Yellow Himalayan Raspberry (Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects
Abstract
:1. Introduction
2. Methods
3. Botanical Description and Distribution
4. Ethnomedicinal Uses
Parts of Plants Used | Dose/Formulation | Used in Disease | References |
---|---|---|---|
Bark | Bark juice is consumed | Common cold and blood disorders | [57] |
Paste mixed with water and consumed | As an antidiuretic and renal tonic | [32,55] | |
- | Common cold | [57,58] | |
Fruit | Raw fruit is consumed | Abdominal pain | [59] |
Decoction | Dysentery | [60] | |
Juice is consumed | Diabetes | [61,62] | |
Eaten raw | Diarrhea and as diuretics | [63] | |
Juice is consumed | Sore throat and cold | [64] | |
Juice is consumed | Cardiac and blood-related diseases | [62] | |
10–20 g fruits, 3 times a day | Gastritis, antacid, diarrhea, and dysentery | [65] | |
Juice is consumed | Indigestion | [66] | |
Juice is consumed | Fever and cough | [60] | |
Ripe fruit | 1 Teaspoon decoction 3 times a day | Food poisoning | [67,68] |
Decoction | Loss of appetite, general debility, continuous vomiting after eating | [67,68] | |
Eaten raw | As an aperient | [69,70] | |
- | Constipation | [65] | |
Taken as juice and in raw form | Mouth ulcer | [69] | |
Leaves | Juice of 20 leaflets consumed | As a febrifuge | [67,68] |
Juice/powdered is consumed | vomiting | [59] | |
Juice is consumed | Mouth ulcer and gastrointestinal disorders | [69,70] | |
Leaves and fruits | Consumed as juice, powder, or in raw form | Gastrointestinal problems and mouth disorders | [71] |
Root | 5–10 g of the crushed root as a juice | Used to reduce fever | [67,68] |
Paste | Applied on wound | [60,72] | |
Powder/Juice | Fever and diarrhea | [73,74] | |
Root paste is mixed with various other plants and 1 spoon (fresh) or 1/2 spoon (dry) is consumed with 1 glass of water once a day | Mental disorder | [64] | |
Paste applied as a poultice | Paralysis, Bone facture | [50,64,75] | |
Paste applied as a poultice | Colic pain, aggression | [75] | |
Root paste and ash of Eleusine coracana mixed and applied externally, once a day | Wound healing | [76] | |
Juice is taken | Gastrointestinal and respiratory problems | [77] | |
Decoction is prepared together with other plants and consumed | Typhoid and stomach pain, Respiratory tract infection, Gastrointestinal tract infection | [77] | |
Decoction is consumed | Used to kill stomach worms and cure other gastric problems | [74] | |
Powder | Rhinitis and sinusitis | [77] | |
10–20 mL of juice taken | Diarrhea, cholera, gastritis, sore throat | [78] | |
Decoction is consumed | Typhoid fever | [79] | |
Juice is consumed | Urinary tract infection | [57] | |
Root and fruit | Eaten raw | Excessive thirst and weakness | [73] |
Root and shoot | - | Colic pains, antiprotozoal activity against Entamoeba histolytica, hypoglycemic activity | [64] |
Root and young shoots | Paste is taken orally | Throat pain | [80] |
Whole part | Raw/Juice is consumed | Hypothermia | [75,81] |
Raw/Juice is consumed | As an astringent and tonic | [82] | |
- | Epilepsy | [83] | |
Crushed plant parts along with Osbeckia nepalensis is applied with to skin | Dermatitis | [77] |
5. Nutritional Composition
6. Phytochemical Constituents
Phytochemicals | Value for R. ellipticus | Value for R. fruticosus |
---|---|---|
Total phenol content | 343.75 ± 2.21 µg GAE/mg [35] | 412.38 ± 18.78 mg GAE/100 g fresh weight [97] |
Total flavonoid content | 433.5 ± 13.39 mg CE/100 g [41] | 77.77 mg QE/100 g [31] |
Total anthocyanin content | 1.71 ± 0.08 CGE/100g [98] | 152 mg/100 g [31] |
Total tannin content | 628.32 ± 3.17 mg TAE/g [31] | 6.50 ± 3.1% of dry matter [99] |
Phytochemical Classes | Bioactive Compound | Plant Part | References |
---|---|---|---|
Flavonoids/Chalcones | Quercetin | Fruit | [100] |
Rutin | Fruit | [85] | |
Quercetin 3-O-glucuronide | Fruit | [101] | |
Phloridzin | Fruit | [85,102] | |
Kaempferol | Leaves | [38,103] | |
Catechin Epicatechin Epigallocatechin | Fruit | [104,105,106] | |
Chrysin Cyanidin Pelargonidin | Fruit | [107] | |
Phenolic acids/Organic Acids | Gallic acid | Fruit and Leaves | [31,41] |
Malic acid | Fruit | [64] | |
Ellagic acid | Fruit and Leaves | [38,102] | |
Chlorogenic acid | Fruit and Leaves | [31] | |
Citric acid | Fruit | [32] | |
Ascorbic acid | Fruit | [32,98] | |
Acuminatic acid | Root | [108] | |
Quinic acid | Fruit | [64] | |
Caffeic acid | Leaves and Fruit | [31,41] | |
