Combination of Dehydration and Expeller as a Novel Methodology for the Production of Olive Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. A Comparative Study of Different Extraction Procedures
2.2. Quality and Oxidation Indices
2.3. Fatty Acid Profile of Oils
2.4. Lipid Profile of Oils
2.5. Total Phenolic Compounds and Oxidative Stability
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Moisture Determination
3.2.2. Olive Oil Extraction
3.2.3. Total Fat Content
3.2.4. Quality and Oxidation Indexes
3.2.5. Determination of Fatty Acid Profile
3.2.6. Lipid Characterization by Gas Chromatography
3.2.7. Determination of Total Phenolic Content
3.2.8. Rancimat Test
3.2.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
References
- Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas 2018, 118, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, R.; Luna, G. Characterisation of monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. From olive fruits to olive oil: Phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef]
- Esti, M.; Cinquanta, L.; La Notte, E. Phenolic compounds in different olive varieties. J. Agric. Food Chem. 1998, 46, 32–35. [Google Scholar] [CrossRef]
- Škevin, D.; Rade, D.; Štrucelj, D.; Mokrovšak, Ž.; Neđeral, S.; Benčić, Đ. The influence of variety and harvest time on the bitterness and phenolic compounds of olive oil. Eur. J. Lipid Sci. Technol. 2003, 105, 536–541. [Google Scholar] [CrossRef]
- Aggoun, M.; Arhab, R.; Cornu, A.; Portelli, J.; Barkat, M.; Graulet, B. Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chem. 2016, 209, 72–80. [Google Scholar] [CrossRef]
- Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Russo, M.; Salafia, F.; Trozzi, A.; Rhazi Filali, F.; Dugo, P.; Mondello, L. Characterization of phenolic compounds, vitamin e and fatty acids from monovarietal virgin olive oils of “Picholine marocaine” cultivar. Molecules 2020, 25, 5428. [Google Scholar] [CrossRef]
- Kapellakis, I.E.; Tsagarakis, K.P.; Crowther, J.C. Olive oil history, production and by-product management. Rev. Environ. Sci. Bio/Technol. 2008, 7, 1–26. [Google Scholar] [CrossRef]
- Ben-David, E.; Kerem, Z.; Zipori, I.; Weissbein, S.; Basheer, L.; Bustan, A.; Dag, A. Optimization of the Abencor system to extract olive oil from irrigated orchards. Eur. J. Lipid Sci. Technol. 2010, 112, 1158–1165. [Google Scholar] [CrossRef]
- Mikołajczak, N.; Tańska, M.; Ogrodowska, D. Phenolic compounds in plant oils: A review of composition, analytical methods, and effect on oxidative stability. Trends Food Sci. Technol. 2021, 113, 110–138. [Google Scholar] [CrossRef]
- Uceda, M.; Beltrán, G.; Jiménez, A. Olive oil extraction and quality. Grasas y Aceites 2006, 57, 25–31. [Google Scholar] [CrossRef]
- Clodoveo, M.L. Malaxation: Influence on virgin olive oil quality. Past, present and future—An overview. Trends Food Sci. Technol. 2012, 25, 13–23. [Google Scholar] [CrossRef]
- Clodoveo, M.L. Industrial ultrasound applications in the extra-virgin olive oil extraction process: History, approaches, and key questions. Foods 2019, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Juliano, P.; Bainczyk, F.; Swiergon, P.; Supriyatna, M.I.M.; Guillaume, C.; Ravetti, L.; Canamasas, P.; Cravotto, G.; Xu, X.-Q. Extraction of olive oil assisted by high-frequency ultrasound standing waves. Ultrason. Sonochem. 2017, 38, 104–114. [Google Scholar] [CrossRef]
