.; Shao, Q.; Cao, Q.; Zheng, W.; Chen, N.; et al. The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKε. Virulence 2022, 13, 740–756. [Google Scholar] [CrossRef]
- Zhao, G.; Li, T.; Liu, X.; Zhang, T.; Zhang, Z.; Kang, L.; Song, J.; Zhou, S.; Chen, X.; Wang, X.; et al. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. J. Biol. Chem. 2022, 298, 101480. [Google Scholar] [CrossRef]
- Hattori, S.I.; Higashi-Kuwata, N.; Hayashi, H.; Allu, S.R.; Raghavaiah, J.; Bulut, H.; Das, D.; Anson, B.J.; Lendy, E.K.; Takamatsu, Y.; et al. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2021, 12, 668. [Google Scholar] [CrossRef]
- Mahdi, M.; Mótyán, J.A.; Szojka, Z.I.; Golda, M.; Miczi, M.; Tőzsér, J. Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2’s main protease. Virol. J. 2020, 17, 190. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ji, M.; Yuan, B.; Luo, A.; Jiang, Z.; Zhu, T.; Liu, Y.; Kamau, P.M.; Jin, L.; Lai, R. Peptide OPTX-1 From Ornithodoros papillipes Tick Inhibits the pS273R Protease of African Swine Fever Virus. Front. Microbiol. 2021, 12, 778309. [Google Scholar] [CrossRef]
- Sutanto, F.; Konstantinidou, M.; Dömling, A. Covalent inhibitors: A rational approach to drug discovery. RSC Med. Chem. 2020, 11, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Dahal, U.P.; Obach, R.S.; Gilbert, A.M. Benchmarking in vitro covalent binding burden as a tool to assess potential toxicity caused by nonspecific covalent binding of covalent drugs. Chem. Res. Toxicol. 2013, 26, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem. 2020, 8, 343. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys. 2020, 22, 3149–3159. [Google Scholar] [CrossRef]
- Singh, E.; Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. J. Genet. Eng. Biotechnol. 2020, 18, 69. [Google Scholar] [CrossRef]
- Choi, J.; Yun, J.S.; Song, H.; Shin, Y.K.; Kang, Y.H.; Munashingha, P.R.; Yoon, J.; Kim, N.H.; Kim, H.S.; Yook, J.I.; et al. Prediction of African Swine Fever Virus Inhibitors by Molecular Docking-Driven Machine Learning Models. Molecules 2021, 26, 3592. [Google Scholar] [CrossRef]
- Kinyanyi, D.; Amwayi, P.; Wamalwa, M.; Obiero, G. Comparative in silico study of congocidine congeners as potential inhibitors of African swine fever virus. PLoS ONE 2019, 14, e0221175. [Google Scholar] [CrossRef]
- Wang, P.; Bai, J.; Liu, X.; Wang, M.; Wang, X.; Jiang, P. Tomatidine inhibits porcine epidemic diarrhea virus replication by targeting 3CL protease. Vet. Res. 2020, 51, 136. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.I.; Ragab, H.M.; Bekhit, A.A.; Ibrahim, T.M. Targeting multiple conformations of SARS-CoV2 Papain-Like Protease for drug repositioning: An in-silico study. Comput. Biol. Med. 2021, 131, 104295. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Baker, Q.B.; Singh, D.B. Molecular docking and molecular dynamics simulation. In Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 291–304. [Google Scholar]
- Śledź, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol. 2018, 48, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Amaro, R.E.; Baudry, J.; Chodera, J.; Demir, Ö.; McCammon, J.A.; Miao, Y.; Smith, J.C. Ensemble Docking in Drug Discovery. Biophys. J. 2018, 114, 2271–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrigoni, A.; Bertini, L.; De Gioia, L.; Papaleo, E. Inhibitors of the Cdc34 acidic loop: A computational investigation integrating molecular dynamics, virtual screening and docking approaches. FEBS Open Bio 2014, 4, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Wójcikowski, M.; Ballester, P.J.; Siedlecki, P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017, 7, 46710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulumba-Mfumu, L.K.; Saegerman, C.; Dixon, L.K.; Madimba, K.C.; Kazadi, E.; Mukalakata, N.T.; Oura, C.A.; Chenais, E.; Masembe, C.; Ståhl, K. African swine fever: Update on Eastern, Central and Southern Africa. Transbound. Emerg. Dis. 2019, 66, 1462–1480. [Google Scholar] [CrossRef] [Green Version]