m-Coumaric acid | Fruit | [56] | |
p-Coumaric acid | Fruit | [56,85] | |
Ellagitannins | Lambertianin C Sanguiin H6 | Fruit | [101] |
Triterpenes and Sterols | Tormentic acid Miquelianin | Leaves and Root | [34,102] |
Euscaphic acid | Root | [42] | |
β-Sitosterol β-Sitosterol-β-D-glucoside | Leaves and Root | [102,109] | |
β-Carotene | Fruits and Leaves | [33,85] | |
Rosamutin Sericic acid Buergericic acid | Root | [42] | |
Oleanane | Leaves | [110] | |
Ursolic acid | Root | [108] | |
Campesterol | Leaves and Root | [34,102] | |
Niga-ichgoside-F1 [28-β-Glucopyranosyl ester of 19 α-hydroxyasiatic acid] | Leaves and Fruits | [111] | |
Octacosanol Octacosanic acid | Root | [53,102] | |
3-β-Hydroxy-urs-12,18-diene-28-oic-acid-3-O-(β-D-glucopyranosyl (1-4)-α-L-arabinopyranoside | Fruit and Aerial Part | [53,64] | |
24-Deoxysericoside | Whole Plant | [111] | |
Amino acids | Tyrosine Hydroxy proline Serine Histidine Leucine | Fruit | [39] |
7. Biological Activities
7.1. Antioxidant Activity
7.2. Antimalarial Activity
7.3. Antidiabetic Activity
7.4. Antiproliferative and Anticancer Activity
7.5. Anti-Inflammatory Activity
7.6. Antifertility Activity
7.7. Nephroprotective Activity
7.8. Antiviral Activity
7.9. Antipyretic Activity
7.10. Effect on Central Nervous System (CNS)
7.11. Antimicrobial Activity
7.12. Wound Healing Activity
7.13. Photocatalytic Activity
8. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Van Wyk, B.-E.; Wink, M. Phytomedicines, Herbal Drugs, and Poisons; University of Chicago Press: Chicago, IL, USA, 2015. [Google Scholar]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.D.; Panda, M.K.; Satapathy, K.B. Ethnomedicine for drug discovery. In Advances in Pharmaceutical Biotechnology: Recent Progress and Future Applications; Springer: Singapore, 2020; pp. 15–28. [Google Scholar]
- Kunwar, R.M.; Bussmann, R.W. Ethnobotany in the nepal himalaya. J. Ethnobiol. Ethnomed. 2008, 4, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, G.; Sharma, G.; Sapkota, B.; Adhikari, M.; Ghimire, S.; Poudel, P.; Jung, H.-J. Screening of Antioxidant, Antibacterial, Anti-Adipogenic, and Anti-Inflammatory Activities of Five Selected Medicinal Plants of Nepal. J. Exp. Pharmacol. 2023, 15, 93–106. [Google Scholar] [CrossRef]
- Bagale, R.; Acharya, S.; Gupta, A.; Chaudhary, P.; Chaudhary, G.P.; Pandey, J. Antibacterial and antioxidant activities of Prinsepia utilis royle leaf and seed extracts. J. Trop. Med. 2022, 2022, 3898939. [Google Scholar] [CrossRef]
- Pandeya, P.R.; Lamichhane, R.; Lamichhane, G.; Lee, K.-H.; Lee, H.K.; Rhee, S.-j.; Jung, H.-J. 18KHT01, a potent anti-obesity polyherbal formulation. Front. Pharmacol. 2021, 12, 807081. [Google Scholar] [CrossRef]
- Pandeya, P.R.; Lamichhane, G.; Lamichhane, R.; Luo, J.; Li, X.-J.; Rhee, S.-j.; Xiangqian, L.; Jung, H.-J. Antiobesity activity of two polyherbal formulations in high-fat diet-induced obese C57BL/6J mice. BioMed Res. Int. 2022, 2022, 9120259. [Google Scholar] [CrossRef]
- Giri, B.R.; Baral, R.; Bhatt, H.; Khadka, A.; Tamrakar, R.; Timalsina, G.; Gyawali, R. Phytochemical Screening, Free-Radical Scavenging Activity, in vitro Alpha-Amylase Inhibitory Activity, and in vivo Hypoglycemic Activity Studies of Several Crude Drug Formulations Based on Selected Medicinal Plants of Nepal. Pharm. Chem. J. 2023, 56, 1369–1378. [Google Scholar] [CrossRef]
- Jugran, A.K.; Rawat, S.; Devkota, H.P.; Bhatt, I.D.; Rawal, R.S. Diabetes and plant-derived natural products: From ethnopharmacological approaches to their potential for modern drug discovery and development. Phytother. Res. 2021, 35, 223–245. [Google Scholar] [CrossRef]
- Fahed, A.C.; Wang, M.; Patel, A.P.; Ajufo, E.; Maamari, D.J.; Aragam, K.G.; Brockman, D.G.; Vosburg, T.; Ellinor, P.T.; Ng, K. Association of the interaction between familial hypercholesterolemia variants and adherence to a healthy lifestyle with risk of coronary artery disease. JAMA Netw. Open 2022, 5, e222687. [Google Scholar] [CrossRef] [PubMed]
- Civeira, F.; International Panel on Management of Familial Hypercholesterolemia. Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia. Atherosclerosis 2004, 173, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Champagne, C.M.; Harsha, D.W.; Cooper, L.S.; Obarzanek, E.; Elmer, P.J.; Stevens, V.J.; Vollmer, W.M.; Lin, P.H.; Svetkey, L.P.; et al. Effects of comprehensive lifestyle modification on blood pressure control: Main results of the PREMIER clinical trial. JAMA 2003, 289, 2083–2093. [Google Scholar] [CrossRef] [PubMed]