- Zaroual, H.; Boughattas, F.; Karoui, R. Traditional Foods in Maghreb: Production and Research Progress. In Traditional Foods: History, Preparation, Processing and Safety; Springer: Cham, Switzerland, 2019; pp. 51–113. [Google Scholar]
- Okos, M.R.; Campanella, O.; Narsimhan, G.; Singh, R.K.; Weitnauer, A. Food dehydration. In Handbook of Food Engineering; CRC Press: Boca Raton, FL, USA, 2018; pp. 799–950. [Google Scholar]
- Angerosa, F.; Lanza, B.; Marsilio, V.J. Biogenesis of «fusty» defect in virgin olive oils. Grasas y Aceites 1996, 47, 142–150. [Google Scholar] [CrossRef]
- Mousa, S.; M Radwan, S.; M El-Kholy, M.; H El-Sheikh, I. The Effect of Expeller Press Operational Parameters on Olive Pomace Oil Extraction. Misr J. Agric. Eng. 2022, 39, 221–232. [Google Scholar] [CrossRef]
- Bañares, C.; Chabni, A.; de Donlebún, B.P.; Reglero, G.; Torres, C.F. Chemical characterization of pomegranate and alfalfa seed oils obtained by a two-step sequential extraction procedure of expeller and supercritical CO2 technologies. J. Food Compos. Anal. 2023, 115, 105040. [Google Scholar] [CrossRef]
- Bajoub, A.; Hurtado-Fernández, E.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A.; Ouazzani, N. Quality and chemical profiles of monovarietal north Moroccan olive oils from “Picholine Marocaine” cultivar: Registration database development and geographical discrimination. Food Chem. 2015, 179, 127–136. [Google Scholar] [CrossRef]
- Novoselić, A.; Klisović, D.; Lukić, M.; Horvat, I.; Lukić, I.; Brkić Bubola, K. Influence of Small Amount of Water Addition in the Extraction Process on the Olive Oil Yield and Phenolic Compounds. Agric. Conspec. Sci. 2021, 86, 251–257. [Google Scholar]
- Carrapiso, A.I.; García, A.; Petrón, M.J.; Martín, L. Effect of talc and water addition on olive oil quality and antioxidants. Eur. J. Lipid Sci. Technol. 2013, 115, 583–588. [Google Scholar] [CrossRef]
- Marx, Í.M.G.; Casal, S.; Rodrigues, N.; Cruz, R.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Does water addition during the industrial milling phase affect the chemical-sensory quality of olive oils? The case of cv. Arbequina oils. Food Chem. 2022, 395, 133570. [Google Scholar] [CrossRef] [PubMed]
- Sakar, E.H.; Khtira, A.; Aalam, Z.; Zeroual, A.; Gagour, J.; Gharby, S. Variations in physicochemical characteristics of olive oil (cv ‘Moroccan Picholine’) according to extraction technology as revealed by multivariate analysis. AgriEngineering 2022, 4, 922–938. [Google Scholar] [CrossRef]
- Mansouri, F.; Benmoumen, A.; Richard, G.; Fauconnier, M.-L.; Sindic, M.; Serghini-Caid, H.; Elamrani, A. Characterization of monovarietal virgin olive oils from introduced cultivars in eastern Morocco. Riv. Ital. Sostanze Grasse 2016, 93, 21–30. [Google Scholar]
- Anastasopoulos, E.; Kalogeropoulos, N.; Kaliora, A.C.; Kountouri, A.M.; Andrikopoulos, N.K. Quality indices, polyphenols, terpenic acids, squalene, fatty acid profile, and sterols in virgin olive oil produced by organic versus non-organic cultivation method. Food Environ. 2011, 11, 135–142. [Google Scholar]