- Guarnera, E.; Berezovsky, I.N. Allosteric sites: Remote control in regulation of protein activity. Curr. Opin. Struct. Biol. 2016, 37, 1–8. [Google Scholar] [CrossRef]
- Keshava, C.; Keshava, N.; Whong, W.-Z.; Nath, J.; Ong, T.-M. Inhibition of methotrexate-induced chromosomal damage by folinic acid in V79 cells. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1998, 397, 221–228. [Google Scholar] [CrossRef]
- Carlan, S.; Gushwa, J.; O’brien, W.; Vu, T. Effect of intramuscular 15-methyl prostaglandin F2α after second-trimester delivery. Obstet. Gynecol. 1997, 89, 5–9. [Google Scholar] [CrossRef]
- Van Sinay, E.; Mirabeau, O.; Depuydt, G.; Van Hiel, M.B.; Peymen, K.; Watteyne, J.; Zels, S.; Schoofs, L.; Beets, I. Evolutionarily conserved TRH neuropeptide pathway regulates growth in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2017, 114, E4065–E4074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Q.; Ji, L.; Wang, H.; Xie, J. Riboflavin biosynthetic and regulatory factors as potential novel anti-infective drug targets. Chem. Biol. Drug Des. 2010, 75, 339–347. [Google Scholar] [CrossRef] [PubMed]
- McKenney, J.M. Lovastatin: A new cholesterol-lowering agent. Clin. Pharm. 1988, 7, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T. Structural dynamics of ABC transporters: Molecular simulation studies. Biochem. Soc. Trans. 2021, 49, 405–414. [Google Scholar] [CrossRef]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. Biomed. Res. Int. 2021, 2021, 8853056. [Google Scholar] [CrossRef]
- Rácz, A.; Bajusz, D.; Héberger, K. Life beyond the Tanimoto coefficient: Similarity measures for interaction fingerprints. J. Cheminform. 2018, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Probst, D.; Reymond, J.-L. A probabilistic molecular fingerprint for big data settings. J. Cheminform. 2018, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef]
- Pathak, R.K.; Seo, Y.-J.; Kim, J.-M. Structural insights into inhibition of PRRSV Nsp4 revealed by structure-based virtual screening, molecular dynamics, and MM-PBSA studies. J. Biol. Eng. 2022, 16, 4. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Parrinello, M.; Rahman, A. Crystal structure and pair potentials: A molecular-dynamics study. Phys. Rev. Lett. 1980, 45, 1196. [Google Scholar] [CrossRef]
- Romero-Rivera, A.; Garcia-Borras, M.; Osuna, S. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal. 2017, 7, 8524–8532. [Google Scholar] [CrossRef]
- Tubiana, T.; Carvaillo, J.-C.; Boulard, Y.; Bressanelli, S. TTClust: A versatile molecular simulation trajectory clustering program with graphical summaries. J. Chem. Inf. Model. 2018, 58, 2178–2182. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Res. Inst. Mol. Graph. Lab. 2012, 10550, 92037. [Google Scholar]
- Wang, Y.; Wei, Z.; Xi, L. Sfcnn: A novel scoring function based on 3D convolutional neural network for accurate and stable protein–ligand affinity prediction. BMC Bioinform. 2022, 23, 222. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions. J. Chem. Inf. Model. 2022, 62, 2696–2712. [Google Scholar] [CrossRef] [PubMed]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Sahakyan, H. Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. J. Comput. Aided Mol. Des. 2021, 35, 731–736. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Miller, B.R., III; McGee, T.D., Jr.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA. py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
ACS | Watvina Docking Score (Kcal/mol) | ||
---|---|---|---|
Crystal (6LJ9A) | Cluster 1 | Cluster 2 | |
78110-38-0 | −8.3 | −6.6 | −6.6 |
58-05-9 | −8.8 | −7.2 | −6.6 |
32986-56-4 | −7 | −6.6 | −7.5 |
59-01-8 | −7.3 | −6.6 | −7.9 |
146-17-8 | −9 | −7.3 | −7 |
24305-27-9 | −7.8 | −6.9 | −6.5 |