- Thoma, C.; Day, C.P.; Trenell, M.I. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: A systematic review. J. Hepatol. 2012, 56, 255–266. [Google Scholar] [CrossRef]
- Suzuki, A.; Lindor, K.; St Saver, J.; Lymp, J.; Mendes, F.; Muto, A.; Okada, T.; Angulo, P. Effect of changes on body weight and lifestyle in nonalcoholic fatty liver disease. J. Hepatol. 2005, 43, 1060–1066. [Google Scholar] [CrossRef]
- Woo, J. Relationships among diet, physical activity and other lifestyle factors and debilitating diseases in the elderly. Eur. J. Clin. Nutr. 2000, 54, S143–S147. [Google Scholar] [CrossRef] [Green Version]
- Bourbeau, J.; Nault, D.; Dang-Tan, T. Self-management and behaviour modification in COPD. Patient Educ. Couns. 2004, 52, 271–277. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116. [Google Scholar] [CrossRef]
- Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, İ.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev. 2019, 18, 647–657. [Google Scholar] [CrossRef]
- Ahmad, M.; Masood, S.; Sultana, S.; Hadda, T.B.; Bader, A.; Zafar, M. Antioxidant and nutraceutical value of wild medicinal Rubus berries. Pak. J. Pharm. Sci. 2015, 28, 241–247. [Google Scholar] [PubMed]
- Laura, A.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value and Stability; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Vivarelli, S.; Costa, C.; Teodoro, M.; Giambò, F.; Tsatsakis, A.M.; Fenga, C. Polyphenols: A route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch. Toxicol. 2023, 97, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Gul, K.; Singh, A.; Jabeen, R. Nutraceuticals and functional foods: The foods for the future world. Crit. Rev. Food Sci. Nutr. 2016, 56, 2617–2627. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.S.; Ande, C.; Moremen, K.W.; Crich, D. Influence of side chain conformation on the activity of glycosidase inhibitors. Angew. Chem. 2023, 135, e202217809. [Google Scholar] [CrossRef]
- Chennaiah, A.; Bhowmick, S.; Vankar, Y.D. Conversion of glycals into vicinal-1, 2-diazides and 1, 2-(or 2, 1)-azidoacetates using hypervalent iodine reagents and Me 3 SiN 3. Application in the synthesis of N-glycopeptides, pseudo-trisaccharides and an iminosugar. RSC Adv. 2017, 7, 41755–41762. [Google Scholar] [CrossRef] [Green Version]
- Devkota, H.P.; Paudel, K.R.; Khanal, S.; Baral, A.; Panth, N.; Adhikari-Devkota, A.; Jha, N.K.; Das, N.; Singh, S.K.; Chellappan, D.K. Stinging Nettle (Urtica dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties. Molecules 2022, 27, 5219. [Google Scholar] [CrossRef]
- Chaudhary, D.; Lamichhane, G. Overview of natural products in nutraceutical industries. In Herbs, Spices and Their Roles in Nutraceuticals and Functional Foods; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–13. [Google Scholar]
- Singh, B.; Singh, L.; Kewlani, P.; Joshi, V.C.; Bhatt, I.D. Rubus spp.(Rubus armeniacus, Rubus ellipticus, Rubus fruticosus, Rubus nepalensis, Rubus niveus, Rubus occidentalis). In Himalayan Fruits and Berries; Elsevier: Amsterdam, The Netherlands, 2023; pp. 381–394. [Google Scholar]
- Pandey, Y.; Bhatt, S.S. Overview of Himalayan yellow raspberry (Rubus ellipticus Smith.): A nutraceutical plant. J. Appl. Nat. Sci. 2016, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Badhani, A.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Variation in Chemical Constituents and Antioxidant Activity in Yellow Himalayan (Rubus ellipticus Smith) and Hill Raspberry (Rubus niveus Thunb.). J. Food Biochem. 2015, 39, 663–672. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, R.; Kumar, K.; Kumar, D.; Solanke, A.K.U. Genetic variability in Rubus ellipticus collections assessed by morphological traits and EST-SSR markers. J. Plant Biochem. Biotechnol. 2021, 30, 37–55. [Google Scholar] [CrossRef]
- Lamichhane, A.; Khatri, S.; Dhungana, M.; Tripathi, B.; Bhattrai, N.; Baral, R.; Jamarkattel, N. Qualitative and quantitative phytochemical screening and free radical scavenging activity of different parts of Rubus ellipticus Sm. Curr. Perspect. Med. Aromat. Plants. 2023, 5, 106–117. [Google Scholar] [CrossRef]
- Rubus ellipticus Sm; Plants of the World Online; Royal Botanic Gardens Kew: Richmond, UK. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:736506-1 (accessed on 3 April 2023).