- Panagou, E.Z.; Tassou, C.C.; Katsaboxakis, K.Z. Microbiological, physicochemical and organoleptic changes in dry-salted olives of Thassos variety stored under different modified atmospheres at 4 and 20 °C. Int. J. Food Sci. Technol. 2002, 37, 635–641. [Google Scholar] [CrossRef]
- Longobardi, F.; Contillo, F.; Catucci, L.; Tommasi, L.; Caponio, F.; Paradiso, V.M. Analysis of peroxide value in olive oils with an easy and green method. Food Control 2021, 130, 108295. [Google Scholar] [CrossRef]
- Kiritsakis, K.; Rodríguez-Pérez, C.; Gerasopoulos, D.; Segura-Carretero, A. Olive oil enrichment in phenolic compounds during malaxation in the presence of olive leaves or olive mill wastewater extracts. Eur. J. Lipid Sci. Technol. 2017, 119, 1600425. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Farssi, M.; Taleb, A.A.; Guillaume, D.; Laknifli, A. Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. Ocl 2018, 25, A303. [Google Scholar] [CrossRef]
- Labrinea, E.P.; Thomaidis, N.S.; Georgiou, C.A. Direct olive oil anisidine value determination by flow injection. Anal. Chim. Acta 2001, 448, 201–206. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Caracciolo, M.; Zappia, C.; Capocasale, M.; Poiana, M. Effect of heating on chemical parameters of extra virgin olive oil, pomace olive oil, soybean oil and palm oil. Ital. J. Food Sci. 2018, 30. [Google Scholar]
- Méndez, A.I.; Falqué, E. Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control 2007, 18, 521–529. [Google Scholar] [CrossRef]
- Giuffrè, A.M. The evolution of free acidity and oxidation related parameters in olive oil during olive ripening from cultivars grown in the region of Calabria, South Italy. Emir. J. Food Agric. 2018, 30, 539–548. [Google Scholar]
- De Boer, A.A.; Ismail, A.; Marshall, K.; Bannenberg, G.; Yan, K.L.; Rowe, W.J. Examination of marine and vegetable oil oxidation data from a multi-year, third-party database. Food Chem. 2018, 254, 249–255. [Google Scholar] [CrossRef]
- Rey-Giménez, R.; Sánchez-Gimeno, A.C. Crop year, harvest date and clone effects on fruit characteristics, chemical composition and olive oil stability from an Empeltre clonal selection grown in Aragon. J. Sci. Food Agric. 2022, 102, 5778–5786. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Bozinou, E.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Olive Oil Produced from Olives Stored under CO2 Atmosphere: Volatile and Physicochemical Characterization. Antioxidants 2023, 12, 30. [Google Scholar] [CrossRef]
- Di Giovacchino, L.; Sestili, S.; Di Vincenzo, D. Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2002, 104, 587–601. [Google Scholar] [CrossRef]
- Beltrán, G.; Del Rio, C.; Sánchez, S.; Martínez, L. Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual. J. Agric. Food Chem. 2004, 52, 3434–3440. [Google Scholar] [CrossRef]
- Mansouri, F.; Moumen, A.B.; Belhaj, K.; Richard, G.; Fauconnier, M.-L.; Sindic, M.; Caid, H.S.; Elamrani, A. Effect of crop season on the quality and composition of extra virgin olive oils from Greek and Spanish varieties grown in the Oriental region of Morocco. Emir. J. Food Agric. 2018, 30, 549–562. [Google Scholar]