27025-41-8 | −8.4 | −6.7 | −8.4 |
83602-05-5 | −7.5 | −6.6 | −7.1 |
75225-51-3 | −7.7 | −7.3 | −7.1 |
259218-79-6 | −8.1 | −6.8 | −7 |
83-88-5 | −8.2 | −6.7 | −7.2 |
2921-57-5 | −8 | −6.6 | −7.7 |
551-11-1 | −8 | −6.7 | −6.9 |
35700-23-3 | −7.2 | −7 | −6.9 |
745-65-3 | −8 | −6.6 | −7.2 |
75847-73-3 | −7.7 | −7.0 | −6.5 |
86541-75-5 | −7.5 | −7.2 | −6.6 |
139110-80-8 | −7.1 | −6.6 | −7.3 |
4697-36-3 | −7.8 | −6.5 | −6.6 |
ACS | Compound | MDock Score | Residue in Contact | ||
---|---|---|---|---|---|
Crystal (6LJ9A) | Cluster 1 | Cluster 2 | |||
58-05-9 | Leucovorin | 2.911 | THR159, SER162 GLY166, HIS168 ASN187, ARG224 GLN226 | THR159, ASN191 GLN226, HIS168 ARG224 | THR159, ASN187 ASN191, ARG224 |
35700-23-3 | Carboprost | 2.317 | THR159, HIS168 ASN187, ASN191 ARG224, GLN226 GLN229 | HIS168, THR159 ASN187, ASP160 THR189 | HIS168, ASN187 ASN191, ARG224 |
24305-27-9 | Protirelin | 2.243 | THR159, GLY166 LYS167, ARG224 GLN226, GLN 229 | ASN187, THR189 ASN191, SER192 ARG224, GLN229 | LYS167, ASN187 ARG224, GLN229 |
146-17-8 | Flavin Mononucleotide | 2.174 | THR159, HIS168 ASN187, ARG224 GLN226, SER228 | HIS168, ASN187 THR189, ASN191 GLN229 | ASN187, THR189 ARG224, SER228 |
75225-51-3 | Lovastatin Acid | 2.154 | ASN191, ARG224 HIS168 | THR159, ASP160 ASN191 | LYS167, GLN226 SER228, HIS168 |
ΔE vdW | ΔE elec | ΔG pol | ΔG nonpol | ΔG Binding | |
---|---|---|---|---|---|
Leucovorin | −29.41 ± 4.05 | −154.07 ± 8.72 | 154.51 ± 7.08 | −4.47 ± 0.32 | −33.44 ± 1.03 |
Carboprost | −21.77 ± 4.33 | −102.76 ± 7.41 | 96.99 ± 5.78 | −4.17 ± 0.52 | −31.71 ± 4.58 |
Protirelin | −26.61 ± 4.55 | −13.70 ± 3.86 | 18.29 ± 3.47 | −3.53 ± 0.52 | −25.55 ± 4.34 |
Flavin Mononucleotide | −33.77 ± 2.91 | −140.93 ± 8.05 | 145.14 ± 8.17 | −3.53 ± 0.52 | −34.14 ± 2.87 |
Lovastatin Acid | −22.66 ± 3.01 | −95.82 ± 15.36 | 95.51 ± 12.96 | −3.61 ± 0.37 | −26.58 ± 7.62 |
ΔE vdW | ΔE elec | ΔG pol | ΔG nonpol | ΔG Binding | |
---|---|---|---|---|---|
Leucovorin | −29.41 ± 4.05 | −154.07 ± 8.72 | 152.54 ± 7.16 | −3.70 ± 0.16 | −34.63 ± 3.36 |
Carboprost | −21.77 ± 4.33 | −102.76 ± 7.41 | 99.09 ± 6.23 | −3.14 ± 0.28 | −28.58 ± 3.73 |
Protirelin | −26.61 ± 4.55 | −13.70 ± 3.86 | 19.14 ± 4.08 | −2.67 ± 0.33 | −23.84 ± 3.43 |
Flavin Mononucleotide | −33.77 ± 2.91 | −140.93 ± 8.05 | 145.91 ± 6.48 | −3.41 ± 0.12 | −32.20 ± 2.88 |
Lovastatin Acid | −46.4 ± 3.4 | −44.2 ± 6.0 | 54.4 ± 4.5 | −4.3 ± 0.3 | −27.01 ± 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Ou, K.; Zhang, Y.; Zhang, H.; Feng, S.; Yang, Z.; Sun, G.; Liu, J.; Wei, S.; Pan, S.; et al. Structural Analysis, Multi-Conformation Virtual Screening and Molecular Simulation to Identify Potential Inhibitors Targeting pS273R Proteases of African Swine Fever Virus. Molecules 2023, 28, 570. https://doi.org/10.3390/molecules28020570
Lu G, Ou K, Zhang Y, Zhang H, Feng S, Yang Z, Sun G, Liu J, Wei S, Pan S, et al. Structural Analysis, Multi-Conformation Virtual Screening and Molecular Simulation to Identify Potential Inhibitors Targeting pS273R Proteases of African Swine Fever Virus. Molecules. 2023; 28(2):570. https://doi.org/10.3390/molecules28020570
Chicago/Turabian StyleLu, Gen, Kang Ou, Yihan Zhang, Huan Zhang, Shouhua Feng, Zuofeng Yang, Guo Sun, Jinling Liu, Shu Wei, Shude Pan, and et al. 2023. "Structural Analysis, Multi-Conformation Virtual Screening and Molecular Simulation to Identify Potential Inhibitors Targeting pS273R Proteases of African Swine Fever Virus" Molecules 28, no. 2: 570. https://doi.org/10.3390/molecules28020570
APA StyleLu, G., Ou, K., Zhang, Y., Zhang, H., Feng, S., Yang, Z., Sun, G., Liu, J., Wei, S., Pan, S., & Chen, Z. (2023). Structural Analysis, Multi-Conformation Virtual Screening and Molecular Simulation to Identify Potential Inhibitors Targeting pS273R Proteases of African Swine Fever Virus. Molecules, 28(2), 570. https://doi.org/10.3390/molecules28020570