- Subba, B.; Gaire, S.; Sharma, K.R. Analysis of phyto-constituents, antioxidant, and alpha amylase inhibitory activities of persea americana Mill., Rhododendron arboretum Sm. Rubus ellipticus Sm. from Arghakhanchi district Nepal. Asian J. Pharm. Clin. Res. 2019, 12, 301. [Google Scholar] [CrossRef]
- Muniyandi, K.; George, E.; Sathyanarayanan, S.; George, B.P.; Abrahamse, H.; Thamburaj, S.; Thangaraj, P. Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Sci. Hum. Wellness 2019, 8, 73–81. [Google Scholar] [CrossRef]
- Saklani, S.; Chandra, S.; Badoni, P.; Dogra, S. Antimicrobial activity, nutritional profile and phytochemical screening of wild edible fruit of Rubus ellipticus. Int. J. Med. Aromat. Plants 2012, 2, 269–274. [Google Scholar]
- Bhardwaj, P.; Hallan, V. Occurrence of Apple stem grooving virus on Rubus ellipticus, a perennial weed in India. Eur. J. Plant Pathol. 2019, 153, 311–319. [Google Scholar] [CrossRef]
- Saini, R.; Dangwal, K.; Singh, H.; Garg, V. Antioxidant and antiproliferative activities of phenolics isolated from fruits of Himalayan yellow raspberry (Rubus ellipticus). J. Food Sci. Technol. 2014, 51, 3369–3375. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Fu, H.; Bai, H.; Sasaki, T.; Kato, H.; Koike, K. Triterpenoid saponins from Rubus ellipticus var. obcordatus. J. Nat. Prod. 2009, 72, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Khaniya, L.; Bhattarai, R.; Jan, H.A.; Hussain, W.; Abbasi, A.M.; Bussmann, R.W.; Paniagua-Zambrana, N.Y. Rubus ellipticus Sm. Rubus foliolosus Weihe & Nees Rubus fruticosus L. Rubus irritans Focke Rosaceae. In Ethnobotany of the Himalayas; Kunwar, R.M., Sher, H., Bussmann, R.W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–17. [Google Scholar]
- Singh, R.K.N. Yellow Himalayan Raspberry; Flowers of India, India. Available online: http://www.flowersofindia.net/ (accessed on 5 April 2023).
- Shikha, D.; Kashyap, P. Yellow Himalayan Berry. In Antioxidants in Fruits: Properties and Health Benefits; Springer: Singapore, 2020; pp. 67–81. [Google Scholar]
- George, B.P.; Parimelazhagan, T.; Saravanan, S. Anti-inflammatory, analgesic and antipyretic activities of Rubus ellipticus Smith. Leaf Methanol Extract. Int. J. Pharm. Pharm. Sci. 2013, 5, 220–224. [Google Scholar]
- Wu, K.; Zhang, J.; Zhang, G.; Ding, J. Epiblema tetragonana and Epinotia ustulana (Lepidoptera: Tortricidae), two potential biological control agents for the invasive plant, Rubus ellipticus. Biol. Control 2014, 77, 51–58. [Google Scholar] [CrossRef]
- Lalla, R.; Cheek, M.; Nxumalo, M.; Renteria, J. First assessment of naturalised Rubus ellipticus Sm. populations in South Africa-A potential invasion risk? S. Afr. J. Bot. 2018, 114, 111–116. [Google Scholar] [CrossRef]
- Sharma, U.S.; Kumar, A. In vitro antioxidant activity of Rubus ellipticus fruits. J. Adv. Pharm. Technol. Res. 2011, 2, 47. [Google Scholar] [CrossRef]
- Vadivelan, R.; Bhadra, S.; Ravi, A.; Shanish, K.S.A.; Elango, K.; Suresh, B. Evaluation of anti-inflammatory and membrane stabilizing property of ethanol root extract of Rubus ellipticus Smith in Albino rats. J. Nat. Remedies 2009, 9, 74–78. [Google Scholar]
- Shan, S.; Huang, X.; Shah, M.H.; Abbasi, A.M. Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. BioMed Res. Int. 2019, 2019, 1381989. [Google Scholar] [CrossRef] [Green Version]
- Kirtikar, K.; Basu, B.; CS, I. Indian medicinal plants, oriental enterprises. Dehradun 2001, 6, 2029–2035. [Google Scholar]
- Bhakuni, R.; Shukla, Y.; Thakur, R. Chemical examination of the roots of Rubus ellipticus. Indian Drugs 1987, 24, 272. [Google Scholar]
- Yadav, R.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol. 2011, 3, 10–14. [Google Scholar]
- Pfoze, N.L.; Kumar, Y.; Myrboh, B. Survey and assessment of ethnomedicinal plants used in Senapati District of Manipur State, Northeast India. Phytopharmacology 2012, 2, 285–311. [Google Scholar]
- Kewlani, P.; Singh, L.; Belwal, T.; Bhatt, I.D. Optimization of ultrasonic-assisted extraction for bioactive compounds in Rubus ellipticus fruits: An important source for nutraceutical and functional foods. Sustain. Chem. Pharm. 2022, 25, 100603. [Google Scholar] [CrossRef]
- Wangchuk, P.; Pyne, S.G.; Keller, P.A. Ethnobotanical authentication and identification of Khrog-sman (lower elevation medicinal plants) of Bhutan. J. Ethnopharmacol. 2011, 134, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Kashyap, S.; Yangdon, P.; Wangchuk, P. Taxonomical identification of Himalayan edible medicinal plants in Bhutan and the phenolic contents and antioxidant activity of selected plants. J. Biol. Act. Prod. Nat. 2017, 7, 89–106. [Google Scholar] [CrossRef]