- Mansouri, F.; Ben Moumen, A.; Houmy, N.; Richard, G.; Fauconnier, M.-L.; Sindic, M.; Serghini-Caid, H.; Elamrani, A. Evaluation of the oxidative stability of blends of ‘Arbequina’ olive oils with other monovarietal olive oils. Olivae (Off. J. Int. Olive Counc.) 2014, 120, 23–30. [Google Scholar]
- Shimizu, M.; Kudo, N.; Nakajima, Y.; Matsuo, N.; Katsuragi, Y.; Tokimitsu, I.; Barceló, I.; Mateu, C.; Barceló, F. Acidity and DAG content of olive oils recently produced on the Island of Mallorca. J. Am. Oil Chem. Soc. 2008, 85, 1051–1056. [Google Scholar] [CrossRef]
- Cossignani, L.; Simonetti, M.S.; Neri, A.; Damiani, P. Changes in olive oil composition due to microwave heating. J. Am. Oil Chem. Soc. 1998, 75, 931–937. [Google Scholar] [CrossRef]
- Beltran, G.; Bucheli, M.E.; Aguilera, M.P.; Belaj, A.; Jimenez, A. Squalene in virgin olive oil: Screening of variability in olive cultivars. Eur. J. Lipid Sci. Technol. 2016, 118, 1250–1253. [Google Scholar] [CrossRef]
- El Qarnifa, S.; El Antari, A.; Hafidi, A. Effect of maturity and environmental conditions on chemical composition of olive oils of introduced cultivars in Morocco. J. Food Qual. 2019, 2019, 1854539. [Google Scholar] [CrossRef]
- Beltrán, G.; Bejaoui, M.A.; Sánchez-Ortiz, A.; Jiménez, A. Water addition during oil extraction affects on virgin olive oil ethanol content, quality and composition. Eur. J. Lipid Sci. Technol. 2021, 123, 2000400. [Google Scholar] [CrossRef]
- Gharby, S.; Hajib, A.; Ibourki, M.; Nounah, I.; Moudden, H.E.L.; Elibrahimi, M.; Harhar, H. Induced changes in olive oil subjected to various chemical refining steps: A comparative study of quality indices, fatty acids, bioactive minor components, and oxidation stability kinetic parameters. Chem. Data Collect. 2021, 33, 100702. [Google Scholar] [CrossRef]
- Nieto, L.M.; Hodaifa, G.; Lozano Peña, J.L. Changes in phenolic compounds and Rancimat stability of olive oils from varieties of olives at different stages of ripeness. J. Sci. Food Agric. 2010, 90, 2393–2398. [Google Scholar] [CrossRef]
- Del Carlo, M.; Sacchetti, G.; Di Mattia, C.; Compagnone, D.; Mastrocola, D.; Liberatore, L.; Cichelli, A. Contribution of the phenolic fraction to the antioxidant activity and oxidative stability of olive oil. J. Agric. Food Chem. 2004, 52, 4072–4079. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Official Methods and Recommended Practices of the AOCS; American Oil Chemists’ Society: Urbana, IL, USA, 1997. [Google Scholar]
- Rozema, B.; Mitchell, B.; Winters, D.; Kohn, A.; Sullivan, D.; Meinholz, E. Proposed modifications to AOAC 996.06, optimizing the determination of trans fatty acids: Presentation of data. J. AOAC Int. 2008, 91, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem 1927, 73, 627–650. [Google Scholar] [CrossRef]
- Farhoosh, R.; Hoseini-Yazdi, S.Z. Evolution of oxidative values during kinetic studies on olive oil oxidation in the Rancimat test. J. Am. Oil Chem. Soc. 2014, 91, 281–293. [Google Scholar] [CrossRef]
- AOCS. American Oil Chemists’ Society Official Method Cd 12b-92; Oil Stability Index (OSI); AOCS: Urbana, IL, USA, 1999. [Google Scholar]
