Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. C. japonicum DC. var. australe Kitam. Leaves Exhibit the Highest Dry Weight and Yield in Methanol Extracts
2.2. Crude Methanol Extracts Enhance Oxidative Resistance in C. elegans
2.3. Development of a Chromatographic Method for the Analysis of Five Target Phytochemicals in the Methanol Extracts
2.4. Flower, Leaf, Stem, and Root Methanol Extracts from C. japonicum DC. var. australe Kitam. Contain Rich Contents of Silymarin
2.5. Silychristin and Taxifolin May Contribute to the Antioxidative Activity of Crude Methanol Extracts in C. elegans
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plants and Extraction
4.3. Identification and Quantification of Active Components in Methanol Extracts
4.4. C. elegans and Oxidative Stress Assay
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Peng, C.I.; Chung, K.F.; Li, H.L. Cirsium. In Flora of Taiwan, 2nd ed.; Huang, T.C., Ed.; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, 1998; Volume 4, pp. 903–913. [Google Scholar]
- Luo, W.; Wu, B.; Tang, L.; Li, G.; Chen, H.; Yin, X. Recent research progress of Cirsium medicinal plants in China. J. Ethnopharmacol. 2021, 280, 114475. [Google Scholar]
- Strawa, J.; Wajs-Bonikowska, A.; Leszczyńska, K.; Ściepuk, M.; Nazaruk, J. Chemical composition and antioxidant, antibacterial activity of Cirsium rivulare (Jacq) All. roots. Nat. Prod. Res. 2016, 30, 2730–2733. [Google Scholar] [PubMed]
- Park, J.Y.; Kim, H.Y.; Shibamoto, T.; Jang, T.S.; Lee, S.C.; Shim, J.S.; Hahm, D.H.; Lee, H.J.; Lee, S.; Kang, K.S. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorg. Med. Chem. Lett. 2017, 27, 3968–3973. [Google Scholar]
- Park, J.C.; Yoo, H.; Kim, C.E.; Shim, S.Y.; Lee, M. Hispidulin-7-O-neohesperidoside from Cirsium japonicum var. ussuriense attenuates the production of inflammatory mediators in LPS-induced Raw 264.7 cells and HT-29 Cells. Pharmacogn. Mag. 2017, 13, 707–711. [Google Scholar] [PubMed]
- Tian, L.; Jiang, M.; Chen, H.; Li, J.; Huang, L.; Liu, C. Comparative analysis of the complete chloroplast genomes of Cirsium japonicum from China and Korea. Mitochondrial DNA B Resour. 2021, 6, 1468–1470. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Tzeng, H.Y.; Tseng, Y.H. Cirsium taiwanense (Compositae, Cirsium sect. Onotrophe, subsect. Australicirsium), a new species from Taiwan. Phytokeys 2021, 183, 37–53. [Google Scholar]
- Chang, C.Y.; Tzeng, H.Y.; Tseng, Y.H. Cirsium tatakaense (Compositae), a new species from Taiwan. Phytokeys 2019, 117, 119–132. [Google Scholar] [CrossRef]
- Ku, K.L.; Tsai, C.T.; Chang, W.M.; Shen, M.L.; Wu, C.T.; Liao, H.F. Hepatoprotective effect of Cirsium arisanense Kitamura in tacrine-treated hepatoma Hep 3B cells and C57BL mice. Am. J. Chin. Med. 2008, 36, 355–368. [Google Scholar] [CrossRef]
- Zhao, Z.-W.; Chang, J.-C.; Lin, L.-W.; Tsai, F.-H.; Chang, H.-C.; Wu, C.-R. Comparison of the hepatoprotective effects of four endemic Cirsium species extracts from Taiwan on CCl4-induced acute liver damage in C57BL/6 mice. Int. J. Mol. Sci. 2018, 19, 1329. [Google Scholar]
- Zhao, Z.-W.; Chang, H.-C.; Ching, H.; Lien, J.-C.; Huang, H.-C.; Wu, C.-R. Antioxidant effects and phytochemical properties of seven Taiwanese Cirsium species extracts. Molecules 2021, 26, 3935. [Google Scholar]
- Gillessen, A.; Schmidt, H.H. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 2020, 37, 1279–1301. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; Kaur, G.; Bhardwaj, G.; Mutreja, V.; Sohal, H.S.; Nayik, G.A.; Bhardwaj, A.; Sharma, A. Traditional uses, phytochemical composition, pharmacological properties, and the biodiscovery potential of the genus Cirsium. Chemistry 2022, 4, 1161–1192. [Google Scholar] [CrossRef]