- Khan, M.P.Z.; Ahmad, M. Traditional preference of Wild Edible Fruits (WEFs) for digestive disorders (DDs) among the indigenous communities of Swat Valley-Pakistan. J. Ethnopharmacol. 2015, 174, 339–354. [Google Scholar] [CrossRef]
- Shrestha, N.; Prasai, D.; Shrestha, K.K.; Shrestha, S.; Zhang, X.-C. Ethnomedicinal practices in the highlands of central Nepal: A case study of Syaphru and Langtang village in Rasuwa district. J. Ethnopharmacol. 2014, 155, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.M.; Khan, M.A.; Khan, N.; Shah, M.H. Ethnobotanical survey of medicinally important wild edible fruits species used by tribal communities of Lesser Himalayas-Pakistan. J. Ethnopharmacol. 2013, 148, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.P.Z.; Ahmad, M.; Zafar, M.; Sultana, S.; Ali, M.I.; Sun, H. Ethnomedicinal uses of edible wild fruits (EWFs) in Swat Valley, Northern Pakistan. J. Ethnopharmacol. 2015, 173, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Ibrar, M.; Rauf, A.; Hadda, T.B.; Mubarak, M.S.; Patel, S. Quantitative ethnobotanical survey of medicinal flora thriving in Malakand Pass Hills, Khyber Pakhtunkhwa, Pakistan. J. Ethnopharmacol. 2015, 169, 335–346. [Google Scholar] [CrossRef]
- Patel, A.; Rojas-Vera, J.; Dacke, C. Therapeutic constituents and actions of Rubus species. Curr. Med. Chem. 2004, 11, 1501–1512. [Google Scholar] [CrossRef] [PubMed]
- Maity, D.; Pradhan, N.; Chauhan, A.S. Folk uses of some medicinal plants from North Sikkim. Indian J. Tradit. Knowl. 2004, 3, 66–71. [Google Scholar]
- Rana, D.; Bhatt, A.; Lal, B. Ethnobotanical knowledge among the semi-pastoral Gujjar tribe in the high altitude (Adhwari’s) of Churah subdivision, district Chamba, Western Himalaya. J. Ethnobiol. Ethnomed. 2019, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N. Traditional phytotherapy among the sherpas of Helambu, central Nepal. J. Ethnopharmacol. 1989, 27, 45–54. [Google Scholar] [CrossRef]
- Joshi, A.; Edington, J. The use of medicinal plants by two village communities in the central development region of Nepal. Econ. Bot. 1990, 44, 71–83. [Google Scholar] [CrossRef]
- Bhatia, H.; Sharma, Y.P.; Manhas, R.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol. 2014, 151, 1005–1018. [Google Scholar] [CrossRef]
- Rao, P.; Hasan, S.; Bhellum, B.; Manhas, R. Ethnomedicinal plants of Kathua district, J&K, India. J. Ethnopharmacol. 2015, 171, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Singh, B.; Kishor, A.; Singh, S.; Bhat, M.N.; Surmal, O.; Musarella, C.M. Exploring plant-based ethnomedicine and quantitative ethnopharmacology: Medicinal plants utilized by the population of Jasrota Hill in Western Himalaya. Sustainability 2020, 12, 7526. [Google Scholar] [CrossRef]
- Dubey, A.K.; Singh, S. A new whitefly of quarantine importance infesting a native and invasive plant, Rubus ellipticus Sm.(Rosaceae) in the Western Himalaya, India. J. Asia-Pac. Entomol. 2021, 24, 1239–1243. [Google Scholar] [CrossRef]
- Rokaya, M.B.; Münzbergová, Z.; Timsina, B. Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J. Ethnopharmacol. 2010, 130, 485–504. [Google Scholar] [CrossRef]
- Lata, S.; Yadav, A.; Kumar, P.; Yadav, M. Biodiversity of underutilized fruits of the Himalayas. Genet. Resour. Crop Evol. 2023, 70, 71–94. [Google Scholar] [CrossRef]
- De Rus Jacquet, A.; Subedi, R.; Ghimire, S.K.; Rochet, J.C. Nepalese traditional medicine and symptoms related to Parkinson’s disease and other disorders: Patterns of the usage of plant resources along the Himalayan altitudinal range. J. Ethnopharmacol. 2014, 153, 178–189. [Google Scholar] [CrossRef]
- Subedi, R. Ethnobotanical Study of Panchase Protected Forest, Kaski District, Central Nepal; Central Department of Botany Tribhuvan University Kirtipur: Kathmandu, Nepal, 2017. [Google Scholar]
- Ambu, G.; Chaudhary, R.P.; Mariotti, M.; Cornara, L. Traditional uses of medicinal plants by ethnic people in the Kavrepalanchok district, Central Nepal. Plants 2020, 9, 759. [Google Scholar] [CrossRef]
- Bhattarai, K.R. Ethnobotanical study of plants used by Thami community in Ilam District, eastern Nepal. Our Nat. 2018, 16, 55–67. [Google Scholar] [CrossRef]
- Khadka, B.; Panthi, M.; Rimal, S. Folklore medicinal plants used against typhoid and fever in Lwangghalel, Kaski District, Central Nepal. J. Plant Resour. 2020, 18, 258–266. [Google Scholar]
- Sachdeva, C.; Mohanakrishnan, D.; Kumar, S.; Kaushik, N.K. Assessment of in vitro and in vivo antimalarial efficacy and GC-fingerprints of selected medicinal plant extracts. Exp. Parasitol. 2020, 219, 108011. [Google Scholar] [CrossRef]