Percentage (%) | CE * | OO | OOWW | dOO1 | dOO2 | dOO3 |
---|---|---|---|---|---|---|
Initial moisture content | 33–62 | 56.7 ± 1.3 | 56.7 ± 1.3 | 56.7 ± 1.3 | 56.7 ± 1.3 | 56.7 ± 1.3 |
Processing moisture | 53–72 | 61.7 | 56.7 | 1.7 ± 0.2 | 6.30 ± 0.52 | 20.4 ± 1.45 |
Total fat content | 20–25 | 21.5 ± 2.6 | 21.5 ± 2.6 | 60.7 ± 0.13 | 50.8 ± 1.87 | 33.7 ± 3.17 |
Extraction Yield | 15–17 | 13.8 | 12.7 | 34.4 ± 0.25 | 17.6 ± 0.8 | 7.8 |
Oil recovery | 60–85 | 59.3 | 57.4 | 57.2 ± 2.31 | 35.3 ± 1.06 | 23.3 |
Olive pomace † (CE, OO, OOww) | 30–40 a | 44 b | 52 b | - | - | - |
Press cake † (dOO1–3) | - | - | - | 62.6 ± 1.3 c | 78.9 ± 3.6 d | 76.5 e |
OMWW | 40–60 | 40.7 | 33.6 | 0 | 0 | - |
Material Balance | 90–100 | 98.5 | 98.3 | 97 ± 1.29 | 94.1 ± 1.29 | 84.4 ** |
(g/100 g) | CE | OO | OOww | dOO1 | dOO2 | dOO3 | EVOO * |
---|---|---|---|---|---|---|---|
Palmitic acid (C16:0) | 11.5 ± 0.01 c | 8.16 ± 0.02 a | 8.16 ± 0.12 a | 9.84 ± 0.25 b | 11.8 ± 0.17 c | 11.06 ± 0.03 c | 7.00–20.0 |
Stearic acid (C18:0) | 2.83 ± 0.01 c | 2.44 ± 0.02 b | 2.45 ± 0.02 b | 2.26 ± 0.00 a | 2.84 ± 0.01 c | 2.71 ± 0.02 d | 0.50–5.00 |
Oleic acid (C18:1) | 71.3 ± 0.01 a | 77.6 ± 0.03 b | 77.7 ± 0.02 b | 77.6 ± 0.22 b | 76.1 ± 0.06 b | 76.5 ± 0.13 b | 55.0–85.0 |
Linoleic acid (C18:2) | 11.5 ± 0.02 d | 9.30 ± 0.04 c | 9.42 ± 0.08 c | 7.28 ± 0.06 b | 6.00 ± 0.01 a | 6.01 ± 0.02 a | 2.50–21.0 |
γ-Linolenic acid (C18:3) | 0.29 ± 0.01 a | 0.33 ± 0.02 a | 0.33 ± 0.01 a | 0.32 ± 0.01 a | 0.42 ± 0.01 b | 0.41 ± 0.01 b | ≤1.00 |
α-Linolenic acid (C18:3) | 0.78 ± 0.01 a | 1.34 ± 0.04 c | 1.25 ± 0.05 c | 1.35 ± 0.01 c | 0.91 ± 0.03 b | 0.95 ± 0.01 b | ≤1.5 |
Others | 1.80 ± 0.03 b | 1.91 ± 0.18 b | 1.53 ± 0.13 ab | 1.39 ± 0.03 a | 2.29 ± 0.03 c | 2.37 ± 0.11 c | |
Total saturated FA | 14.8 ± 0.01 b | 10.7 ± 0.00 a | 10.6 ± 0.09 a | 12.3 ± 0.26 b | 14.5 ± 0.16 b | 14.04 ± 0.11 b | |
Total MUFA | 72.0 ± 0.01 a | 78.3 ± 0.03 b | 78.4 ± 0.04 b | 77.4 ± 0.21 b | 77.3 ± 0.07 b | 77.8 ± 0.05 b | |
Total PUFA | 12.6 ± 0.02 c | 10.9 ± 0.02 b | 11 ± 0.05 b | 10.3 ± 0.06 b | 7.19 ± 0.09 a | 7.20 ± 0.06 a | |
O/L ratio | 6.2 ± 0.00 a | 8.35 ± 0.03 b | 8.25 ± 0.07 b | 10.7 ± 0.04 c | 15.2 ± 0.33 d | 15.3 ± 0.05 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chabni, A.; Vázquez, L.; Bañares, C.; Torres, C.F. Combination of Dehydration and Expeller as a Novel Methodology for the Production of Olive Oil. Molecules 2023, 28, 6953. https://doi.org/10.3390/molecules28196953
Chabni A, Vázquez L, Bañares C, Torres CF. Combination of Dehydration and Expeller as a Novel Methodology for the Production of Olive Oil. Molecules. 2023; 28(19):6953. https://doi.org/10.3390/molecules28196953
Chicago/Turabian StyleChabni, Assamae, Luis Vázquez, Celia Bañares, and Carlos F. Torres. 2023. "Combination of Dehydration and Expeller as a Novel Methodology for the Production of Olive Oil" Molecules 28, no. 19: 6953. https://doi.org/10.3390/molecules28196953
APA StyleChabni, A., Vázquez, L., Bañares, C., & Torres, C. F. (2023). Combination of Dehydration and Expeller as a Novel Methodology for the Production of Olive Oil. Molecules, 28(19), 6953. https://doi.org/10.3390/molecules28196953