- Křenek, K.; Marhol, P.; Peikerová, Ž.; Křen, V.; Biedermann, D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014, 65, 115–120. [Google Scholar] [CrossRef]
- Roy, N.S.; Kim, J.A.; Choi, A.Y.; Ban, Y.W.; Park, N.I.; Park, K.C.; Yang, H.S.; Choi, I.Y.; Kim, S. RNA-Seq de novo assembly and differential transcriptome analysis of Korean medicinal herb Cirsium japonicum var. spinossimum. Genom. Inform. 2018, 16, e34. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Wang, Y.J.; Yang, G.T.; Gao, Q.L.; Tang, M.X. Taxifolin inhibits receptor activator of NF-κB ligand-induced osteoclastogenesis of human bone marrow-derived macrophages in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Pharmacology 2019, 103, 101–109. [Google Scholar] [CrossRef]
- Xie, X.; Feng, J.; Kang, Z.; Zhang, S.; Zhang, L.; Zhang, Y.; Li, X.; Tang, Y. Taxifolin protects RPE cells against oxidative stress-induced apoptosis. Mol. Vis. 2017, 23, 520–528. [Google Scholar]
- Chen, J.; Sun, X.; Xia, T.; Mao, Q.; Zhong, L. Pretreatment with dihydroquercetin, a dietary flavonoid, protected against concanavalin A-induced immunological hepatic injury in mice and TNF-α/ActD-induced apoptosis in HepG2 cells. Food Funct. 2018, 9, 2341–2352. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Xin, X.; Xiang, X.; Xin, Y.; Li, Q.; Ma, H.; Liu, X.; Hou, Y.; Yu, W. Global trends in research on oxidative stress associated with periodontitis from 1987 to 2022: A bibliometric analysis. Front. Immunol. 2022, 13, 979675. [Google Scholar] [CrossRef]
- Guan, R.; Van Le, Q.; Yang, H.; Zhang, D.; Gu, H.; Yang, Y.; Sonne, C.; Lam, S.S.; Zhong, J.; Jianguang, Z.; et al. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 2021, 271, 129499. [Google Scholar] [CrossRef]
- Dumanovic, J.; Nepovimova, E.; Natic, M.; Kuca, K.; Jacevic, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [PubMed]
- Jakubczyk, K.; Drużga, A.; Katarzyna, J.; Skonieczna-Żydecka, K. Antioxidant potential of curcumin-A meta-analysis of randomized clinical trials. Antioxidants 2020, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Ahmad, S.; Shah, S.W.A.; Ullah, A.; Rahman, S.U.; Ahmad, M.; Almehmadi, M.; Abdulaziz, O.; Allahyani, M.; Alsaiari, A.A.; et al. Synthetic mono-carbonyl curcumin analogues attenuate oxidative stress in mouse models. Biomedicines 2022, 10, 2597. [Google Scholar]
- Cui, X.J.; Lin, Q.L.; Liang, Y. Plant-derived antioxidants protect the nervous system from aging by inhibiting oxidative stress. Front. Aging Neurosci. 2020, 12, 209. [Google Scholar]
- Potts, M.B.; Cameron, S. Cell lineage and cell death: Caenorhabditis elegans and cancer research. Nat. Rev. Cancer 2011, 11, 50–58. [Google Scholar] [CrossRef]
- Lai, C.H.; Chou, C.Y.; Ch’ang, L.Y.; Liu, C.S.; Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000, 10, 703–713. [Google Scholar] [CrossRef]
- Rodriguez, M.; Snoek, L.B.; De Bono, M.; Kammenga, J.E. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet. 2013, 29, 367–374. [Google Scholar]
- Hu, Q.; D’Amora, D.R.; MacNeil, L.T.; Walhout, A.J.M.; Kubiseski, T.J. The Caenorhabditis elegans oxidative stress response requires the NHR-49 transcription factor. Genes Genom. Genet. 2018, 8, 3857–3863. [Google Scholar]
- Liao, V.H.C. Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. J. Agric. Food Chem. 2018, 66, 1737–1742. [Google Scholar] [CrossRef]
- Ahmad, T.; Suzuki, Y.J. Juglone in oxidative stress and cell signaling. Antioxidants 2019, 8, 91. [Google Scholar] [CrossRef]