- Rojas-Vera, J.; Patel, A.V.; Dacke, C.G. Relaxant activity of raspberry (Rubus idaeus) leaf extract in guinea-pig ileum in vitro. Phytother. Res. 2002, 16, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Malla, S.; Rajbhandari, S.; Manandhar, A. Medicinal plants of Nepal—Retrospects and prospects. Econ. Bot. 1979, 33, 185–198. [Google Scholar] [CrossRef]
- Sharma, K.; Verma, R.; Kumar, D.; Nepovimova, E.; Kuča, K.; Kumar, A.; Raghuvanshi, D.; Dhalaria, R.; Puri, S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. J. Ethnopharmacol. 2022, 293, 115318. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yin, D.; Li, N.; Hou, X.; Wang, D.; Li, D.; Liu, J. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Sci. Rep. 2016, 6, 28591. [Google Scholar] [CrossRef] [PubMed]
- Belwal, T.; Pandey, A.; Bhatt, I.D.; Rawal, R.S.; Luo, Z. Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Dirar, A.; Alsaadi, D.; Wada, M.; Mohamed, M.; Watanabe, T.; Devkota, H. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Belwal, T.; Cravotto, C.; Prieto, M.; Venskutonis, P.R.; Daglia, M.; Devkota, H.P.; Baldi, A.; Ezzat, S.M.; Gómez-Gómez, L.; Salama, M.M. Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Dry. Technol. 2022, 40, 1539–1561. [Google Scholar] [CrossRef]
- Pandey, J.; Singh, L.; Saxena, G.; Devkota, H.P. Environmental challenges for himalayan medicinal plants. In Environmental Challenges and Medicinal Plants: Sustainable Production Solutions under Adverse Conditions; Springer: Berlin, Germany, 2022; pp. 29–47. [Google Scholar]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef] [Green Version]
- Zafra-Rojas, Q.; Cruz-Cansino, N.; Delgadillo-Ramírez, A.; Alanís-García, E.; Añorve-Morga, J.; Quintero-Lira, A.; Castañeda-Ovando, A.; Ramírez-Moreno, E. Organic acids, antioxidants, and dietary fiber of Mexican blackberry (Rubus fruticosus) residues cv. Tupy. J. Food Qual. 2018, 2018, 5950761. [Google Scholar] [CrossRef] [Green Version]
- Stajčić, S.M.; Tepić, A.N.; Đilas, S.M.; Šumić, Z.M.; Čanadanović-Brunet, J.M.; Ćetković, G.S.; Vulić, J.J.; Tumbas, V.T. Chemical composition and antioxidant activity of berry fruits. Acta Period. Technol. 2012, 43, 93–105. [Google Scholar] [CrossRef]
- Plessi, M.; Bertelli, D.; Albasini, A. Distribution of metals and phenolic compounds as a criterion to evaluate variety of berries and related jams. Food Chem. 2007, 100, 419–427. [Google Scholar] [CrossRef]
- Schulz, M.; Chim, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci. 2019, 31, 100438. [Google Scholar] [CrossRef]
- Van de Velde, F.; Grace, M.H.; Esposito, D.; Pirovani, M.É.; Lila, M.A. Quantitative comparison of phytochemical profile, antioxidant, and anti-inflammatory properties of blackberry fruits adapted to Argentina. J. Food Compos. Anal. 2016, 47, 82–91. [Google Scholar] [CrossRef]
- Ono, M.; Yasuda, S.; Nishi, K.; Yamamoto, K.; Fuchizaki, S.; Higuchi, S.; Komatsu, H.; Okawa, M.; Kinjo, J.; Yoshimitsu, H. Two new triterpenoids from the seeds of blackberry (Rubus fructicosus). Nat. Prod. Res. 2016, 30, 904–911. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 2017, 20, 3124–3134. [Google Scholar] [CrossRef] [Green Version]
- Karuppusamy, S.; Muthuraja, G.; Rajasekaran, K. Antioxidant Activity of Selected Lesser Known Edible Fruits from Western Ghats of India; NISCAIR-CSIR: New Delhi, India, 2011. [Google Scholar]
- Gudej, J.; Tomczyk, M. Determination of flavonoids, tannins and ellagic acid in leaves from Rubus L. species. Arch. Pharmacal Res. 2004, 27, 1114–1119. [Google Scholar] [CrossRef]
- Sasikumar, J.; Poulin, R.; Meseret, C.; Selvakumar, P. In vitro analysis of antioxidant capacity of Indian yellow raspberry (Rubus ellipticus Smith.). Int. Food Res. J. 2015, 22, 1338–1346. [Google Scholar]
- Burlando, B.; Cornara, L.; Boggia, R. Nutraceutical Potential of High-latitude and High-altitude Berries Rich in Ellagitannins. Curr. Med. Chem. 2023, 30, 2121–2140. [Google Scholar] [CrossRef]
- Kewlani, P.; Tiwari, D.; Rawat, S.; Bhatt, I.D. Pharmacological and phytochemical potential of Rubus ellipticus: A wild edible with multiple health benefits. J. Pharm. Pharmacol. 2023, 75, 143–161. [Google Scholar] [CrossRef]
- Joshi, R.K.; Laurindo, L.F.; Rawat, P.; de Alvares Goulart, R.; Barbalho, S.M. Himalayan Yellow Raspberry (Rubus ellipticus Smith.): A Plant with Multiple Medicinal Purposes. Rec. Agric. Food. Chem. 2022, 2, 75–83. [Google Scholar]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A. Pharmacological activities of flavonoids: A review. Int. J. Pharm. Sci. Nanotechnol. 2011, 4, 1394–1398. [Google Scholar] [CrossRef]
- Bachheti, A.; Deepti; Bachheti, R.K.; Singh, A.; Zebeaman, M.; Hunde, Y.; Husen, A. Bioactive constituents and health promoting compounds of underutilized fruits of the northern Himalayas of India: A review. Food Prod. Process. Nutr. 2023, 5, 24. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.; Silva, A.M. Plant flavonoids: Chemical characteristics and biological activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, S.; Shrestha, K.; Talapatra, B. Chemical Investigation of Some Medicinal-Plants of Nepal 2; Council Scientific Industrial Research Publication and Information Directorate: New Delhi, India, 1989; Volume 28, pp. 880–881. [Google Scholar]
- Aswal, B.; Goel, A.; Kulshrestha, D.; Mehrotra, B.; Patnaik, G. Screening of Indian Plants for Biological Activity: Part XV; CSIR-CDRI: Lucknow, India, 1996. [Google Scholar]
- Karn, A.; Quasim, M.A.; Paul, S.; Sharma, H.K. An updated review of Rubus ellipticus (an edible shrub), its bioactive constituents and functional properties. Sci. Phytochem. 2022, 1, 22–33. [Google Scholar] [CrossRef]
- Xiao-Hong, Z.; Kasai, R.; Ohtani, K.; Tanaka, O.; Rui-Lin, N.; Chong-Ren, Y.; Jun, Z.; Yamasaki, K. Oleanane and ursane glucosides from Rubus species. Phytochemistry 1992, 31, 3642–3644. [Google Scholar] [CrossRef]
- Trivedi, A.; Verma, S.; Tyagi, R. Variability in morpho-physiological traits and antioxidant potential of Rubus species in Central Himalayan Region. Ind. Crops Prod. 2016, 82, 1–8. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In Antioxidants; IntechOpen Limited: London, UK, 2019; Volume 10, pp. 1–29. [Google Scholar]
- Dhatwalia, J.; Kumari, A.; Chauhan, A.; Batoo, K.M.; Banerjee, A.; Radhakrishnan, A.; Thakur, S.; Guleria, I.; Lal, S.; Ghotekar, S. Rubus ellipticus fruits extract-mediated cuprous oxide nanoparticles: In vitro antioxidant, antimicrobial, and toxicity study. Chem. Pap. 2023, 77, 1377–1393. [Google Scholar]
- George, B.P.; Parimelazhagan, T.; Kumar, Y.T.; Sajeesh, T. Antitumor and wound healing properties of Rubus ellipticus Smith. J. Acupunct. Meridian Stud. 2015, 8, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G.; Pokharel, Y.R.; Kalauni, S.K. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. J. Nanomater. 2022, 2022, 1832587. [Google Scholar] [CrossRef]
- Benmohamed, M.; Guenane, H.; Messaoudi, M.; Zahnit, W.; Egbuna, C.; Sharifi-Rad, M.; Chouh, A.; Seghir, B.B.; Rebiai, A.; Boubekeur, S. Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica. Molecules 2023, 28, 349. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Sharma, U.; Kumar, A. Anti-diabetic effect of Rubus ellipticus fruit extracts in alloxan induced diabetic rats. J. Diabetol. 2011, 2, 4. [Google Scholar]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants–A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef]
- You, B.R.; Moon, H.J.; Han, Y.H.; Park, W.H. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem. Toxicol. 2010, 48, 1334–1340. [Google Scholar] [CrossRef]
- Losso, J.N.; Bansode, R.R.; Trappey, A., II; Bawadi, H.A.; Truax, R. In vitro anti-proliferative activities of ellagic acid. J. Nutr. Biochem. 2004, 15, 672–678. [Google Scholar] [CrossRef]
- Zhong, R.; Guo, Q.; Zhou, G.; Fu, H.; Wan, K. Three new labdane-type diterpene glycosides from fruits of Rubus chingii and their cytotoxic activities against five humor cell lines. Fitoterapia 2015, 102, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A. Biological evaluation of some medicinal plant extracts for contraceptive efficacy in females. In Future Aspects in Contraception; Springer: Dordrecht, The Netherlands, 1985; pp. 115–128. [Google Scholar]
- Dhanabal, S.; Prasanth, S.; Ramanathan, M.; Elango, K.; Suresh, B. Validation of antifertility activity of various Rubus species in female albino rats. Indian J. Pharm. Sci. 2000, 62, 58. [Google Scholar]
- Sharma, B.; Varshney, M.; Gupta, D.; Prakash, A.O. Antifertility screening of plants. Part I. Effect of ten indigenous plants on early pregnancy in albino rats. Int. J. Crude Drug Res. 1983, 21, 183–187. [Google Scholar] [CrossRef]
- Sharma, U.S.; Kumar, A. Nephroprotective evaluation of Rubus ellipticus (smith) fruits extracts against cisplatin and gentamicin induced renal-toxicity in rats. J. Pharm. Res. 2011, 1, 285–287. [Google Scholar]
- Sharma, I.; Khan, M.U.; Zahiruddin, S.; Basist, P.; Ahmad, S. Multi-Mechanistic and Therapeutic Exploration of Nephroprotective Effect of Traditional Ayurvedic Polyherbal Formulation Using In Silico, In Vitro and In Vivo Approaches. Biomedicines 2023, 11, 168. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, L.-H.; Jiang, J.-G. Hepatoprotective effect of flavonoids from Cirsium japonicum DC on hepatotoxicity in comparison with silymarin. Food Funct. 2016, 7, 2179–2184. [Google Scholar] [CrossRef]