- Senchuk, M.M.; Dues, D.J.; Van Raamsdonk, J.M. Measuring oxidative stress in Caenorhabditis elegans: Paraquat and juglone sensitivity assays. Bio. Protoc. 2017, 7, e2086. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.C.; Graf, T.N.; Sparacino, C.M.; Wani, M.C.; Wall, M.E. Complete isolation and characterization of silybins and isosilybins from milk thistle (Silybum marianum). Org. Biomol. Chem. 2003, 1, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 2019, 166, 112066. [Google Scholar] [PubMed]
- Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother. 2021, 142, 112004. [Google Scholar]
- Sun, X.; Chen, R.C.; Yang, Z.H.; Sun, G.B.; Wang, M.; Ma, X.J.; Yang, L.J.; Sun, X.B. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food Chem. Toxicol. 2014, 63, 221–232. [Google Scholar] [PubMed]
- Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U.M.; Gulcin, I.; Alwasel, S.H. Antioxidant activity of taxifolin: An activity-structure relationship. J. Enzyme Inhib. Med. Chem. 2016, 31, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Hu, X.; Li, S.; Wang, J.; Li, Z.; Li, D.; Xu, F.; Gao, M.; Hua, H. Hypoglycemic effect of silychristin A from Silybum marianum fruit via protecting pancreatic islet β cells from oxidative damage and inhibiting α-glucosidase activity in vitro and in rats with type 1 diabetes. J. Funct. Foods 2017, 38, 168–179. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhang, L.; Yan, T.; Wu, B.; Xu, F.; Jia, Y. Silychristin A activates Nrf2-HO-1/SOD2 pathway to reduce apoptosis and improve GLP-1 production through upregulation of estrogen receptor α in GLUTag cells. Eur. J. Pharmacol. 2020, 881, 173236. [Google Scholar]
- Viktorova, J.; Dobiasova, S.; Rehorova, K.; Biedermann, D.; Kanova, K.; Seborova, K.; Vaclavikova, R.; Valentova, K.; Ruml, T.; Kren, V.; et al. Antioxidant, anti-Inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants 2019, 8, 303. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H. Milk thistle oil extracted by enzyme-mediated assisted solvent extraction compared with n-hexane and cold-pressed extraction. Molecules 2023, 28, 2591. [Google Scholar] [CrossRef]
- Wianowska, D.; Wiśniewski, M. Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J. Chromatogr. Sci. 2015, 53, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.W.; Wu, Y.C.; Liao, V.H. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans. J. Hazard Mater. 2022, 423 Pt A, 127091. [Google Scholar] [CrossRef]
- AlOkda, A.; Van Raamsdonk, J.M. Effect of DMSO on lifespan and physiology in C. elegans: Implications for use of DMSO as a solvent for compound delivery. MicroPubl. Biol. 2022, 2022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, P.-L.; Lin, T.-A.; Chuah, W.L.; Chang, C.-Y.; Tseng, Y.-H.; Huang, C.-Y.; Yang, J.-C.; Hsu, F.-L.; Liao, V.H.-C. Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules 2023, 28, 6923. https://doi.org/10.3390/molecules28196923
Yen P-L, Lin T-A, Chuah WL, Chang C-Y, Tseng Y-H, Huang C-Y, Yang J-C, Hsu F-L, Liao VH-C. Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules. 2023; 28(19):6923. https://doi.org/10.3390/molecules28196923
Chicago/Turabian StyleYen, Pei-Ling, Ting-An Lin, Wei Lin Chuah, Chih-Yi Chang, Yen-Hsueh Tseng, Chia-Yin Huang, Jeng-Chuann Yang, Fu-Lan Hsu, and Vivian Hsiu-Chuan Liao. 2023. "Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans" Molecules 28, no. 19: 6923. https://doi.org/10.3390/molecules28196923
APA StyleYen, P. -L., Lin, T. -A., Chuah, W. L., Chang, C. -Y., Tseng, Y. -H., Huang, C. -Y., Yang, J. -C., Hsu, F. -L., & Liao, V. H. -C. (2023). Methanol Extracts from Cirsium japonicum DC. var. australe Kitam. and Their Active Components Reduce Intracellular Oxidative Stress in Caenorhabditis elegans. Molecules, 28(19), 6923. https://doi.org/10.3390/molecules28196923