- Santos, R.S.; Chaves-Filho, A.B.; Silva, L.A.; Garcia, C.A.; Silva, A.R.; Dolabella, S.S.; da Costa, S.S.; Miyamoto, S.; Matos, H.R. Bioactive compounds and hepatoprotective effect of Hancornia speciosa gomes fruit juice on acetaminophen-induced hepatotoxicity in vivo. Nat. Prod. Res. 2022, 36, 2565–2569. [Google Scholar] [CrossRef]
- Panda, S.K.; Padhi, L.; Leyssen, P.; Liu, M.; Neyts, J.; Luyten, W. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Front. Pharmacol. 2017, 8, 658. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Madaan, R.; Bansal, G.; Jamwal, A.; Sharma, A. Plants and plant products with potential anticonvulsant activity–a review. Phcog Commn. 2012, 2, 3–99. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Mishra, A.K.; Jha, S. Effect of traditional medicine brahmi vati and bacoside A-rich fraction of Bacopa monnieri on acute pentylenetetrzole-induced seizures, amphetamine-induced model of schizophrenia, and scopolamine-induced memory loss in laboratory animals. Epilepsy Behav. 2018, 80, 144–151. [Google Scholar] [CrossRef]
- Khanal, L.N.; Sharma, K.R.; Pokharel, Y.R.; Kalauni, S.K. Assessment of phytochemical, antioxidant and antimicrobial activities of some medicinal plants from Kaski district of Nepal. Am. J. Plant Sci. 2020, 11, 1383. [Google Scholar] [CrossRef]
- Singh, M.; Purohit, R. Study on phytochemical characterization and antibacterial activity of fruit trees of Chamoli District, Uttarakhand, India. Int. J. Pharm. Biol. Sci. 2019, 9, 226–231. [Google Scholar]
- Rambabu, K.; Bharath, G.; Monash, P.; Velu, S.; Banat, F.; Naushad, M.; Arthanareeswaran, G.; Show, P.L. Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process Saf. Environ. Prot. 2019, 124, 266–278. [Google Scholar] [CrossRef]
- Dhatwalia, J.; Kumari, A.; Chauhan, A.; Mansi, K.; Thakur, S.; Saini, R.V.; Guleria, I.; Lal, S.; Kumar, A.; Batoo, K.M. Rubus ellipticus Sm. Fruit Extract Mediated Zinc Oxide Nanoparticles: A Green Approach for Dye Degradation and Biomedical Applications. Materials 2022, 15, 3470. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.; Mehmood, A.; Khan, M.A.R.; Ahmad, K.S.; Abasi, F.; Raffi, M.; Ali, K.; Khan, M.E.H.; Jones, D.A.; Abdelkarim, M. Antibacterial, antioxidant and photocatalytic activity of novel Rubus ellipticus leaf mediated silver nanoparticles. J. Saudi Chem. Soc. 2023, 27, 101576. [Google Scholar] [CrossRef]
Nutrient Composition | Values for R. ellipticus | Values for R. fruticosus |
---|---|---|
Protein (%) | 4.37 ± 0.52% [23] | 1.39 g/100 g [90] |
Fiber (%) | 2.35 ± 0.05% [39] | 44.2 % of dry matter [91] |
Fat (%) | 0.96 ± 0.20% [39] | 0.49 g/100 g [90] |
Carbohydrates (%) | 86.4 ± 0.38% [23] | 9.07 ± 0.80% [91] |
Ash Value | 2.97 g/100 g of dry matter [23] | 3.0 g/100 g of fresh weight [92] |
Nutrient Composition | Quantity on R. ellipticus | Quantity on R. fruticosus |
---|---|---|
Sodium | 89.43 ± 0.01 mg/100 g DW [23] | 5.91 mg/100 g [93] |
Potassium | 1.82 ± 0.25 mg/100 g DW [39] | 8.9 mg/g [31] |
Calcium | 0.95 ± 0.10 mg/100 g DW [39] | 193mg/100 g [93] |
Magnesium | 118.72 ± 0.48 mg/100 g DW [23] | 151 mg/100 g [93] |
Copper | 0.020 ± 0.01 mg/100 g DW [23] | 165 µg/100 g [90] |
Zinc | 12.77 ± 0.05 mg/100 g DW [23] | 2.3 mg/100 g [93] |
Iron | 4.249 ± 0.15 mg/100 g DW [23] | 5.9 mg/100 g [93] |
Manganese | 1.948 ± 0.03 mg/100 g DW [23] | 0.646 mg/100 g [90] |
Ascorbic acid (Vitamin C) | 19.8 mg/100 g Fresh weight [94] | 7.1–9.6 mg/100 g [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamichhane, A.; Lamichhane, G.; Devkota, H.P. Yellow Himalayan Raspberry (Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects. Molecules 2023, 28, 6071. https://doi.org/10.3390/molecules28166071
Lamichhane A, Lamichhane G, Devkota HP. Yellow Himalayan Raspberry (Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects. Molecules. 2023; 28(16):6071. https://doi.org/10.3390/molecules28166071
Chicago/Turabian StyleLamichhane, Ananda, Gopal Lamichhane, and Hari Prasad Devkota. 2023. "Yellow Himalayan Raspberry (Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects" Molecules 28, no. 16: 6071. https://doi.org/10.3390/molecules28166071
APA StyleLamichhane, A., Lamichhane, G., & Devkota, H. P. (2023). Yellow Himalayan Raspberry (Rubus ellipticus Sm.): Ethnomedicinal, Nutraceutical, and Pharmacological Aspects. Molecules, 28(16), 6071. https://doi.org/10.3390/molecules28166071